Formal Language and Automata Theory

Chapter 8

DFA state minimization

Motivations

Problems:

- 1. Given a DFA M with k states, is it possible to find an equivalent DFA M' (I.e., L(M) = L(M')) with state number fewer than k ?
- 2. Given a regular language A, how to find a machine with minimum number of states ?
- Ex: A = L((a+b)*aba(a+b)*) can be accepted by the following NFA:

By applying the subset construction, we can construct s t u v a DFA M2 with 2⁴=16 states, of which only 6 are accessible from the initial state {s}.

a,b

a,b

Inaccessible states

 A state p ∈ Q is said to be inaccessible (or unreachable) [from the initial state] if there exists no string x in Σ* s.t.
 Δ(s,x) = p (I.e., p ∉ {q | ∃x∈Σ*, Δ(s,x) = q }.)

Theorem: Removing inaccessible states from a machine M does not affect the language it accepts. Pf: $M = \langle Q, \Sigma, \delta, s, F \rangle$: a DFA; p: an inaccessible state Let M' = $\langle Q \setminus \{p\}, \Sigma, \delta', s, F \setminus \{p\} \rangle$ be the DFA M with p removed. Where $\delta': (Q \setminus \{p\}) \times \Sigma \rightarrow Q \setminus \{p\}$ is defined by $\delta'(q,a) = r$ if $\delta(q, a) = r$ and $q, r \in Q \setminus \{p\}$.

For M and M' it can be proved by induction on x that for all x in Σ^* , $\Delta(s,x) = \Delta'(s,x)$. Hence for all $x \in \Sigma^*$, $x \in L(M)$ iff $\Delta(s,x) = q \in F$ iff $\Delta'(s,x) = q \in F \setminus \{p\}$ iff $x \in L(M')$.

Inaccessible states are redundant

- M : any DFA with n inaccessible states $p_1, p_2, ..., p_n$.
- Let $M_1, M_2, ..., M_{n+1}$ are DFAs s.t. DFA M_{i+1} is constructed from M_i by removing p_i from M_{i_1} I.e.,

M -rm(p_1)-> M₁ -rm(p_2)-> M₂ - ... M_n -rm(p_n)-> M_n By previous lemma: L(M) = L(M₁) = ...=L(M_n) and

M_n has no inaccessible states.

- Conclusion: Removing all inaccessible sates simultaneously from a DFA will not affect the language it accepts.
- In fact the conclusion holds for all NFAs we well.
 Pf: left as an exercise.
- Problem: Given a DFA (or NFA), how to find all inaccessible states ?

How to find all accessible states

- A state is said to be accessible if it is not inaccessible.
- Note: the set of accessible states A(M) of a NFA M is

 $\{q \mid \exists x \in \Sigma^*, q \in \Delta(S, x) \}$

and hence can be defined by induction.

 Let A_k be the set of states accessible from initial states of M by at most k steps of transitions.

I.e., $A_k = \{q \mid \exists x \in \Sigma^* \text{ with } |x| \le k \text{ and } q \in \Delta(S,x) \}$

• What is the relationship b/t A(M) and A_ks ?

□ sol: A(M) = $U_{k \ge 0}$ A_k. Moreover A_k ⊆A_{k+1}

- What is A_0 and the relationship b/t A_k and A_{k+1} ? Formal definition: $M = \langle Q, \Sigma, \delta, S, F \rangle$: any NFA.
 - □ Basis: Every start state $q \in S$ is accessible.($A_0 \subseteq A(M)$)
 - □ Induction: If q is accessible and p in δ (q,a) for some a $\in \Sigma$, then p is accessible.

 $(A_{k+1}=A_k \cup \{p \mid p \in \delta(q,a) \text{ for some } q \in A_k \text{ and } a \in \Sigma.)$

An algorithm to find all accessible states:

• REACH(M) { // M = $\langle Q, \Sigma, \delta, S, F \rangle$ 1. A = S; // A = A₀ 2. B = Δ (A) - A; // B = A₁ - A₀ 3. For k = 0 to |Q| do { // A = A_k ; B = A_{k+1} - A_k 4. A = A U B ; // A = A_{k+1} B = Δ (B) - A; // B = Δ (B)-A= Δ (A_{k+1}-A_k)-A_{k+1}=A_{k+2}-A_{k+1} ; if B = {} then break }; 5. Return(A) }

Function $\Delta(S) \{ // = U_{p \in S, a \in \Sigma}, q \in \delta(p, a)$ 1. $\Delta = \{\};$ 2. For each q in S do for each a in Σ do $\Delta = \Delta \cup \delta(q, a);$ 3. Return(Δ) $\}$

Transparency No. 8-7

Minimization process

- Minimization process for a DFA:
 - □ 1. Remove all inaccessible states
 - □ 2. Merge all *equivalent* states
- What does it mean that two states are equivalent?
 - both have the same observable behaviors .i.e.,
 - **I** there is no way to distinguish their difference.
- Definition: we say state p and q are *distinguishable* if there exists a string x∈Σ* s.t. (Δ (p,x)∈F ⇔ Δ (q,x) ∉ F).
 - □ If there is no such string, i.e. $\forall x \in \Sigma^* (\Delta(p,x) \in F \Leftrightarrow \Delta(q,x) \in F)$, we say p and q are equivalent (or indistinguishable).
- Example[13.2]: (next slide)
 - □ state 3 and 4 are equivalent.
 - **States 1 and 2 are equivalent.**
 - Equivalents sates can be merged to form a simpler machine.

Example 13.2:

- 1. States b/t {0,3,4} and {1,2,5} can be distinguished by the empty string ϵ .
- 2. States b/t {1,2} and {5} can be distinguished by a or b.
- 3. States b/t {0} and {3,4} can be distinguished by aa,ab, ba or bb.
- 4. There is no way to distinguish b/t 1 and 2, and b/t 3 and 4.

Quotient Construction

- **M=(Q**, Σ, δ, **s**, **F)**: a DFA.
- ≈ : a relation on Q defined by:

 $p \approx q \leq > \forall x \in \Sigma^* \quad \Delta(p,x) \in F \text{ iff } \Delta(q,x) \in F$

- Property: ≈ is an equivalence (i.e., reflexive, symmetric and transitive) relation.
- Hence it partitions Q into equivalence classes :

$$[p] =_{def} \{q \in Q \mid p \approx q\} \text{ for } p \in Q.$$

- □ $Q/\approx =_{def} \{[p] \mid p \in Q\}$ is the quotient set.
- \Box Every $p \in Q$ belongs to exactly one class (which is [p])
- □ $p \approx q$ iff [p]=[q] //why? since $p \approx q$ implies ($p \approx r$ iff $q \approx r$).
- Ex: From Ex 13.2, we have 0, $1 \approx 2$, $3 \approx 4$, 5.
 - $\Box \implies [0] = \{0\}, [1] = \{1,2\}, [2] = \{1,2\}, [3] = \{3,4\}, [4] = \{3,4\} \text{ and } \{3,4\}, [4] = \{3,4\},$
 - \Box [5] = {5}. As a result, [1] = [2] = {1,2}, [3]=[4]= {3,4} and
 - $\square \quad Q/\approx = \{ \{0\}, \{1,2\}, \{3,4\}, \{5\}\} = \{ [0], [1], [2], [3], [4], [5] \} = \{ [0], [1], [3], [5] \}.$

<u>the function δ ' is well-defined.</u>

- Define a DFA called the quotient machine M/≈ = <Q',Σ, δ',s',F'> where
 - $\Box \mathbf{Q'=Q/\approx ; s'=[s]; F'=\{[p] \mid p \in F\}; and$
 - $\Box \delta'([p], a) = [\delta(p, a)]$ for all $p \in Q$ and $a \in \Sigma$. But well-defined?
- Lem 13.5. if $p \approx q$ then δ (p,a) $\approx \delta$ (q,a).

Hence $[p]=[q] \Rightarrow p \approx q \Rightarrow \delta(p,a) \approx \delta(q,a) \Rightarrow [\delta(p,a)] = [\delta(q,a)]$

Pf: By def. [δ (p,a)] = [δ (q,a)] iff δ (p,a) $\approx \delta$ (q,a)

```
iff \forall y \in \Sigma^* \Delta(\delta(p,a), y) \in F \Leftrightarrow \Delta(\delta(q,a), y) \in F
```

```
iff \forall y \in \Sigma^* \Delta (p, ay) \in F \Leftrightarrow \Delta (q, ay) \in F
```

```
if p \approx q.
```

```
Lemma 13.6. p \in F iff [p] \in F'.
```

```
pf: => : trival.
```

<=: need to show that if $q \approx p$ and $p \in F$, then $q \in F$.

But this is trivial since $p = \Delta(p, \varepsilon) \in F$ iff $\Delta(q, \varepsilon) = q \in F$

Properties of the quotient machine.

Lemma 13.7: $\forall x \in \Sigma^*$, $\Delta'([p],x) = [\Delta(p,x)]$. Pf: By induction on |x|. Basis $\mathbf{x} = \varepsilon$: $\Delta'([\mathbf{p}], \varepsilon] = [\mathbf{p}] = [\Delta(\mathbf{p}, \varepsilon)].$ Ind. step: Assume $\Delta'([p], x) = [\Delta(p, x)]$ and let $a \in \Sigma$. $\Delta'([p],xa) = \delta'(\Delta'(p,x),a) = \delta'([\Delta(p,x)],a) --- \text{ ind. hyp.}$ =[$\delta(\Delta(\mathbf{p},\mathbf{x}),\mathbf{a})$] -- def. of δ' = $[\Delta(\mathbf{p},\mathbf{xa})]$. -- def. of Δ . Theorem 13.8: $L(M/\approx) = L(M)$. Pf: $\forall \mathbf{x} \in \Sigma^*$, $x \in L(M/\approx)$ iff $\Delta'(s',x) \in F'$ iff $\Delta'([s],x) \in F'$ iff $[\Delta(s,x)] \in F'$ --- lem 13.7 iff $\Delta(s,x) \in F$ --- lem 13.6 iff $x \in L(M)$.

<u>M/≈ need not be merged further</u>

Theorem: ((M/≈) / ≈) = M/≈

Pf: Denote the second \approx by \sim . I.e. [p] \sim [q] iff $\forall x \in \Sigma^*$, $\Delta'([p],x) \in F' \Leftrightarrow \Delta'([q],x) \in F'$

Now

- [p] ~ [q]
- iff $\forall x \in \Sigma^*$, $\Delta'([p],x) \in F' \Leftrightarrow \Delta'([q],x) \in F' \rightarrow def.of \sim$
- iff $\forall x \in \Sigma^*$, $[\Delta(p,x)] \in F' \Leftrightarrow [\Delta(q,x)] \in F' \text{lem 13.7}$
- iff $\forall x \in \Sigma^*$, $\Delta(p,x) \in F \Leftrightarrow \Delta(q,x) \in F$ -- lem 13.6
- iff $p \approx q$ -- def of \approx
- iff [p] = [q] -- property of equivalence ≈

DFA state minimization

<u>A minimization algorithm</u> 1. Write down a table of all pairs {p,q}, initially upmarked

initially unmarked.

- **2.** mark {p,q} if $p \in F$ and $q \notin F$ or vice versa.
- 3. Repeat until no additional pairs marked:

3.1 if \exists unmarked pair {p,q} s.t. { δ (p,a), δ (q,a) } is marked for some $a \in \Sigma$, then mark {p,q}.

4. When done, $p \approx q$ iff {p,q} is not marked.

- Let M_k ($k \ge 0$) be the set of pairs marked after the k-th iteration of step 3. [and M_0 is the set of pairs before step 3.]
- Notes: (1) $M = U_{k \ge 0} M_k$ is the final set of pairs marked by the alg. (2) The algorithm must terminate since there are totally only C(n,2) pairs and each iteration of step 3 must mark at least one pair for it to not terminate..

An Example:

• The DFA: (Ex 13.2)

	٥	b
>0	1	2
1F	3	4
2F	4	3
3	5	5
4	5	5
5F	5	5

Initial Table

1	-				
2	-	-			
3	-	-	-		
4	-	-	-	-	
5	-	-	-	-	-
	0	1	2	3	4

After step 2 (M₀)

1	М				
2	М	-			
3	-	м	м		
4	-	М	М	-	
5	М	-	-	Μ	М
	0	1	2	3	4

After first pass of step 3 (M₁)

1	М				
2	М	-			
3	-	М	М		
4	-	М	М	-	
5	М	Μ	М	Μ	М
	0	1	2	3	4

2nd pass of step 3. (M₂ & M₃)

• The result : $1 \approx 2$ and $3 \approx 4$.

1	Μ				
2	М	-			
3	M2	М	М		
4	M2	М	М	-	
5	М	M1	M1	Μ	Μ
	0	1	2	3	4

Correctness of the minimization algorithm

- Let M_k ($k \ge 0$) be the set of pairs marked after the k-th itration of step 3. [and M_0 is the set of pairs befer step 3.]
- Lemma: {p,q} ∈ M_k iff ∃x∈Σ* of length ≤ k s.t. ∆(p,x) ∈ F and ∆(q,x) ∉ F or vice versa,
- Pf: By ind. on k. **Basis** k = 0. trivial.
- Ind. step: $\exists x \in \Sigma^*$ of length $\leq k+1$ s.t. $\Delta(p,x) \in F \Leftrightarrow \Delta(q,x) \notin F$,
- iff $\exists y \in \Sigma^*$ of length $\leq k$ s.t. $\Delta(p,y) \in F \Leftrightarrow \Delta(q,y) \notin F$, or
 - ∃ ay ∈ Σ^{*} of length ≤ k+1 s.t. Δ (δ (p,a),y) ∈ F ⇔∆(δ(q,a),y) ∉ F,
- iff $\{p, q\} \in M_k$ or $\{\delta(p,a), \delta(q,a)\} \in M_k$ for some $a \in \Sigma$.
- iff $\{p,q\} \in M_{k+1}$.
- Theorem 14.3: The pair {p,q} is marked by the algorithm iff $not(p \approx q)$ (i.e., $\exists x \in \Sigma^*$ s.t. $\Delta(p,x) \in F \Leftrightarrow \Delta(q,x) \notin F$)
- Pf: not(p \approx q) iff $\exists x \in \Sigma^*$ s.t. Δ (p,x) \in F $\Leftrightarrow \Delta$ (q,x) \notin F
 - iff $\{p,q\} \in M_k$ for some $k \ge 0$
- $\inf \{p,q\} \in M = U_{k \ge 0}M_k.$