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Properties of Context-free 

Languages 

Reading: Chapter 7 
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Topics  

1) Simplifying CFGs, Normal forms 

2) Pumping lemma for CFLs 

3) Closure and decision properties of 

CFLs 
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How to “simplify” CFGs? 
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Three ways to simplify/clean a CFG 

(clean) 

1. Eliminate useless symbols 

 

(simplify) 

2. Eliminate -productions 

 

3. Eliminate unit productions 

 

A =>  

A => B 
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Eliminating useless symbols 

Grammar cleanup 
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Eliminating useless symbols 

A symbol X is reachable if there exists: 
 S *  X  

 

A symbol X is generating if there exists:  
 X  * w, 

 for some w  T* 

 

For a symbol X to be “useful”, it has to be both 
reachable and generating 

 

 S   *    X    *   w’,  for some w’  T* 

 

reachable generating 
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Algorithm to detect useless 

symbols 

1. First, eliminate all symbols that are not 

generating 

 

2. Next, eliminate all symbols that are not 

reachable  

 

 Is the order of these steps important,  

 or can we switch? 
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Example: Useless symbols 

 SAB | a 

 A b 

 

1. A, S are generating 

2. B is not generating (and therefore B is useless) 

3. ==> Eliminating B… (i.e., remove all productions that involve B) 
1. S a 

2. A  b 

4. Now, A is not reachable and therefore is useless 

 

5. Simplified G:  
1. S  a 

What would happen if you reverse the order:  

 i.e., test reachability before generating? 

Will fail to remove: 

A  b 



9 

Algorithm to find all generating symbols 

 Given: G=(V,T,P,S) 

 Basis:  

 Every symbol in T is obviously generating. 

 Induction: 

 Suppose for a production A , where  

is generating 

 Then, A is also generating 

 

 

X  * w 
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Algorithm to find all reachable symbols 

 Given: G=(V,T,P,S) 

 Basis:  

 S is obviously reachable (from itself) 

 Induction: 

 Suppose for a production A 1 2… k, 
where A is reachable 

 Then, all symbols on the right hand side, 
{1, 2 ,… k} are also reachable. 

 

 

S *  X  
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Eliminating -productions 

A =>  
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Eliminating -productions 

Caveat: It is not possible to eliminate -productions for 

languages which include  in their word set 

 

Theorem: If G=(V,T,P,S) is a CFG for a language L, 

then L\ {} has a CFG without -productions 

 

Definition: A is “nullable” if A*   
 If A is nullable, then any production of the form  

“B CAD” can be simulated by: 

 B  CD | CAD 
 This can allow us to remove  transitions for A 

A   

So we will target the grammar for the rest of the language 

What’s the point of removing -productions? 
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Algorithm to detect all nullable 

variables 

 Basis:  

 If A  is a production in G, then A is 

nullable 

(note: A can still have other productions) 

 Induction: 

 If there is a production B C1C2…Ck, 

where every Ci is nullable, then B is also 

nullable 
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Eliminating -productions  

Given: G=(V,T,P,S) 

Algorithm: 
1. Detect all nullable variables in G 

2. Then construct G1=(V,T,P1,S) as follows: 
i. For each production of the form: AX1X2…Xk, where 

k≥1, suppose m out of the k Xi’s are nullable symbols 

ii. Then G1 will have 2m versions for this production  
i. i.e, all combinations where each Xi is either present or absent 

iii. Alternatively, if a production is of the form: A, then 
remove it 
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Example: Eliminating -
productions 

 Let L be the language represented by the following CFG G: 

i. SAB 

ii. AaAA |  

iii. BbBB |  

 

Goal: To construct G1, which is the grammar for L-{} 

 

 Nullable symbols:  {A, B} 

 

 G1 can be constructed from G as follows: 

 B  b | bB | bB | bBB 

 ==>  B  b | bB | bBB 

 Similarly,  A  a | aA | aAA 

 Similarly,  S  A | B | AB 

 

 Note:  L(G) = L(G1) U {} 

 

G1: 

• S  A | B | AB 

• A  a | aA | aAA 

• B  b | bB | bBB 

• S   

+ 

Simplified 

grammar 
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Eliminating unit productions 

A => B B has to be a variable 

What’s the point of removing unit transitions ? 

A=>B | … 

B=>C | … 

C=>D | … 

D=>xxx | yyy | zzz 

A=>xxx | yyy | zzz | … 

B=> xxx | yyy | zzz | … 

C=> xxx | yyy | zzz | … 

D=>xxx | yyy | zzz 

Will save #substitutions  

E.g.,  

before after 
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Eliminating unit productions 
 Unit production is one which is of the form A B, where both A & B 

are variables 

 E.g., 
1. E  T | E+T 

2. T  F | T*F 

3. F  I | (E) 

4. I  a | b | Ia | Ib | I0 | I1 

 How to eliminate unit productions? 
 

 Replace E T with E  F | T*F 

 

 Then, upon recursive application wherever there is a unit production: 
 E F | T*F | E+T    (substituting for T) 

 E I | (E)  | T*F| E+T    (substituting for F) 

  E a | b | Ia | Ib | I0 | I1 | (E) | T*F | E+T  (substituting for I) 

 Now, E has no unit productions 

 

 Similarly, eliminate for the remainder of the unit productions 

A  B 
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The Unit Pair Algorithm: 

  to remove unit productions 

 Suppose AB1 B2  …  Bn   

 Action: Replace all intermediate productions to produce  
directly 
 i.e., A ; B1 ; … Bn  ; 

 

Definition: (A,B) to be a “unit pair” if A*B   

 

 We can find all unit pairs inductively: 
 Basis: Every pair (A,A) is a unit pair (by definition). Similarly, if 

AB is a production, then (A,B) is a unit pair. 

 

 Induction: If (A,B) and (B,C) are unit pairs, and AC is also a unit 
pair.  
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The Unit Pair Algorithm: 

  to remove unit productions 

Input: G=(V,T,P,S) 

Goal: to build G1=(V,T,P1,S) devoid of unit 
productions 

Algorithm: 

1. Find all unit pairs in G 

2. For each unit pair (A,B) in G: 
1. Add to P1 a new production A, for every 

B which is a non-unit production 

2. If a resulting production is already there in P, 
then there is no need to add it. 
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Example: eliminating unit 

productions 

G: 

1.  E  T | E+T 

2.  T  F | T*F 

3.  F  I | (E) 

4.  I  a | b | Ia | Ib | I0 | I1 

Unit pairs Only non-unit 

productions to be 

added to P1 

(E,E) E  E+T 

(E,T) E  T*F 

(E,F) E  (E) 

(E,I) E  a|b|Ia | Ib | I0 | I1 

(T,T) T  T*F 

(T,F) T  (E) 

(T,I) T  a|b| Ia | Ib | I0 | I1 

(F,F) F  (E) 

(F,I) F  a| b| Ia | Ib | I0 | 

I1 

(I,I) I  a| b | Ia | Ib | I0 | 

I1 

G1: 

1.  E  E+T | T*F | (E) | a| b | Ia | Ib | I0 | I1 

2.  T  T*F | (E) | a| b | Ia | Ib | I0 | I1 

3.  F  (E) | a| b | Ia | Ib | I0 | I1  

4.  I  a | b | Ia | Ib | I0 | I1 
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Putting all this together… 

 Theorem: If G is a CFG for a language that 
contains at least one string other than , then there 
is another CFG G1, such that L(G1)=L(G) - , and 
G1 has: 

 no  -productions 

 no unit productions 

 no useless symbols 

 

 Algorithm: 
Step 1) eliminate  -productions 

Step 2) eliminate unit productions 

Step 3) eliminate useless symbols 

Again,  

the order is 

important! 

 

    Why? 
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Normal Forms 



23 

Why normal forms? 

 If all productions of the grammar could be 
expressed in the same form(s), then: 

 
a. It becomes easy to design algorithms that use 

the grammar 

 

b. It becomes easy to show proofs and properties 
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Chomsky Normal Form (CNF) 

Let G be a CFG for some L-{} 

Definition:  

G is said to be in Chomsky Normal Form if all 

its productions are in one of the following 

two forms: 
i. A  BC   where A,B,C are variables, or 

ii. A  a  where a is a terminal 

 G has no useless symbols 

 G has no unit productions 

 G has no -productions 
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CNF checklist 

G1: 

1.  E  E+T | T*F | (E) | Ia | Ib | I0 | I1 

2.  T  T*F | (E) | Ia | Ib | I0 | I1 

3.  F  (E) | Ia | Ib | I0 | I1  

4.  I  a | b | Ia | Ib | I0 | I1 

Checklist: 

• G has no -productions 

• G has no unit productions 

• G has no useless symbols 

• But… 

• the normal form for productions is violated 

Is this grammar in CNF? 

So, the grammar is not in CNF 
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How to convert a G into CNF? 
 Assumption: G has no -productions, unit productions or useless 

symbols 

 

1) For every terminal a that appears in the body of a production:  
i. create a unique variable, say Xa, with a production Xa  a, and 

ii. replace all other instances of a in G by Xa 

 

2) Now, all productions will be in one of the following 
two forms: 
 A  B1B2… Bk  (k≥3)  or  Aa 

 

 

3) Replace each production of the form A  B1B2B3… Bk by: 
 

 

 

 AB1C1       C1B2C2  …   Ck-3Bk-2Ck-2      Ck-2Bk-1Bk 

B1          C1 

B2      C2 and so on… 



Example #1 
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G: 

S => AS | BABC 

A => A1 | 0A1 | 01 

B => 0B | 0 

C => 1C | 1 

 

 X0 => 0 

 X1 => 1 

 S  => AS | BY1 

 Y1 => AY2 

 Y2 => BC 

A => AX1 | X0Y3 | X0X1 

Y3 => AX1 

B => X0B | 0 

C => X1C | 1 

G in CNF: 

All productions are of the form: A=>BC or A=>a 
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Example #2 

G: 

1.  E  E+T | T*F | (E) | Ia | Ib | I0 | I1 

2.  T  T*F | (E) | Ia | Ib | I0 | I1 

3.  F  (E) | Ia | Ib | I0 | I1  

4.  I  a | b | Ia | Ib | I0 | I1 

1.  E  EX+T | TX*F | X(EX) | IXa | IXb | IX0 | IX1 

2.  T  TX*F | X(EX) | IXa | IXb | IX0 | IX1 

3.  F  X(EX) | IXa | IXb | IX0 | IX1  

4.  I  Xa | Xb | IXa | IXb | IX0 | IX1 

5.  X+  + 

6.  X*  * 

7.  X+  + 

8.  X(  ( 

9.  ……. 

Step (1) 

1.  E  EC1 | TC2 | X(C3 | IXa | IXb | IX0 | IX1 

2.  C1  X+T 

3.  C2  X*F 

4.  C3  EX) 

5.  T  ..…….  

6.  …. 
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Languages with  

 For languages that include ,  

 Write down the rest of grammar in CNF  

 Then add production “S => ” at the end 

G: 

S => AS | BABC  

A => A1 | 0A1 | 01 |   

B => 0B | 0 |  

C => 1C | 1 |  

 

G in CNF: E.g., consider: 

 X0 => 0 

 X1 => 1 

 S  => AS | BY1 

 Y1 => AY2 

 Y2 => BC 

A => AX1 | X0Y3 | X0X1 

Y3 => AX1 

B => X0B | 0 

C => X1C | 1 

 |  
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Other Normal Forms 

 Griebach Normal Form (GNF) 

 All productions of the form  

    A==>a  
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Return of the Pumping Lemma !! 

Think of languages that cannot be CFL 

== think of languages for which a stack will not be enough 

e.g., the language of strings of the form  ww 
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Why pumping lemma? 

 A result that will be useful in proving 

languages that are not CFLs 

 (just like we did for regular languages) 

 

 But before we prove the pumping 

lemma for CFLs …. 

 Let us first prove an important property 

about parse trees 
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The “parse tree theorem” 

Given:  

 Suppose we have a 
parse tree for a 
string w, according 
to a CNF grammar, 
G=(V,T,P,S) 
 

 Let h be the height of 
the parse tree 

Implies: 

 |w| ≤ 2h-1 

w 

Parse tree for w 

         S  = A0 

A1 

A2 

Ah-1 

h  
= tree height 

a 

In other words, a CNF parse tree’s string yield (w) 

  can no longer be 2h-1   

Observe that any parse tree generated by a CNF will be a  

binary tree, where all internal nodes have exactly two children  

(except those nodes connected to the leaves). 
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Proof…The size of parse trees 
Proof: (using induction on h) 

Basis: h = 1 
 Derivation will have to be 

“Sa”   

 |w|= 1 = 21-1 . 

 

Ind. Hyp: h = k-1 
 |w|≤ 2k-2  

 

Ind. Step: h = k 
S will have exactly two children:  

SAB      

 

 Heights of A & B subtrees are 
at most h-1 

 

 w = wA wB, where |wA| ≤ 2k-2 
and |wB| ≤ 2k-2  

 

 |w| ≤ 2k-1  

 w 

Parse tree for w 

         S  = A0 

h 
= height 

A B 

wA wB 

To show:  |w| ≤ 2h-1 
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Implication of the Parse Tree 

Theorem (assuming CNF) 

Fact: 

 If the height of a parse tree is h, then 

 ==> |w| ≤ 2h-1 

 

Implication: 

 If |w| ≥ 2h, then   

 Its parse tree’s height is at least h+1 
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The Pumping Lemma for CFLs 

Let L be a CFL. 

Then there exists a constant N, s.t.,  

 if z L s.t. |z|≥N, then we can write 

z=uvwxy, such that: 

1. |vwx| ≤ N 

2. vx≠ 

3. For all k≥0:  uvkwxky  L 

Note: we are pumping in two places (v & x) 
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Proof: Pumping Lemma for CFL 

 If L=Φ or contains only , then the lemma is 
trivially satisfied (as it cannot be violated) 

 

 For any other L which is a CFL:  
 Let G be a CNF grammar for L 

 Let m = number of variables in G 

 Choose N=2m. 

 Pick any z  L s.t. |z|≥ N 

   the parse tree for z should have a height ≥ m+1 
    (by the parse tree theorem) 
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Parse tree for z 

z 

         S  = A0 

A1 

A2 

Ah-1 

h ≥ m+1 

z = uvwxy 

         S  = A0 

Ai 

Aj 

h ≥ m+1 

u 

w 

y v x 

• Therefore, vx≠ 

h-m≤ i < j ≤ h 

m+1 

Ai = Aj 

Meaning:  

   Repetition in the  

last m+1 variables 

Ah=a 

+ 
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Extending the parse tree… 

z = uvkwxky 

         S  = A0 

Ai=Aj 

Ai 

h ≥ m+1 

u 

w 

y v x 

Replacing  

Aj with Ai 

 (k times) 

v x 

Ai 

==>  For all k≥0:  uvkwxky L 

z = uwy 

         S  = A0 

Aj 

u 

w 

y 

Or, replacing  

Ai with Aj 
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Proof contd.. 

• Also, since Ai’s subtree no taller than m+1 

 

==> the string generated under Ai‘s subtree, which is 

vwx, cannot be longer than 2m (=N) 

 

But, 2m =N 

 

==> |vwx| ≤ N  

 

This completes the proof for the pumping lemma. 
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Application of Pumping 

Lemma for CFLs 

Example 1:  L = {ambmcm | m>0 } 

Claim: L is not a CFL 

Proof: 
 Let N <== P/L constant 

 Pick z = aNbNcN 

 Apply pumping lemma to z and show that there 
exists at least one other string constructed from z 
(obtained by pumping up or down) that is  L  
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Proof contd… 

 z = uvwxy 

 As z = aNbNcN and |vwx| ≤ N and vx≠ 

 ==> v, x cannot contain all three symbols 

(a,b,c) 

 ==>  we can pump up or pump down to build 

another string which is  L 
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Example #2 for P/L application 

 L = { ww | w is in {0,1}*} 

 

 Show that L is not a CFL 

 

 Try string z = 0N0N  
  what happens? 

 Try string z = 0N1N0N1N 
   what happens? 
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Example 3 

 L = { 0k2
 | k is any integer) 

 

 Prove L is not a CFL using Pumping 

Lemma 



Example 4 

 L = {aibjck | i<j<k } 

 

 Prove that L is not a CFL 

45 
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CFL Closure Properties 
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Closure Property Results 

 CFLs are closed under: 
 Union 

 Concatenation 

 Kleene closure operator 

 Substitution 

 Homomorphism, inverse homomorphism 

 reversal 

 CFLs are not closed under: 
 Intersection 

 Difference 

 Complementation 

 

Note: Reg languages  

 are closed 

 under  

 these  

 operators 
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Strategy for Closure Property 

Proofs 

 First prove “closure under substitution” 

 Using the above result, prove other closure properties 

 CFLs are closed under: 
 Union 

 Concatenation 

 Kleene closure operator 

 Substitution 

 Homomorphism, inverse homomorphism 

 Reversal  

Prove  

this first 
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The Substitution operation 

For each a  ∑, then let s(a) be a language 

If w=a1a2…an  L, then:  
  s(w) = { x1x2 …  }   s(L),   s.t., xi  s(ai) 

Example:  
 Let ∑={0,1} 

 Let: s(0) = {anbn | n ≥1}, s(1) = {aa,bb} 

 If w=01, s(w)=s(0).s(1) 
 E.g., s(w) contains a1 b1 aa, a1 b1bb, 

             a2 b2 aa, a2 b2bb, 
   … and so on. 

Note: s(L) can use 

a different alphabet 
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CFLs are closed under 

Substitution 

IF L is a CFL and a substititution defined 

on L, s(L), is s.t., s(a) is a CFL for every 

symbol a, THEN: 

 s(L) is also a CFL 

L 

w1 

w2 

w3 

w4 

… 

s(L) 

s(L) 

s(w1) 

s(w2) 

s(w3) 

s(w4) 

… 

Note: each s(w)  

is itself a set of strings 

What is s(L)? 
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CFLs are closed under 

Substitution 

 G=(V,T,P,S) : CFG for L 

 Because every s(a) is a CFL, there is a CFG for each s(a) 
 Let Ga = (Va,Ta,Pa,Sa)  

 Construct G’=(V’,T’,P’,S) for s(L) 

 P’ consists of: 
 The productions of P, but with every occurrence of terminal “a” in 

their bodies replaced by Sa.  

 All productions in any Pa, for any a  ∑ 

 

x1 x2 xn 

… 

S 

Sa1 
Sa2

 San
 

Parse tree for G’: 



Substitution of a CFL: 

example 

 Let L = language of binary palindromes s.t., substitutions for 0 

and 1 are defined as follows: 

 s(0) = {anbn | n ≥1}, s(1) = {xx,yy} 

 Prove that s(L) is also a CFL. 
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CFG for L: 

 

S=> 0S0|1S1| 

CFG for s(0): 

 

S0=> aS0b | ab 

CFG for s(1): 

 

S1=> xx | yy 

Therefore, CFG for s(L): 

 

S=> S0SS0 | S1 S S1 | 

S0=> aS0b | ab 

S1=> xx | yy 
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CFLs are closed under union 

Let L1 and L2 be CFLs 

 To show: L2 U L2 is also a CFL 

  

 Make a new language: 
 Lnew = {a,b} s.t., s(a) = L1 and s(b) = L2 

  ==> s(Lnew) == same as == L1 U L2  
 

 A more direct, alternative proof 
 Let S1 and S2 be the starting variables of the 

grammars for L1 and L2 
 Then, Snew => S1 | S2 

 

Let us show by using the result of Substitution 
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CFLs are closed under 

concatenation 

 Let L1 and L2 be CFLs 

 

 Make Lnew= {ab} s.t.,  
  s(a) = L1 and s(b)= L2 

==> L1 L2 = s(Lnew)  

 

 

 A proof without using substitution? 

Let us show by using the result of Substitution 
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CFLs are closed under 

Kleene Closure 

 Let L be a CFL 

 

 Let Lnew = {a}* and s(a) = L1  

 

 Then, L* = s(Lnew) 
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CFLs are closed under 

Reversal 

 Let L be a CFL, with grammar 

G=(V,T,P,S) 

 For LR, construct GR=(V,T,PR,S) s.t., 

 If A==>  is in P, then: 

 A==> R is in PR 

 

 (that is, reverse every production) 

We won’t use substitution to prove this result 
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CFLs are not closed under 

Intersection 

 Existential proof: 
 L1 = {0n1n2i | n≥1,i≥1} 

 L2 = {0i1n2n | n≥1,i≥1} 

 Both L1 and L1 are CFLs 
 Grammars? 

 But L1  L2 cannot be a CFL 
 Why? 

 We have an example, where intersection is 
not closed.  

 Therefore, CFLs are not closed under 
intersection 

Some negative closure results 
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CFLs are not closed under 

complementation 

 Follows from the fact that CFLs are not 

closed under intersection 

 

 L1  L2  = L1 U L2  

Some negative closure results 

Logic: if CFLs were to be closed under complementation  

  

 

 

 

 

 

Logic: if CFLs were to be closed under complementation  

  the whole right hand side becomes a CFL (because  

   CFL is closed for union) 

  the left hand side (intersection) is also a CFL 

  but we just showed CFLs are  

  NOT closed under intersection! 

  CFLs cannot be closed under complementation. 
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CFLs are not closed under 

difference 

 Follows from the fact that CFLs are not 
closed under complementation 

 

 Because, if CFLs are closed under 
difference, then: 

 L  = ∑* - L 

 So L has to be a CFL too 

 Contradiction 

Some negative closure results 
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Decision Properties 

 Emptiness test 

 Generating test 

 Reachability test 

 Membership test 

 PDA acceptance  
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“Undecidable” problems for 

CFL 

 Is a given CFG G ambiguous? 

 Is a given CFL inherently ambiguous? 

 Is the intersection of two CFLs empty? 

 Are two CFLs the same? 

 Is a given L(G) equal to ∑*? 
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Summary 

 Normal Forms 
 Chomsky Normal Form 

 Griebach Normal Form 

 Useful in proroving P/L 

 Pumping Lemma for CFLs 
 Main difference: z=uviwxiy 

 Closure properties 
 Closed under: union, concatentation, reversal, Kleen  

closure, homomorphism, substitution 

 Not closed under: intersection, complementation, 
difference 


