Formal Language

 and Automata Theory
Chapter 8

DFA state minimization

Motivations

Problems:

1. Given a DFA M with k states, is it possible to find an equivalent DFA M' (I.e., $\left.L(M)=L\left(M^{\prime}\right)\right)$ with state number fewer than k ?
2. Given a regular language A, how to find a machine with minimum number of states?
$E x: A=L\left((a+b)^{*} a b a(a+b)^{*}\right)$ can be accepted by the following NFA:

By applying the subset construction, we can construct

a DFA M2 with $2^{4}=16$ states,
of which only 6 are accessible from the initial state $\{\mathrm{s}\}$.

Inaccessible states

- A state $p \in Q$ is said to be inaccessible (or unreachable) [from the initial state] if there exists no string x in Σ^{*} s.t. $\Delta(s, x)=p$ (I.e., $p \notin\left\{q \mid \exists x \in \Sigma^{*}, \Delta(s, x)=q\right\}$.)

Theorem: Removing inaccessible states from a machine M does not affect the language it accepts.
Pf: $M=\langle Q, \Sigma, \delta, s, F\rangle: a \operatorname{DFA} ; \quad p$: an inaccessible state Let $M^{\prime}=<Q \backslash\{p\}, \Sigma, \delta^{\prime}, s, F \backslash\{p\}>$ be the DFA M with p removed. Where $\delta^{\prime}:(Q \backslash\{p\}) \times \Sigma \rightarrow Q \backslash\{p\}$ is defined by $\delta^{\prime}(q, a)=r$ if $\delta(q, a)=r$ and $q, r \in Q \backslash\{p\}$.

For M and M^{\prime} it can be proved by induction on x that for all x in $\Sigma^{\star}, \Delta(s, x)=\Delta^{\prime}(s, x)$.
Hence for all $x \in \Sigma^{*}, x \in L(M)$ iff $\Delta(s, x)=q \in F$ iff $\Delta^{\prime}(s, x)=q \in F \backslash\{p\}$ iff $x \in L\left(M^{\prime}\right)$.

- M : any DFA with n inaccessible states $p_{1}, p_{2}, \ldots, p_{n}$.

Let $M_{1}, M_{2}, . ., M_{n+1}$ are DFAs s.t. DFA M_{i+1} is constructed from M_{i} by removing p_{i} from M_{i}. l.e.,
$M \operatorname{-rm}\left(p_{1}\right)->M_{1}-r m\left(p_{2}\right)->M_{2}-\ldots M_{n}-r m\left(p_{n}\right)->M_{n}$
By previous lemma: $L(M)=L\left(M_{1}\right)=\ldots=L\left(M_{n}\right)$ and
M_{n} has no inaccessible states.

- Conclusion: Removing all inaccessible sates simultaneously from a DFA will not affect the language it accepts.
- In fact the conclusion holds for all NFAs we well. Pf: left as an exercise.
- Problem: Given a DFA (or NFA), how to find all inaccessible states ?
- A state is said to be accessible if it is not inaccessible.

Note: the set of accessible states $A(M)$ of a NFA M is

$$
\left\{q \mid \exists x \in \Sigma^{\star}, q \in \Delta(S, x)\right\}
$$

and hence can be defined by induction.

- Let A_{k} be the set of states accessible from initial states of M by at most k steps of transitions.
l.e., $A_{k}=\left\{q \mid \exists x \in \Sigma^{*}\right.$ with $|x| \leq k$ and $\left.q \in \Delta(S, x)\right\}$
- What is the relationship b/t $A(M)$ and $A_{k} s$?
\square sol: $A(M)=U_{k \geq 0} A_{k}$. Moreover $A_{k} \subseteq A_{k+1}$
- What is A_{0} and the relationship $b / t A_{k}$ and A_{k+1} ?

Formal definition: $M=<Q, \Sigma, \delta, S, F>:$ any NFA.
\square Basis: Every start state $q \in S$ is accessible. $\left(A_{0} \subseteq A(M)\right)$
\square Induction: If q is accessible and p in $\delta(q, a)$ for some $a \in \Sigma$, then p is accessible.

$$
\left(A_{k+1}=A_{k} U\left\{p \mid p \in \delta(q, a) \text { for some } q \in A_{k} \text { and } a \in \Sigma .\right)\right.
$$

An algorithm to find all accessible states:

- REACH(M) $\{\quad / / \mathrm{M}=\langle\mathrm{Q}, \Sigma, \delta, \mathrm{S}, \mathrm{F}\rangle$

1. $A=S$;
// $A=A_{0}$
2. $B=\Delta(A)-A ; \quad / / B=A_{1}-A_{0}$
3. For $k=0$ to $|Q|$ do $\left\{/ / A=A_{k} ; B=A_{k+1}-A_{k}\right.$
4.

$$
\begin{array}{ll}
A=A U B ; & \| A=A_{k+1} \\
B=\Delta(B)-A ; \quad & I / B=\Delta(B)-A=\Delta\left(A_{k+1}-A_{k}\right)-A_{k+1}=A_{k+2}-A_{k+1} ;
\end{array}
$$

if $B=\{ \}$ then break \};
5. Return(A) \}

Function $\Delta(S)\left\{\quad / /=\mathbf{U}_{\mathrm{p} \in \mathrm{S}, \mathrm{a} \in \Sigma}, \mathbf{q} \in \delta(\mathrm{p}, \mathrm{a})\right.$

1. $\Delta=\{ \} ;$
2. For each q in S do
for each a in Σ do

$$
\Delta=\Delta U \delta(\mathbf{q}, \mathbf{a}) ;
$$

Return(Δ) \}

- Minimization process for a DFA:
] 1. Remove all inaccessible states
— 2. Merge all equivalent states
- What does it mean that two states are equivalent?

I both have the same observable behaviors .i.e.,
\square there is no way to distinguish their difference.

- Definition: we say state p and q are distinguishable if there exists a string $x \in \Sigma^{*}$ s.t. $(\Delta(p, x) \in F \Leftrightarrow \Delta(q, x) \notin F)$.
\square If there is no such string, i.e. $\forall x \in \Sigma^{\star}(\Delta(p, x) \in F \Leftrightarrow \Delta(q, x) \in F)$, we say p and q are equivalent (or indistinguishable).
- Example[13.2]: (next slide)
\square state 3 and 4 are equivalent.
\square States 1 and 2 are equivalent.
Equivalents sates can be merged to form a simpler machine.

Example 13.2:

Example 13.2: Witness for states that are distinguishable

1. States $b / t\{0,3,4\}$ and $\{1,2,5\}$ can be distinguishsed by the empty string ε.
2. States $\mathrm{b} / \mathrm{t}\{1,2\}$ and $\{5\}$ can be distinguished by a or b .
3. States $\mathrm{b} / \mathrm{t}\{0\}$ and $\{3,4\}$ can be distinguished by aa,ab, ba or bb.
4. There is no way to distinguish $\mathrm{b} / \mathrm{t} 1$ and 2 , and $\mathrm{b} / \mathrm{t} 3$ and 4 .

Quotient Construction

- $\mathbf{M}=(\mathbf{Q}, \mathrm{\Sigma}, \delta, \mathrm{~s}, \mathrm{~F})$: a DFA.
- \approx : a relation on Q defined by:
$p \approx q<\Rightarrow \quad \forall x \in \Sigma^{\star} \quad \Delta(p, x) \in F$ iff $\Delta(q, x) \in F$
- Property: \approx is an equivalence (i.e., reflexive, symmetric and transitive) relation.
- Hence it partitions \mathbf{Q} into equivalence classes :
$\square[p]=_{\text {def }}\{q \in Q \mid p \approx q\}$ for $p \in Q$.
$\square \mathbf{Q} / \approx=_{\text {def }}\{[p] \mid p \in Q\}$ is the quotient set.
\square Every $p \in Q$ belongs to exactly one class (which is [p])
$\square p \approx q$ iff $[p]=[q] / / w h y$? since $p \approx q$ implies ($p \approx r$ iff $q \approx r$).
- Ex: From Ex 13.2, we have $0,1 \approx 2,3 \approx 4,5$.
$\square=>[0]=\{0\},[1]=\{1,2\},[2]=\{1,2\},[3]=\{3,4\},[4]=\{3,4\}$ and
[[5] =\{5\}. As a result, [1] = [2] =\{1,2\}, [3]=[4]=\{3,4\} and
$\square \mathbf{Q} / \approx=\{\{0\},\{1,2\},\{3,4\},\{5\}\}=\{[0],[1],[2],[3],[4],[5]\}=\{[0],[1],[3],[5]\}$.
- Define a DFA called the quotient machine $M / \approx=\left\langle Q^{\prime}, \Sigma, \delta^{\prime}, s^{\prime}, F^{\prime}\right\rangle$ where
[$\mathbf{Q}^{\prime}=\mathbf{Q} / \approx ; \mathbf{s}^{\prime}=[\mathrm{s}] ; \mathrm{F}^{\prime}=\{[\mathrm{p}] \mid \mathrm{p} \in \mathrm{F}\}$; and
$\square \delta^{\prime}([p], a)=[\delta(p, a)]$ for all $p \in \mathbf{Q}$ and $\mathbf{a} \in \Sigma$. But well-defined?
Lem 13.5. if $p \approx q$ then $\delta(p, a) \approx \delta(q, a)$.
Hence $[p]=[q] \Rightarrow p \approx q \Rightarrow \delta(p, a) \approx \delta(q, a) \Rightarrow[\delta(p, a)]=[\delta(q, a)]$
Pf: By def. $[\delta(p, a)]=[\delta(q, a)]$ iff $\delta(p, a) \approx \delta(q, a)$
iff $\forall y \in \Sigma^{*} \Delta(\delta(p, a), y) \in F \Leftrightarrow \Delta(\delta(q, a), y) \in F$ iff $\forall y \in \Sigma^{*} \Delta(p, a y) \in F \Leftrightarrow \Delta(q, a y) \in F$ if $p \approx q$.
Lemma 13.6. $p \in F$ iff $[p] \in F^{\prime}$. pf: => : trival.
$<=$: need to show that if $q \approx p$ and $p \in F$, then $q \in F$.
But this is trivial since $p=\Delta(p, \varepsilon) \in F$ iff $\Delta(q, \varepsilon)=q \in F$

Properties of the quotient machine.

Lemma 13.7: $\forall \mathrm{x} \in \Sigma^{*}, \Delta^{\prime}([\mathrm{p}], \mathrm{x})=[\Delta(\mathrm{p}, \mathrm{x})]$.
Pf: By induction on $|x|$.
Basis $x=\varepsilon: \Delta^{\prime}([p], \varepsilon]=[p]=[\Delta(p, \varepsilon)]$.
Ind. step: Assume $\Delta^{\prime}([p], x)=[\Delta(p, x)]$ and let $a \in \Sigma$.

$$
\begin{aligned}
& \Delta^{\prime}([p], x a)=\delta^{\prime}\left(\Delta^{\prime}(p, x), a\right)=\delta^{\prime}([\Delta(p, x)], a)-- \text { ind. hyp. } \\
& =[\delta(\Delta(p, x), a)] \quad-- \text { def. of } \delta^{\prime} \\
& =[\Delta(p, x a)] . \quad-\text { def. of } \Delta .
\end{aligned}
$$

Theorem 13.8: $\mathrm{L}(\mathrm{M} / \approx)=\mathrm{L}(\mathrm{M})$.
Pf: $\forall \mathbf{x} \in \Sigma^{\star}$,
$x \in L(M / \approx)$ iff $\Delta^{\prime}\left(s^{\prime}, x\right) \in F^{\prime}$
iff $\Delta^{\prime}([s], x) \in F^{\prime} \quad$ iff $[\Delta(s, x)] \in F^{\prime}$--- lem 13.7
iff $\Delta(s, x) \in F \quad$--- lem 13.6
iff $x \in L(M)$.

M / \approx need not be merged further

- Theorem: $((M / \approx) / \approx)=M / \approx$

Pf: Denote the second \approx by \sim. l.e.

$$
[\mathrm{p}] \sim[q] \text { iff } \forall x \in \Sigma^{\star}, \Delta^{\prime}([p], x) \in F^{\prime} \Leftrightarrow \Delta^{\prime}([q], x) \in F^{\prime}
$$

Now
[p] ~ [q]
iff $\forall x \in \Sigma^{*}, \Delta^{\prime}([p], x) \in F^{\prime} \Leftrightarrow \Delta^{\prime}([q], x) \in F^{\prime}-$ def.of iff $\forall \mathbf{x} \in \Sigma^{*},[\Delta(p, x)] \in F^{\prime} \Leftrightarrow[\Delta(q, x)] \in F^{\prime}$-- lem 13.7 iff $\forall x \in \Sigma^{\star}, \Delta(p, x) \in F \Leftrightarrow \Delta(q, x) \in F \quad$-- lem 13.6
iff $\mathbf{p} \approx \mathbf{q} \quad--\operatorname{def}$ of \approx
iff [p] = [q] -- property of equivalence \approx

1. Write down a table of all pairs $\{p, q\}$, initially unmarked.
2. mark $\{p, q\}$ if $p \in F$ and $q \notin F$ or vice versa.
3. Repeat until no additional pairs marked:

3.1 if \exists unmarked pair $\{p, q\}$ s.t. $\{\delta(p, a), \delta(q, a)\}$ is marked for some $a \in \Sigma$, then mark $\{p, q\}$.
4. When done, $p \approx q$ iff $\{p, q\}$ is not marked.

Let $\mathbf{M}_{\mathrm{k}}(\mathrm{k} \geq 0)$ be the set of pairs marked after the k-th iteration of step 3. [and \mathbf{M}_{0} is the set of pairs before step 3.]
Notes: (1) $M=U_{k \geq 0} M_{k}$ is the final set of pairs marked by the alg. (2) The algorithm must terminate since there are totally only C(n,2) pairs and each iteration of step 3 must mark at least one pair for it to not terminate..

DFA state minimization

An Example:

- The DFA: (Ex 13.2)

	a	b
>0	1	2
$1 F$	3	4
$2 F$	4	3
3	5	5
4	5	5
5 F	5	

DFA state minimization

Initial Table

1	-				
2	-	-			
3	-	-	-		
4	-	-	-	-	
5	-	-	-	-	-
	0	1	2	3	4

DFA state minimization

After step $2\left(\mathrm{M}_{0}\right)$

1	M				
2	M	-			
3	-	M	M		
4	-	M	M	-	
5	M	-	-	M	M
	0	1	2	3	4

DFA state minimization

After first pass of step $3\left(M_{1}\right)$

1	M				
2	M	-			
3	-	M	M		
4	-	M	M	-	
5	M	M	M	M	M
	0	1	2	3	4

2nd pass of step 3. $\left(\mathrm{M}_{2} \& \mathrm{M}_{3}\right)$

- The result : $1 \approx 2$ and $3 \approx 4$.

1	M				
2	M	-			
3	$M 2$	M	M		
4	$M 2$	M	M	-	
5	M	$M 1$	$M 1$	M	M
	0	1	2	3	4

Correctness of the minimization algorithm

Let $M_{k}(k \geq 0)$ be the set of pairs marked after the k-th itration of step 3. [and \mathbf{M}_{0} is the set of pairs befer step 3.]
Lemma: $\{p, q\} \in \mathbf{M}_{k}$ iff $\exists x \in \Sigma^{*}$ of length $\leq k$ s.t. $\Delta(p, x) \in F$ and $\Delta(q, x) \notin F$ or vice versa,
Pf: By ind. on k. Basis $k=0$. trivial.
Ind. step: $\exists x \in \Sigma^{*}$ of length $\leq k+1$ s.t. $\Delta(p, x) \in F \Leftrightarrow \Delta(q, x) \notin F$, iff $\exists y \in \Sigma^{*}$ of length $\leq k$ s.t. $\Delta(p, y) \in F \Leftrightarrow \Delta(q, y) \notin F$, or \exists ay $\in \Sigma^{*}$ of length $\leq k+1$ s.t. $\Delta(\delta(p, a), y) \in F \Leftrightarrow \Delta(\delta(q, a), y) \notin F$, iff $\{p, q\} \in M_{k}$ or $\{\delta(p, a), \delta(q, a)\} \in M_{k}$ for some $a \in \Sigma$. iff $\{p, q\} \in M_{k+1}$.
Theorem 14.3: The pair $\{p, q\}$ is marked by the algorithm iff $\operatorname{not}(p \approx q)$ (i.e., $\exists x \in \Sigma^{\star}$ s.t. $\left.\Delta(p, x) \in F \Leftrightarrow \Delta(q, x) \notin F\right)$

Pf: $\operatorname{not}(p \approx q)$ iff $\exists x \in \Sigma^{*}$ s.t. $\Delta(p, x) \in F \Leftrightarrow \Delta(q, x) \notin F$
iff $\{p, q\} \in M_{k}$ for some $k \geq 0$
iff $\{p, q\} \in M=U_{k \geq 0} M_{k}$.

