Regular Expressions

Reading: Chapter 3

Regular Expressions vs. Finite Automata

 Offers a declarative way to express the pattern of any string we want to accept

E.g., 01*+ 10*

- Automata => more machine-like < input: string , output: [accept/reject] >
- Regular expressions => more program syntax-like
- Unix environments heavily use regular expressions
 - E.g., bash shell, grep, vi & other editors, sed
- Perl scripting good for string processing
- Lexical analyzers such as Lex or Flex

Language Operators

- Union of two languages:
 - L U M = all strings that are either in L or M
 - <u>Note</u>: A union of two languages produces a third language
- Concatenation of two languages:
 - L.M = all strings that are of the form xy s.t., x ∈ L and y ∈ M
 - The dot operator is usually omitted
 - i.e., LM is same as L.M

"i" here refers to how many strings to concatenate from the parent language L to produce strings in the language Lⁱ

Kleene Closure (the * operator)

- Kleene Closure of a given language L:
 - L⁰= {ɛ}
 - L^1 = {w | for some w $\in L$ }
 - L^2 = { $w_1w_2 | w_1 \in L, w_2 \in L$ (duplicates allowed)}
 - \dot{L}^{i} = { $w_1 w_2 ... w_i$ | all w's chosen are $\in L$ (duplicates allowed)}
 - (Note: the choice of each w_i is independent)
 - $L^* = \bigcup_{i \ge 0} L^i$ (arbitrary number of concatenations)

Example:

- Let L = { 1, 00}
 - L⁰= {ɛ}
 - L¹= {1,00}
 - L²= {11,100,001,0000}
 - $L^3 = \{111, 1100, 1001, 10000, 000000, 00001, 00100, 0011\}$
 - $L^* = L^0 U L^1 U L^2 U ...$

Kleene Closure (special notes)

- L* is an infinite set iff $|L| \ge 1$ and $L \ne \{\epsilon\}$ Why?
- If L={ ϵ }, then L* = { ϵ } Why?

• If
$$L = \Phi$$
, then $L^* = \{\epsilon\}$ Why?

- Σ^* denotes the set of all words over an alphabet Σ
 - Therefore, an abbreviated way of saying there is an arbitrary language L over an alphabet Σ is:

L ⊆ Σ*

Building Regular Expressions

- Let E be a regular expression and the language represented by E is L(E)
- Then:
 - (E) = E
 - L(E + F) = L(E) U L(F)
 - L(E F) = L(E) L(F)
 - L(E*) = (L(E))*

Example: how to use these regular expression properties and language

operators?

- L = { w | w is a binary string which does not contain two consecutive 0s or two consecutive 1s anywhere)
 - E.g., w = 01010101 is in L, while w = 10010 is not in L
- <u>Goal:</u> Build a regular expression for L
- Four cases for w:
 - Case A: w starts with 0 and |w| is even
 - Case B: w starts with 1 and |w| is even
 - Case C: w starts with 0 and |w| is odd
 - Case D: w starts with 1 and |w| is odd
- Regular expression for the four cases:
 - Case A: (01)*
 - Case B: (10)*
 - Case C: 0(10)*
 - Case D: 1(01)*
- Since L is the union of all 4 cases:
 - Reg Exp for L = $(01)^* + (10)^* + 0(10)^* + 1(01)^*$
- If we introduce ε then the regular expression can be simplified to:
 - Reg Exp for L = $(\mathcal{E} + 1)(01)^*(\mathcal{E} + 0)$

Precedence of Operators

- Highest to lowest
 - * operator (star)
 - . (concatenation)
 - + operator

Example:

 $\bullet 01^* + 1 = (0.((1)^*)) + 1$

Finite Automata (FA) & Regular Expressions (Reg Ex)

- To show that they are interchangeable, consider the following theorems:
 - <u>Theorem 1:</u> For every DFA A there exists a regular expression R such that L(R)=L(A)

in the book *Theorem 2:* For every regular expression R there exists an ε -NFA E such that L(E)=L(R)

Proofs

Informally, trace all distinct paths (traversing cycles only once) from the start state to *each of the* final states and enumerate all the expressions along the way

Algebraic Laws of Regular Expressions

- Commutative:
 - E+F = F+E
- Associative:
 - (E+F)+G = E+(F+G)
 - (EF)G = E(FG)
- Identity:
 - E+Φ = E
 - $\bullet \ \varepsilon = = = E \varepsilon = E$
- Annihilator:
 - ΦΕ = ΕΦ = Φ

Algebraic Laws...

- Distributive:
 - E(F+G) = EF + EG
 - (F+G)E = FE+GE
- Idempotent: E + E = E
- Involving Kleene closures:
 - (E*)* = E*
 - ₃ = *Φ •
 - 3 **= ***3 ■
 - E⁺ =EE*

True or False?

Let R and S be two regular expressions. Then:

1.
$$((R^*)^*)^* = R^*$$
?

2.
$$(R+S)^* = R^* + S^*$$
 ?

 $(RS + R)^* RS = (RR^*S)^*$

?

Summary

- Regular expressions
- Equivalence to finite automata
- DFA to regular expression conversion
- Regular expression to ε-NFA conversion
- Algebraic laws of regular expressions
- Unix regular expressions and Lexical Analyzer