Regular Expressions

Reading: Chapter 3

Regular Expressions vs. Finite

i Automata

= Offers a declarative way to express the pattern of any
string we want to accept
= E.g., 01*+ 10*

= Automata => more machine-like
< input: string , output: [accept/reject] >
= Regular expressions => more program syntax-like

= Unix environments heavily use regular expressions
= E.g., bash shell, grep, vi & other editors, sed

= Perl scripting — good for string processing
= Lexical analyzers such as Lex or Flex

:L Regular Expressions

Syntacticze
expressions

mata/machines

Formal language
classeg

:L Language Operators

= Union of two languages:
= L UM = all strings that are eitherin L or M

= Note: A union of two languages produces a third
language

= Concatenation of two languages:

= L. M = all strings that are of the form xy
st,xelLandy e M

= The dot operator is usually omitted
= I.e., LM is same as L.M

Kleene Closure (the * operator)

Kleene Closure of a given language L.:

L9= {e}

L'={w | for some w € L}

L2= { w,w, | w; € L, w, € L (duplicates allowed)}

=« L'={w,w,...w;| all W's chosen are € L (duplicates allowed)}
= (Note: the choice of each w; is independent)

« L*=U_, L (arbitrary number of concatenations)
Example:
. LetL={1,00}
L= {e}
L'= {1,00}
L%={11,100,001,0000}
L3={111,1100,1001,10000,000000,00001,00100,0011}

« L*=oyrLuyrzU ...

i Kleene Closure (special notes)

= L*is aninfinite set iff |L|21 and L#{e} Why?
m If L={c}, then L™ ={e} wWhy?
s IfL=®,thenL*={c} why?

-

2.* denotes the set of all words over an
alphabet 2
= Therefore, an abbreviated way of saying

there is an arbitrary language L over an
alphabet 2 is:

K s Lc2” /

~

i Building Regular Expressions

= Let E be a reqgular expression and the
language represented by E is L(E)

s [hen:
B (E) =E
=« L(E + F) = L(E) U L(F)

(
= L(EF)=L(E) L(F)
L(E™) = (L(E))”

Example: how to use these regular
expression properties and language

operators?

m L ={w]|wis a binary string which does not contain two consecutive 0s or
two consecutive 1s anywhere)

= E.g.,w=01010101isin L, while w=10010is notin L
= Goal: Build a regular expression for L
= Four cases for w:
= Case A: w starts with 0 and |w]| is even
= Case B: w starts with 1 and |w]| is even
= Case C: w starts with 0 and |w| is odd
= Case D: w starts with 1 and |w| is odd
= Regular expression for the four cases:
= CaseA: (01)*
= CaseB: (10)*
= CaseC: 0(10)*
« CaseD: 1(01)*
= Since L is the union of all 4 cases:
= RegExpforL=(01)*+(10)*+ 0(10)* + 1(01)*
= If we introduce ¢ then the regular expression can be simplified to:

= RegExpforL=(€+1)(01)*(€ +0)

:L Precedence of Operators

= Highest to lowest
= * operator (star)

.. (concatenation)
= + operator

= Example:
= 01* + 1 = (0.((1)%))+ 1

Finite Automata (FA) & Regular
Expressions (Reg Ex)

= [0 show that they are interchangeable,
consider the following theorems:

s Theorem 1: For every DFA A there exists a regular
Proofs expression R such that L(R)=L(A)

in the book = Theorem 2: For every reqular expression R there
exists an ¢ -NFA E such that L(E)=L(R)

€ -NFA NFA

Theorem 2 \ Kleene Theorem

CReg Ex>—<__DFA

Theorem 1

10

S Theorem>@
DFA to RE construction

Informally, trace all distinct paths (traversing cycles only once)
from the start state to each of the final states
and enumerate all the expressions along the way

Example: 1 0 0,1
& 4
—(@)——(q)—
(1) 0 (0) 1 (0+1)
N ~ AN ~ A_Y_)\ ~ J
1% 00* 1 (0+1)°
@ Q) What is the language?

1*00*1(0+1)* .

> g -NFA
@g_EX/Theorem Q

i RE to e-NFA construction

Example: (0+1)*01(0+1)*

(0+1)* 01 (0+1)*

12

Algebraic Laws of Regular

:L Expressions

s Commutative:
« E+F = F+E
s Associative:
s (E+F)+G = E+(F+G)
= (EF)G = E(FG)
= |dentity:
= E+O=E
« cE=Ec=E
= Annihilator:
s PE=ED =0

13

i Algebraic Laws...

= Distributive:
« E(F+G)=EF + EG
= (F+G)E = FE+GE
= |dempotent: E+ E=E

= Involving Kleene closures:

. (E*)* = E*
= OF =&

s g" =&

= Ef =EE*
= E? =g +E

14

:L True or False?

Let R and S be two regular expressions. Then:
L ((RM*)* = R* ?
> (R+S)* = R* + S* ?

» (RS + R)* RS = (RR*S)* ?

15

i Summary

= Regular expressions
= Equivalence to finite automata
= DFA to regular expression conversion

= Reqgular expression to e-NFA
conversion

= Algebraic laws of regular expressions

= Unix regular expressions and Lexical
Analyzer

16

