Properties of Context-free Languages

Reading: Chapter 7

Topics

- 1) Simplifying CFGs, Normal forms
- 2) Pumping lemma for CFLs
- Closure and decision properties of CFLs

How to "simplify" CFGs?

Three ways to simplify/clean a CFG

- (clean)
- 1. Eliminate useless symbols

(simplify)

2. Eliminate ε-productions

3. Eliminate unit productions

Eliminating useless symbols

Grammar cleanup

Eliminating useless symbols

A symbol X is <u>reachable</u> if there exists:

■ S →* α X β

A symbol X is *generating* if there exists:

for some
$$w \in T^*$$

For a symbol X to be "useful", it has to be both reachable and generating

• S
$$\rightarrow^* \alpha X \beta \rightarrow^* w'$$
, for some w' $\in T^*$

reachable generating

Algorithm to detect useless symbols

1. First, eliminate all symbols that are *not* generating

2. Next, eliminate all symbols that are *not* reachable

Is the order of these steps important, or can we switch?

Example: Useless symbols

- S→AB|a
- A→ b
- 1. A, S are generating
- 2. *B* is *not generating* (and therefore B is useless)
- 3. ==> Eliminating B... (i.e., remove all productions that involve B)
 1. S→ a
 - 2. A → b
- 4. Now, A is *not reachable* and therefore is useless
- 5. Simplified G: 1. $S \rightarrow a$ What would happen if you reverse the order: i.e., test reachability before generating?

Will fail to remove: A → b

Algorithm to find all generating symbols

- Given: G=(V,T,P,S)
- Basis:
 - Every symbol in T is obviously generating.
- Induction:
 - Suppose for a production A→ α, where α is generating
 - Then, A is also generating

Algorithm to find all reachable symbols

- Given: G=(V,T,P,S)
- Basis:
 - S is obviously reachable (from itself)

Induction:

- Suppose for a production A→ α₁ α₂... α_k, where A is reachable
- Then, all symbols on the right hand side, {α₁, α₂,... α_k} are also reachable.

Eliminating ε-productions

What's the point of removing ε -productions?

A → ε Eliminating ε-productions

<u>Caveat:</u> It is *not* possible to eliminate ϵ -productions for languages which include ϵ in their word set

So we will target the grammar for the <u>rest</u> of the language <u>Theorem:</u> If G=(V,T,P,S) is a CFG for a language L, then L\ {ε} has a CFG without ε-productions

<u>Definition:</u> A is "nullable" if $A \rightarrow \mathcal{E}$

- If A is nullable, then any production of the form "B→ CAD" can be simulated by:
 - B → CD | CAD

- This can allow us to remove $\boldsymbol{\epsilon}$ transitions for A

Algorithm to detect all nullable variables

Basis:

If A→ ε is a production in G, then A is nullable

(note: A can still have other productions)

- Induction:
 - If there is a production B→ C₁C₂...C_k, where every C_i is nullable, then B is also nullable

Eliminating ε-productions

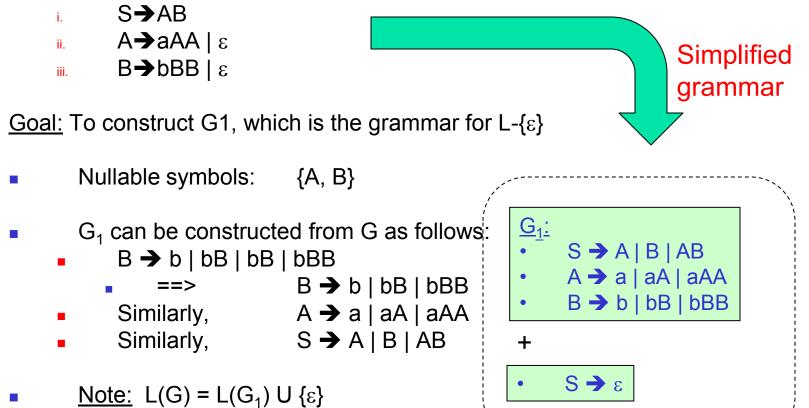
<u>Given:</u> G=(V,T,P,S)

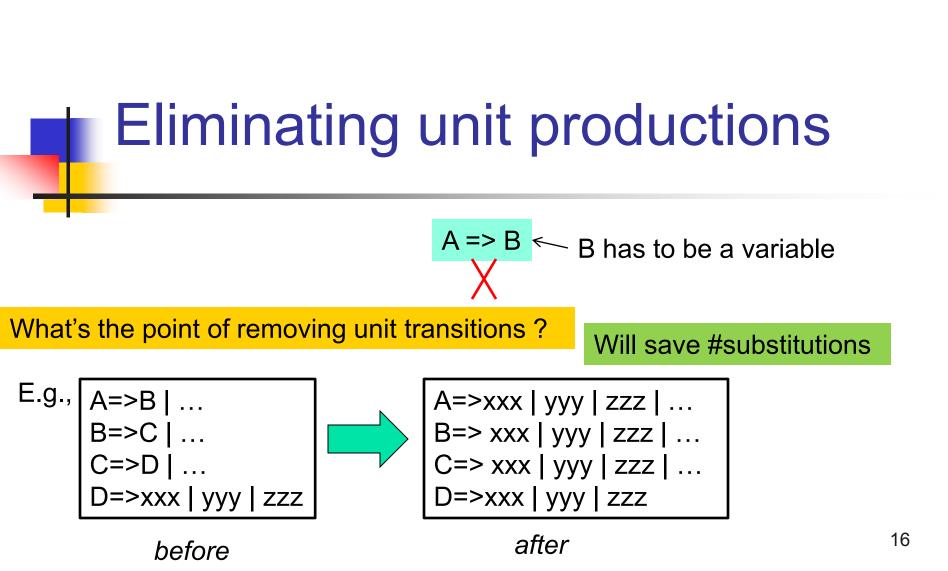
Algorithm:

- 1. Detect all nullable variables in G
- 2. Then construct $G_1 = (V, T, P_1, S)$ as follows:
 - For each production of the form: $A \rightarrow X_1 X_2 ... X_k$, where k≥1, suppose *m* out of the *k* X_i's are nullable symbols
 - Then G_1 will have 2^m versions for this production
 - i. i.e, all combinations where each X_i is either present or absent
 - Alternatively, if a production is of the form: $A \rightarrow \varepsilon$, then remove it

Example: Eliminating εproductions

Let L be the language represented by the following CFG G:





A → B

Eliminating unit productions

- Unit production is one which is of the form A→ B, where both A & B are variables
- E.g.,
 - 1. E → T | E+T
 - 2. T → F | T*F
 - 3. F → I | (E)
 - ₄. I → a | b | la | lb | l0 | l1
 - How to eliminate unit productions?
 - Replace $E \rightarrow T$ with $E \rightarrow F | T^*F$
 - Then, upon recursive application wherever there is a unit production:
 - E**→ F | T*F** | E+T
 - E**→ I | (E)** | T*F| E+T
 - E→ a | b | la | lb | l0 | l1 | (E) | T*F | E+T

- (substituting for T) (substituting for F)
- (substituting for I)

- Now, E has no unit productions
- Similarly, eliminate for the remainder of the unit productions

The <u>Unit Pair Algorithm</u>: to remove unit productions

- Suppose $A \rightarrow B_1 \rightarrow B_2 \rightarrow ... \rightarrow B_n \rightarrow \alpha$
- <u>Action</u>: Replace all intermediate productions to produce α directly
 - i.e., $A \rightarrow \alpha$; $B_1 \rightarrow \alpha$; ... $B_n \rightarrow \alpha$;

<u>Definition:</u> (A,B) to be a "*unit pair*" if $A \rightarrow B$

- We can find all unit pairs inductively:
 - <u>Basis</u>: Every pair (A,A) is a unit pair (by definition). Similarly, if A→B is a production, then (A,B) is a unit pair.
 - Induction: If (A,B) and (B,C) are unit pairs, and A→C is also a unit pair.

The Unit Pair Algorithm: to remove unit productions

Input: G=(V,T,P,S)

<u>Goal:</u> to build G₁=(V,T,P₁,S) devoid of unit productions

Algorithm:

- 1. Find all unit pairs in G
- 2. For each unit pair (A,B) in G:
 - Add to P_1 a new production $A \rightarrow \alpha$, for every $B \rightarrow \alpha$ which is a *non-unit* production
 - 2. If a resulting production is already there in P, then there is no need to add it.

Example: eliminating unit productions

	G:	Unit pairs	Only non-unit productions to be added to P ₁
<u>G_1:</u> 1. 2. 3. 4.	G: 1. $E \Rightarrow T E+T$ 2. $T \Rightarrow F T * F$ 3. $F \Rightarrow I E = 1$ 4. $I \Rightarrow a b Ia Ib I0 I1$ 4. $I \Rightarrow a b Ia Ib I0 I1$ $T \Rightarrow T * F (E) a b Ia Ib I0 I1$ $T \Rightarrow T * F (E) a b Ia Ib I0 I1$ $F \Rightarrow (E) a b Ia Ib I0 I1$ $I \Rightarrow a b Ia Ib I0 I1$	(E,E)	'E- → <u>E+T</u>
		(E,T)	
		(E,F)	`E. → (E)
		(E,I)	E → a b la lb l0 l1
		(T,T)	T → T*F
		(T,F)	T ➔ (E)
		(T,I)	T ➔ a b la lb l0 l1
		(F,F)	F ➔ (E)
		(F,I)	F ➔ a b la lb l0 I1
		(I,I)	I ➔ a b Ia Ib I0 I1

Putting all this together...

- <u>Theorem</u>: If G is a CFG for a language that contains at least one string other than ε , then there is another CFG G₁, such that $L(G_1)=L(G) - \varepsilon$, and G₁ has:
 - no ε -productions
 - no unit productions
 - no useless symbols

Algorithm:

- Step 1) eliminate ε -productions
- Step 2) eliminate unit productions
- Step 3) eliminate useless symbols

Again, the order is important!

Normal Forms

Why normal forms?

- If all productions of the grammar could be expressed in the same form(s), then:
 - a. It becomes easy to design algorithms that use the grammar
 - **b.** It becomes easy to show proofs and properties

Chomsky Normal Form (CNF)

Let G be a CFG for some L-{ ϵ }

Definition:

ii.

- G is said to be in **Chomsky Normal Form** if all its productions are in one of the following two forms:
 - i. $A \rightarrow BC$ where A, B, C are variables, or
 - A → a where a is a terminal
 - G has no useless symbols
 - G has no unit productions
 - G has no ε -productions

Is this grammar in CNF?



Checklist:

- G has no ε-productions
- G has no unit productions
- G has no useless symbols $\, \searrow \,$
- But...
 - the normal form for productions is violated

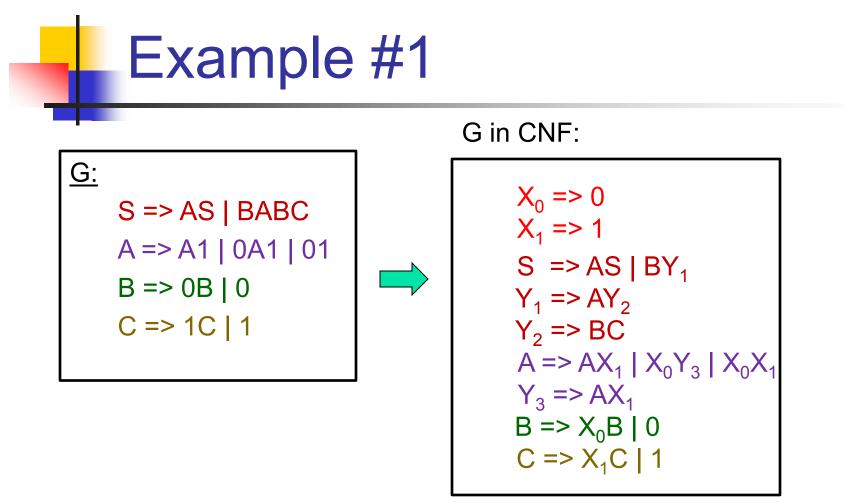
So, the grammar is not in CNF

How to convert a G into CNF?

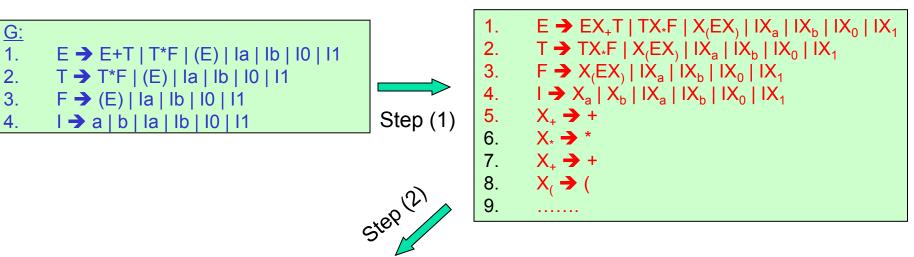
- <u>Assumption</u>: G has no ε-productions, unit productions or useless symbols
- 1) For every terminal *a* that appears in the body of a production:
 - create a unique variable, say X_a , with a production $X_a \rightarrow a$, and
 - \therefore replace all other instances of *a* in G by X_a
- 2) Now, all productions will be in one of the following two forms:
 - $A \rightarrow B_1 B_2 \dots B_k$ (k ≥ 3) or $A \rightarrow a$
- 3) Replace each production of the form $A \rightarrow B_1 B_2 B_3 \dots B_k$ by:

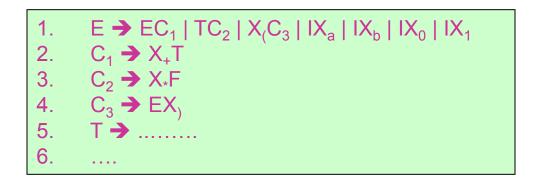
• $A \rightarrow B_1C_1$ $C_1 \rightarrow B_2C_2$... $C_{k-3} \rightarrow B_{k-2}C_{k-2}$ $C_{k-2} \rightarrow B_{k-1}B_k$

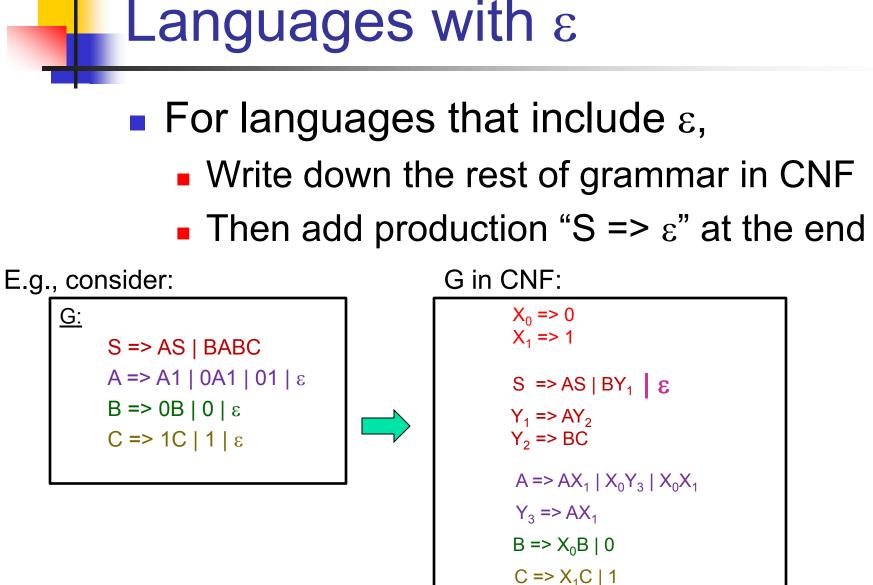
 $B_2 \xrightarrow{C_2} A$ and so on...



All productions are of the form: A=>BC or A=>a







Other Normal Forms

Griebach Normal Form (GNF)
 All productions of the form

A==>*a* α

Return of the Pumping Lemma !!

Think of languages that cannot be CFL

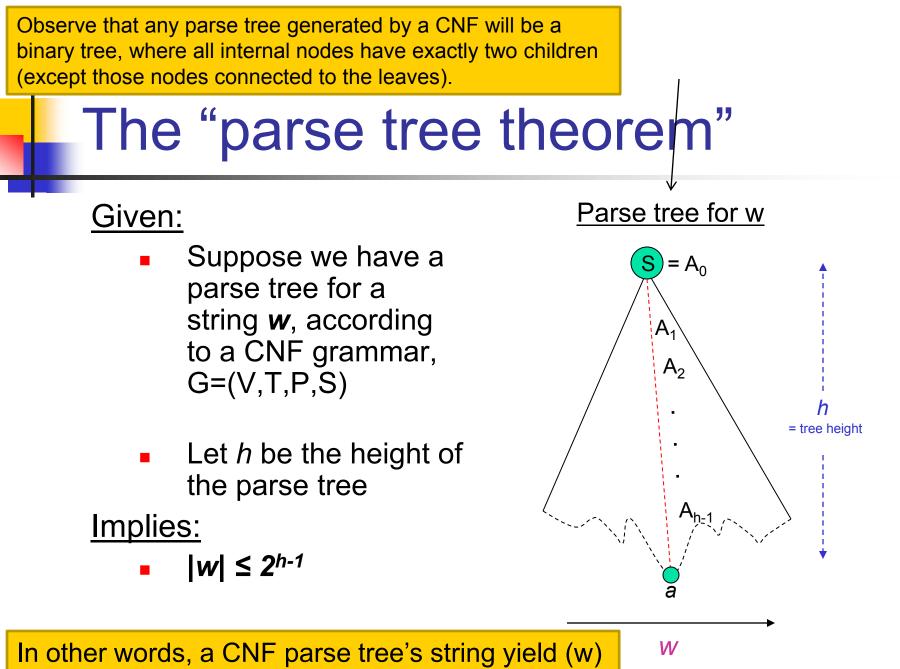
== think of languages for which a stack will not be enough

e.g., the language of strings of the form ww

Why pumping lemma?

- A result that will be useful in proving languages that are not CFLs
 - (just like we did for regular languages)

- But before we prove the pumping lemma for CFLs
 - Let us first prove an important property about parse trees



can no longer be 2^{h-1}

33

$|w| \leq 2^{h-1}$ To show: Proof...The size of parse trees Proof: (using induction on h) Parse tree for w Basis: h = 1→ Derivation will have to be S) = A_0 "S**→**a" \rightarrow |w|= 1 = 2¹⁻¹. В Ind. Hyp: h = k-1|w|≤ 2^{k-2} h = height <u>Ind. Step:</u> h = kS will have exactly two children: S→AB → Heights of A & B subtrees are at most h-1 → w = w_A w_B, where $|w_A| \le 2^{k-2}$ and $|w_B| \le 2^{k-2}$ W_B W_A

 \rightarrow |w| $\leq 2^{k-1}$

Implication of the Parse Tree Theorem (assuming CNF)

Fact:

If the height of a parse tree is h, then
 => |w| ≤ 2^{h-1}

Implication:
 If |w| ≥ 2^h, then
 Its parse tree's height is *at least* h+1

The Pumping Lemma for CFLs

Let L be a CFL.

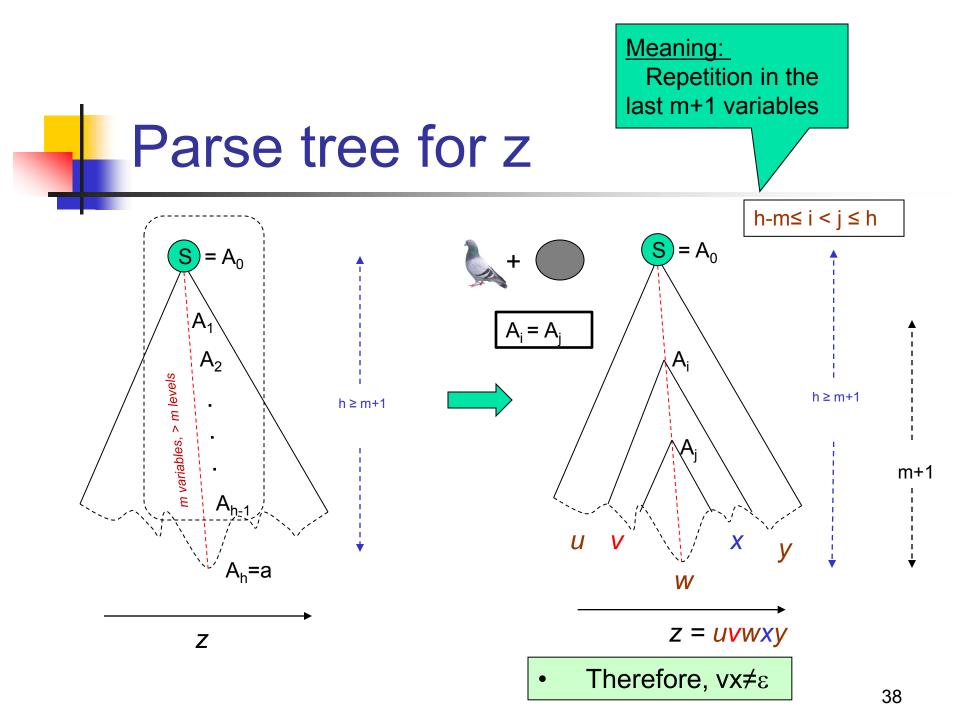
Then there exists a constant N, s.t.,

- If z ∈L s.t. |z|≥N, then we can write z=uvwxy, such that:
 - 1. $|VWX| \leq N$
 - 2. **V**X≠ε
 - 3. For all k≥0: uv^kwx^ky ∈ L

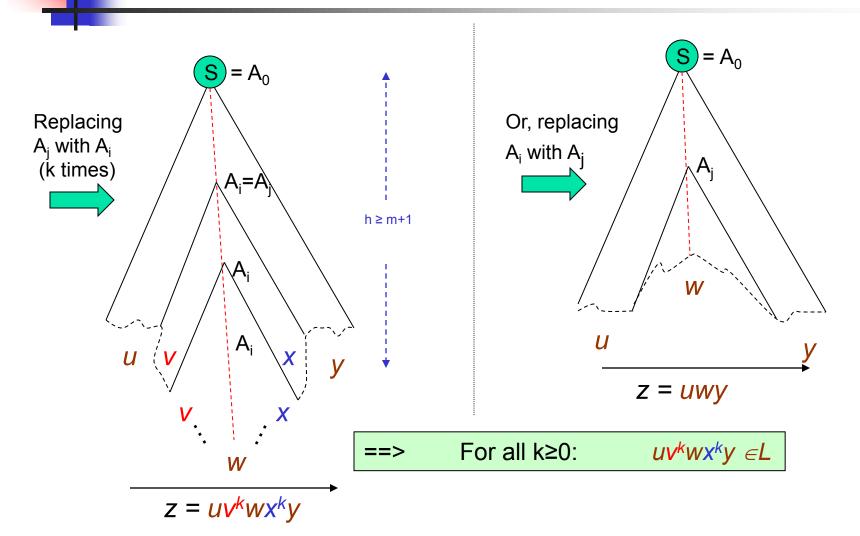
Note: we are pumping in two places (v & x)

Proof: Pumping Lemma for CFL

- If L=Φ or contains only ε, then the lemma is trivially satisfied (as it cannot be violated)
- For any other L which is a CFL:
 - Let G be a CNF grammar for L
 - Let m = number of variables in G
 - Choose N=2^m.
 - Pick any z ∈ L s.t. |z|≥ N
 - → the parse tree for z should have a height ≥ m+1 (by the parse tree theorem)



Extending the parse tree...



• Also, since A_i's subtree no taller than m+1

==> the string generated under A_i's subtree, which is vwx, cannot be longer than 2^m (=N)

But, $2^m = N$

 $==> |vwx| \le N$

This completes the proof for the pumping lemma.

Application of Pumping Lemma for CFLs

Example 1: L = {a^mb^mc^m | m>0 } Claim: L is not a CFL Proof:

- Let N <== P/L constant</p>
- Pick $z = a^N b^N c^N$
- Apply pumping lemma to z and show that there exists at least one other string constructed from z (obtained by pumping up or down) that is ∉ L

Proof contd...

- z = uvwxy
- As $z = a^N b^N c^N$ and $|vwx| \le N$ and $vx \ne \varepsilon$
 - ==> v, x cannot contain all three symbols (a,b,c)
 - => we can pump up or pump down to build another string which is ∉ L

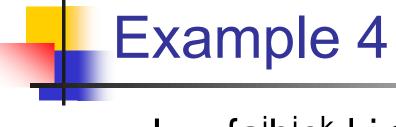
Example #2 for P/L application

- L = { ww | w is in {0,1}*}
- Show that L is not a CFL
 - Try string $z = 0^N 0^N$
 - what happens?
 - Try string $z = 0^{N}1^{N}0^{N}1^{N}$
 - what happens?

Example 3

• $L = \{ 0^{k^2} | k \text{ is any integer} \}$

Prove L is not a CFL using Pumping Lemma



Prove that L is not a CFL

CFL Closure Properties

Closure Property Results

- CFLs are closed under:
 - Union
 - Concatenation
 - Kleene closure operator
 - Substitution
 - Homomorphism, inverse homomorphism
 - reversal
- CFLs are *not* closed under:
 - Intersection
 - Difference
 - Complementation

Note: Reg languages are closed under these operators

Strategy for Closure Property Proofs

- First prove "closure under substitution"
- Using the above result, prove other closure properties
- CFLs are closed under:
 - Union <
 - Concatenation

Substitution

Kleene closure operator

Prove this first

- Homomorphism, inverse homomorphism <--
- Reversal

The Substitution operation

For each $a \in \Sigma$, then let s(a) be a language If $w=a_1a_2...a_n \in L$, then: $s(w) = \{x_1x_2...\} \in s(L), s.t., x_i \in s(a_i)$

Example:

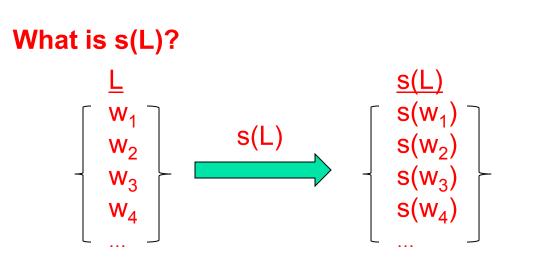
- Let $\sum = \{0, 1\}$
- Let: s(0) = {aⁿbⁿ | n ≥1}, s(1) = {aa,bb}
- If w=01, s(w)=s(0).s(1)
 - E.g., s(w) contains a¹ b¹ aa, a¹ b¹bb, a² b² aa, a² b²bb,

... and so on.

CFLs are closed under Substitution

IF L is a CFL and a substitution defined on L, s(L), is s.t., s(a) is a CFL for every symbol a, THEN:

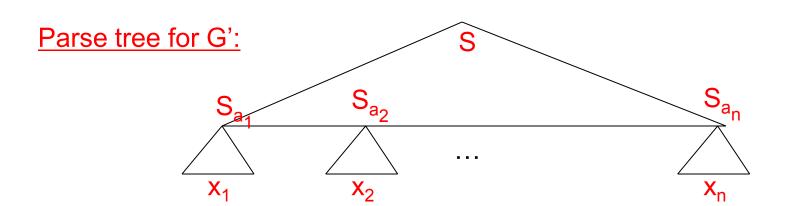
s(L) is also a CFL



<u>Note:</u> each s(w) is itself a set of strings

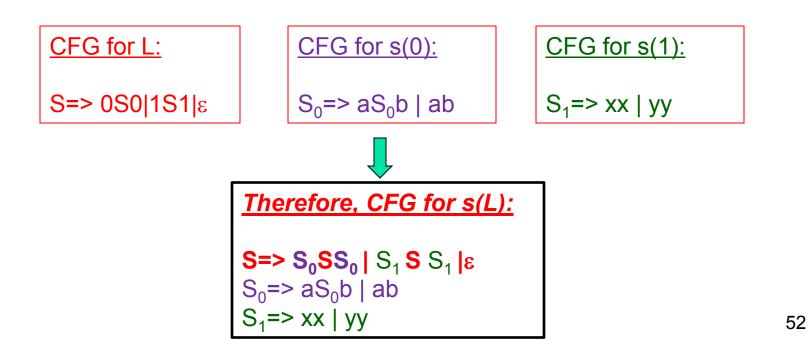
CFLs are closed under Substitution

- G=(V,T,P,S) : CFG for L
- Because every s(a) is a CFL, there is a CFG for each s(a)
 - Let $G_a = (V_a, T_a, P_a, S_a)$
- Construct G'=(V',T',P',S) for s(L)
- P' consists of:
 - The productions of P, but with every occurrence of terminal "a" in their bodies replaced by S_a.
 - All productions in any P_a , for any $a \in \sum$



Substitution of a CFL: example

- Let L = language of binary palindromes s.t., substitutions for 0 and 1 are defined as follows:
 - $s(0) = \{a^n b^n \mid n \ge 1\}, s(1) = \{xx, yy\}$
- Prove that s(L) is also a CFL.



Let L₁ and L₂ be CFLs <u>To show:</u> L₂ U L₂ is also a CFL Let us show by using the result of *Substitution*

- Make a new language:

 L_{new} = {a,b} s.t., s(a) = L₁ and s(b) = L₂
 s(L_{new}) == same as == L₁ U L₂
- A more direct, alternative proof
 - Let S₁ and S₂ be the starting variables of the grammars for L₁ and L₂

Then, S_{new} => S₁ | S₂

CFLs are closed under concatenation

Let L₁ and L₂ be CFLs

Let us show by using the result of Substitution

A proof without using substitution?

CFLs are closed under *Kleene Closure*

Let L be a CFL

• Let $L_{new} = \{a\}^*$ and $s(a) = L_1$

• Then, $L^* = s(L_{new})$

We won't use substitution to prove this result

CFLs are closed under *Reversal*

- Let L be a CFL, with grammar G=(V,T,P,S)
- For L^R, construct G^R=(V,T,P^R,S) s.t.,
 - If A==> α is in P, then:

• A==>
$$\alpha^{\mathsf{R}}$$
 is in P^{R}

(that is, reverse every production)

CFLs are *not* closed under Intersection

- Existential proof:
 - $L_1 = \{0^n 1^n 2^i \mid n \ge 1, i \ge 1\}$
 - $L_2 = \{0^i 1^n 2^n \mid n \ge 1, i \ge 1\}$
- Both L₁ and L₁ are CFLs
 - Grammars?
- But $L_1 \cap L_2$ cannot be a CFL

• Why?

- We have an example, where intersection is not closed.
- Therefore, CFLs are not closed under intersection

CFLs are not closed under complementation

Follows from the fact that CFLs are not closed under intersection

$$L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$$

Logic: if CFLs were to be closed under complementation
 → the whole right hand side becomes a CFL (because CFL is closed for union)
 → the left hand side (intersection) is also a CFL
 → but we just showed CFLs are NOT closed under intersection!
 → CFLs <u>cannot</u> be closed under complementation.

Some negative closure results

CFLs are not closed under difference

- Follows from the fact that CFLs are not closed under complementation
- Because, if CFLs are closed under difference, then:
 - <u>L</u> = <u>Σ</u>* L
 - So L has to be a CFL too
 - Contradiction

Decision Properties

- Emptiness test
 - Generating test
 - Reachability test
- Membership test
 - PDA acceptance

"Undecidable" problems for CFL

- Is a given CFG G ambiguous?
- Is a given CFL inherently ambiguous?
- Is the intersection of two CFLs empty?
- Are two CFLs the same?
- Is a given L(G) equal to ∑*?

Summary

- Normal Forms
 - Chomsky Normal Form
 - Griebach Normal Form
 - Useful in proroving P/L
- Pumping Lemma for CFLs
 - Main difference: z=uvⁱwxⁱy
- Closure properties
 - Closed under: union, concatentation, reversal, Kleen closure, homomorphism, substitution
 - Not closed under: intersection, complementation, difference