Regular Expressions

Reading: Chapter 3

Regular Expressions vs. Finite Automata

- Offers a declarative way to express the pattern of any string we want to accept
- E.g., 01*+ 10^{*}
- Automata => more machine-like
< input: string, output: [accept/reject] >
- Regular expressions => more program syntax-like
- Unix environments heavily use regular expressions
- E.g., bash shell, grep, vi \& other editors, sed
- Perl scripting - good for string processing
- Lexical analyzers such as Lex or Flex

Regular Expressions

Language Operators

- Union of two languages:
- L U M = all strings that are either in L or M
- Note: A union of two languages produces a third language
- Concatenation of two languages:
- L . M = all strings that are of the form $x y$
s.t., $x \in L$ and $y \in M$
- The dot operator is usually omitted
- i.e., LM is same as L.M

Kleene Closure (the * operator)

Kleene Closure of a given language L :

- $\mathrm{L}^{0}=\{\varepsilon\}$
$L^{1}=\{w \mid$ for some $w \in L\}$
- $L^{2}=\left\{w_{1} w_{2} \mid w_{1} \in L, w_{2} \in L\right.$ (duplicates allowed) $\}$
- $L i=\left\{w_{1} w_{2} \ldots w_{i} \mid\right.$ all w's chosen are $\in L$ (duplicates allowed) $\}$
- (Note: the choice of each w_{i} is independent)
- $\mathrm{L}^{*}=\bigcup_{i \geq 0} \mathrm{~L}^{i}$ (arbitrary number of concatenations)

Example:

- Let $\mathrm{L}=\{1,00\}$
- $L^{0}=\{\varepsilon\}$
- $L^{1}=\{1,00\}$
- $L^{2}=\{11,100,001,0000\}$
- $L^{3}=\{111,1100,1001,10000,000000,00001,00100,0011\}$
- $L^{*}=L^{0} U L^{1} U L^{2} U .$.

Kleene Closure (special notes)

- L^{*} is an infinite set iff $|L| \geq 1$ and $L \neq\{\varepsilon\}$
- If $L=\{\varepsilon\}$, then $L^{*}=\{\varepsilon\} \quad$ Why?
- If $L=\Phi$, then $L^{*}=\{\varepsilon\} \quad$ Why?
Σ^{\star} denotes the set of all words over an alphabet Σ
- Therefore, an abbreviated way of saying there is an arbitrary language L over an alphabet Σ is:
- $\mathrm{L} \subseteq \Sigma^{*}$

Building Regular Expressions

- Let E be a regular expression and the language represented by E is $L(E)$
- Then:
- (E) = E
- $L(E+F)=L(E) U L(F)$
- $L(E F)=L(E) L(F)$
- $L\left(E^{*}\right)=(L(E))^{*}$

Example: how to use these regular expression properties and language

operators?

- $L=\{w \mid w$ is a binary string which does not contain two consecutive 0s or two consecutive 1 s anywhere)
- E.g., w = 01010101 is in L , while $\mathrm{w}=10010$ is not in L
- Goal: Build a regular expression for L
- Four cases for w:
- Case A: w starts with 0 and $|w|$ is even
- Case B : w starts with 1 and $|w|$ is even
- Case C: w starts with 0 and $|w|$ is odd
- Case D: w starts with 1 and $|w|$ is odd
- Regular expression for the four cases:
- Case A: (01)*
- Case B: (10)*
- Case C: $0(10)^{*}$
- Case D: 1(01)*
- Since L is the union of all 4 cases:
- Reg Exp for $L=(01)^{*}+(10)^{*}+0(10)^{*}+1(01)^{*}$
- If we introduce ε then the regular expression can be simplified to:
- Reg Exp for $L=(\varepsilon+1)(01)^{*}(\varepsilon+0)$

Precedence of Operators

- Highest to lowest
- * operator (star)
- . (concatenation)
- + operator
- Example:
- $01^{*}+1=\left(0 .\left((1)^{*}\right)\right)+1$

Finite Automata (FA) \& Regular Expressions (Reg Ex)

- To show that they are interchangeable, consider the following theorems:
- Theorem 1: For every DFA A there exists a regular

Proofs
in the book

- Theorem 2: For every regular expression R there exists an ε-NFA E such that $L(E)=L(R)$

Kleene Theorem

Theorem 1

DFA

Reg Ex

DFA to RE construction

Informally, trace all distinct paths (traversing cycles only once) from the start state to each of the final states and enumerate all the expressions along the way

Example:

Q) What is the language?

Reg Ex

ε-NFA

RE to ε-NFA construction

Example: $\quad(0+1)^{*} 01(0+1)^{*}$

Algebraic Laws of Regular Expressions

- Commutative:
- $E+F=F+E$
- Associative:
- $(E+F)+G=E+(F+G)$
- (EF)G = E(FG)
- Identity:
- $\mathrm{E}+\Phi=\mathrm{E}$
- ε E $=E_{\varepsilon}=\mathrm{E}$
- Annihilator:
- $\Phi \mathrm{E}=\mathrm{E} \Phi=\Phi$

Algebraic Laws...

- Distributive:
- $E(F+G)=E F+E G$
- $(F+G) E=F E+G E$
- Idempotent: E + E = E
- Involving Kleene closures:
- $\left(E^{*}\right)^{*}=E^{*}$
- $\Phi^{*}=\varepsilon$
- $\varepsilon^{*}=\varepsilon$
- $\mathrm{E}^{+}=E E^{*}$
- $E ? \quad=\varepsilon+E$

True or False?

Let R and S be two regular expressions. Then:

$$
\begin{array}{ll}
\text { 1. } & \left(\left(R^{*}\right)^{*}\right)^{*}=R^{*} \\
\text { 2. } & (R+S)^{*}=R^{*}+S^{*} \\
\text { 3. } & (R S+R)^{*} R S=\left(R R^{*} S\right)^{*}
\end{array}
$$

Summary

- Regular expressions
- Equivalence to finite automata
- DFA to regular expression conversion
- Regular expression to ε-NFA conversion
- Algebraic laws of regular expressions
- Unix regular expressions and Lexical Analyzer

