
1

Regular Expressions

Reading: Chapter 3

2

Regular Expressions vs. Finite

Automata

 Offers a declarative way to express the pattern of any
string we want to accept
 E.g., 01*+ 10*

 Automata => more machine-like
 < input: string , output: [accept/reject] >

 Regular expressions => more program syntax-like

 Unix environments heavily use regular expressions
 E.g., bash shell, grep, vi & other editors, sed

 Perl scripting – good for string processing

 Lexical analyzers such as Lex or Flex

3

Regular Expressions

Regular

expressions

Finite Automata

(DFA, NFA, -NFA)

Regular

Languages

=

Automata/machines
Syntactical

expressions

Formal language

classes

4

Language Operators

 Union of two languages:

 L U M = all strings that are either in L or M

 Note: A union of two languages produces a third

language

 Concatenation of two languages:

 L . M = all strings that are of the form xy

 s.t., x L and y M

 The dot operator is usually omitted

 i.e., LM is same as L.M

5

Kleene Closure (the * operator)

 Kleene Closure of a given language L:

 L0= {}

 L1= {w | for some w L}

 L2= { w1w2 | w1 L, w2 L (duplicates allowed)}

 Li= { w1w2…wi | all w’s chosen are L (duplicates allowed)}

 (Note: the choice of each wi is independent)

 L* = Ui≥0 L
i (arbitrary number of concatenations)

Example:

 Let L = { 1, 00}

 L0= {}
 L1= {1,00}

 L2= {11,100,001,0000}

 L3= {111,1100,1001,10000,000000,00001,00100,0011}

 L* = L0 U L1 U L2 U …

“i” here refers to how many strings to concatenate from the parent

language L to produce strings in the language Li

6

Kleene Closure (special notes)

 L* is an infinite set iff |L|≥1 and L≠{}

 If L={}, then L* = {}

 If L = Φ, then L* = {}

Σ* denotes the set of all words over an
alphabet Σ
 Therefore, an abbreviated way of saying

there is an arbitrary language L over an
alphabet Σ is:
 L Σ*

Why?

Why?

Why?

7

Building Regular Expressions

 Let E be a regular expression and the

language represented by E is L(E)

 Then:

 (E) = E

 L(E + F) = L(E) U L(F)

 L(E F) = L(E) L(F)

 L(E*) = (L(E))*

8

Example: how to use these regular

expression properties and language

operators?
 L = { w | w is a binary string which does not contain two consecutive 0s or

two consecutive 1s anywhere)
 E.g., w = 01010101 is in L, while w = 10010 is not in L

 Goal: Build a regular expression for L

 Four cases for w:
 Case A: w starts with 0 and |w| is even

 Case B: w starts with 1 and |w| is even

 Case C: w starts with 0 and |w| is odd

 Case D: w starts with 1 and |w| is odd

 Regular expression for the four cases:
 Case A: (01)*

 Case B: (10)*

 Case C: 0(10)*

 Case D: 1(01)*

 Since L is the union of all 4 cases:
 Reg Exp for L = (01)* + (10)* + 0(10)* + 1(01)*

 If we introduce then the regular expression can be simplified to:

 Reg Exp for L = (+1)(01)*(+0)

9

Precedence of Operators

 Highest to lowest

 * operator (star)

 . (concatenation)

 + operator

 Example:

 01* + 1 = (0 . ((1)*)) + 1

10

Finite Automata (FA) & Regular

Expressions (Reg Ex)

 To show that they are interchangeable,
consider the following theorems:
 Theorem 1: For every DFA A there exists a regular

expression R such that L(R)=L(A)

 Theorem 2: For every regular expression R there
exists an -NFA E such that L(E)=L(R)

 -NFA NFA

DFA Reg Ex

Theorem 2

Theorem 1

Proofs

in the book

Kleene Theorem

11

DFA to RE construction

Reg Ex DFA
Theorem 1

Example:

q0 q1 q2
0 1

1 0 0,1

 (1*) 0 (0*) 1 (0 + 1)*

 Informally, trace all distinct paths (traversing cycles only once)

 from the start state to each of the final states

 and enumerate all the expressions along the way

 1*00*1(0+1)*

00* 1* 1 (0+1)*

Q) What is the language?

12

RE to -NFA construction

 -NFA Reg Ex
Theorem 2

Example: (0+1)*01(0+1)*

0

1

 0 1

0

1

 (0+1)* 01 (0+1)*

13

Algebraic Laws of Regular

Expressions

 Commutative:
 E+F = F+E

 Associative:
 (E+F)+G = E+(F+G)

 (EF)G = E(FG)

 Identity:
 E+Φ = E

 E = E = E

 Annihilator:
 ΦE = EΦ = Φ

14

Algebraic Laws…

 Distributive:
 E(F+G) = EF + EG

 (F+G)E = FE+GE

 Idempotent: E + E = E

 Involving Kleene closures:
 (E*)* = E*

 Φ* =

 * =

 E+ =EE*

 E? = +E

15

True or False?

Let R and S be two regular expressions. Then:

1. ((R*)*)* = R* ?

2. (R+S)* = R* + S* ?

3. (RS + R)* RS = (RR*S)* ?

16

Summary

 Regular expressions

 Equivalence to finite automata

 DFA to regular expression conversion

 Regular expression to -NFA
conversion

 Algebraic laws of regular expressions

 Unix regular expressions and Lexical
Analyzer

