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Context-Free Languages &  

Grammars 

(CFLs & CFGs) 

Reading: Chapter 5 



Not all languages are regular 

 So what happens to the languages 

which are not regular? 

 

 Can we still come up with a language 

recognizer? 

 i.e., something that will accept (or reject) 

strings that belong (or do not belong) to the 

language? 
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Context-Free Languages 

 A language class larger than the class of regular 
languages 

 

 Supports natural, recursive notation called “context-
free grammar” 

 

 Applications: 
 Parse trees, compilers 

 XML 

 

Regular 

(FA/RE) 

Context- 

free 

         (PDA/CFG) 
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An Example 

 A palindrome is a word that reads identical from both 
ends 

 E.g., madam, redivider, malayalam, 010010010  

 Let L = { w  | w is a binary palindrome} 

 Is L regular? 

 No.  

 Proof: 
 Let w=0N10N  (assuming N to be the p/l constant) 

 By Pumping lemma, w can be rewritten as xyz, such that xykz is also L 
(for any k≥0) 

 But |xy|≤N and y≠ 

 ==> y=0+ 

 ==> xykz will NOT be in L for k=0 

 ==> Contradiction 
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But the language of 

palindromes… 

 is a CFL, because it supports recursive 

substitution (in the form of a CFG) 

 This is because we can construct a 

“grammar” like this: 

1. A ==>  

2. A ==> 0 

3. A ==> 1 

4. A ==> 0A0 

5. A ==> 1A1 

Terminal 

Productions 
Variable or non-terminal 

How does this grammar work? 

Same as: 

 A => 0A0 | 1A1 |  0 | 1 |  



How does the CFG for 

palindromes work? 

An input string belongs to the language (i.e., 

accepted) iff it can be generated by the CFG 
 

 Example: w=01110 

 G can generate w as follows: 

 

1. A    => 0A0  

2.       => 01A10 

3.       => 01110 
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G: 

 A => 0A0 | 1A1 |  0 | 1 |  

Generating a string from a grammar: 

1. Pick and choose a sequence 

of productions that would  

allow us to generate the 

string. 

2. At every step, substitute one variable 

with one of its productions. 



7 

Context-Free Grammar: 

Definition 

 A context-free grammar G=(V,T,P,S), where: 
 V: set of variables or non-terminals 

 T: set of terminals (= alphabet U {}) 

 P: set of productions, each of which is of the form 
  V ==> 1 | 2 | … 

 Where each i is an arbitrary string of variables and 
terminals 

 S ==> start variable 

CFG for the language of binary palindromes: 
G=({A},{0,1},P,A) 
P:  A ==> 0 A 0 | 1 A 1 | 0 | 1 |  
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More examples 

 Parenthesis matching in code 

 Syntax checking 

 In scenarios where there is a general need 
for: 
 Matching a symbol with another symbol, or  

 Matching a count of one symbol with that of 
another symbol, or 

 Recursively substituting one symbol with a string 
of other symbols 
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Example #2 

 Language of balanced paranthesis 

 e.g., ()(((())))((()))…. 

 CFG? 
G: 

 S => (S) | SS |   

How would you “interpret” the string “(((()))()())” using this grammar? 
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Example #3 

 A grammar for L = {0m1n | m≥n}  

 

 CFG?  G: 

 S => 0S1 | A 

 A =>  0A |   

How would you interpret the string “00000111”  

 using this grammar? 
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Example #4 

A program containing if-then(-else) statements 

if Condition then Statement else Statement 

(Or) 

if Condition then Statement 

CFG? 



More examples 

 L1 = {0n | n≥0 } 

 L2 = {0n | n≥1 } 

 L3={0i1j2k | i=j or j=k, where i,j,k≥0} 

 L4={0i1j2k | i=j or i=k, where i,j,k≥1} 
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Applications of CFLs & CFGs 

 Compilers use parsers for syntactic checking 

 Parsers can be expressed as CFGs 
1. Balancing paranthesis: 

 B ==> BB | (B) | Statement 

 Statement ==> … 

2. If-then-else: 
 S ==> SS | if Condition then Statement else Statement |  if Condition 

then Statement | Statement  

 Condition ==> … 

 Statement ==> … 

3. C paranthesis matching { … } 

4. Pascal begin-end matching 

5. YACC (Yet Another Compiler-Compiler) 
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More applications 

 Markup languages 

 Nested Tag Matching 

 HTML 

 <html> …<p> … <a href=…> … </a> </p> … </html> 

 

 XML 

 <PC> … <MODEL> … </MODEL> .. <RAM> … 

</RAM> … </PC> 
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Tag-Markup Languages 

Roll ==> <ROLL> Class Students </ROLL> 

Class ==> <CLASS> Text </CLASS> 

Text ==> Char Text | Char 

Char ==> a | b | … | z | A | B | .. | Z 

Students ==> Student Students |  

Student ==> <STUD> Text </STUD> 

 Here, the left hand side of each production denotes one non-terminals 

(e.g., “Roll”, “Class”, etc.) 

Those symbols on the right hand side for which no productions (i.e., 

substitutions) are defined are terminals (e.g., ‘a’, ‘b’, ‘|’, ‘<‘, ‘>’, “ROLL”, 

etc.) 
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Structure of a production 

A      =======>      1 | 2 | … | k  

head body derivation 

1. A ==> 1 

2. A ==> 2 

3. A ==> 3 

… 

K.   A ==> k 

 

The above is same as: 
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CFG conventions 

 Terminal symbols <== a, b, c…  

 

 Non-terminal symbols <== A,B,C, … 

 

 Terminal or non-terminal symbols <== X,Y,Z 

 

 Terminal strings <== w, x, y, z 

 

 Arbitrary strings of terminals and non-
terminals <== , , , .. 
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Syntactic Expressions in 

Programming Languages 

  result = a*b + score + 10 * distance + c 

 

 

 

Regular languages have only terminals  
 Reg expression = [a-z][a-z0-1]* 

 If we allow only letters a & b, and 0 & 1 for 
constants (for simplification) 
 Regular expression = (a+b)(a+b+0+1)* 

terminals variables Operators are also 

terminals 
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String membership 

How to say if a string belong to the language 
defined by a CFG? 

1. Derivation 
 Head to body 

2. Recursive inference 
 Body to head 

Example: 
 w = 01110 

 Is w a palindrome? 
 

 

Both are equivalent forms 

G: 

 A => 0A0 | 1A1 |  0 | 1 |  

A  => 0A0  

    => 01A10 

    => 01110 
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Simple Expressions… 

 We can write a CFG for accepting simple 
expressions 

 G = (V,T,P,S) 
 V = {E,F} 

 T = {0,1,a,b,+,*,(,)} 

 S = {E} 

 P: 
 E ==> E+E | E*E | (E) | F  

 F ==> aF | bF | 0F | 1F | a | b | 0 | 1 
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Generalization of derivation 

 Derivation is head ==> body 

 

 A==>X      (A derives X in a single step)  

 A ==>*G  X    (A derives X in a multiple steps) 

 

 Transitivity: 

IFA ==>*GB, and B ==>*GC, THEN A ==>*G C 
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Context-Free Language 

 The language of a CFG, G=(V,T,P,S), 

denoted by L(G), is the set of terminal 

strings that have a derivation from the 

start variable S.  

 L(G) = { w in T* | S ==>*G w }  

        � 
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Left-most & Right-most 

Derivation Styles 

Derive the string a*(ab+10) from G: 

E  

==> E * E 

==> F * E  

==> aF * E  

==> a * E  

==> a * (E) 

==> a * (E + E)  

==> a * (F + E)  

==> a * (aF + E) 

==> a * (abF + E) 

==> a * (ab + E) 

==> a * (ab + F) 

==> a * (ab + 1F) 

==> a * (ab + 10F) 

==> a * (ab + 10) 

E =*=>G a*(ab+10) 

Left-most  

derivation: 

E  

==> E * E 

==> E * (E) 

==> E * (E + E)  

==> E * (E + F) 

==> E * (E + 1F) 

==> E * (E + 10F) 

==> E * (E + 10) 

==> E * (F + 10) 

==> E * (aF + 10) 

==> E * (abF + 0) 

==> E * (ab + 10) 

==> F * (ab + 10) 

==> aF * (ab + 10) 

==> a * (ab + 10) 

Right-most  

derivation: 

G: 

 E => E+E | E*E | (E) | F  

 F => aF | bF | 0F | 1F |  

Always 

substitute 

leftmost 

variable 

Always 

substitute 

rightmost 

variable 
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Leftmost vs. Rightmost 

derivations 

Q1) For every leftmost derivation, there is a rightmost 

derivation, and vice versa. True or False? 

 

 

Q2) Does every word generated by a CFG have a 

leftmost and a rightmost derivation? 

 

 

Q3) Could there be words which have more than one 

leftmost (or rightmost) derivation? 

True - will use parse trees to prove this 

Yes – easy to prove (reverse direction) 

Yes – depending on the grammar 



How to prove that your CFGs 

are correct? 

(using induction) 

25 
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CFG & CFL 

 Theorem: A string w in (0+1)* is in 

L(Gpal), if and only if, w is a palindrome. 

 

 Proof:  

 Use induction  

 on string length for the IF part 

 On length of derivation for the ONLY IF part 

 

Gpal: 

 A => 0A0 | 1A1 |  0 | 1 |  



Parse trees 

27 
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Parse Trees 

 Each CFG can be represented using a parse tree: 

 Each internal node is labeled by a variable in V 

 Each leaf is terminal symbol 

 For a production, A==>X1X2…Xk, then any internal node 
labeled A has k children which are labeled from X1,X2,…Xk 
from left to right  

A 

X1 Xi Xk … … 

Parse tree for production and all other subsequent productions: 

 A ==> X1..Xi..Xk 
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Examples 

E 

E + E 

F F 

a 1 

Parse tree for a + 1 

A 

0 A 0 

1 1 A 

 

Parse tree for 0110 
R

e
c
u

rs
iv

e
 i
n

fe
re

n
c
e

 

D
e

ri
v
a

ti
o

n
 

G: 

 E => E+E | E*E | (E) | F  

 F => aF | bF | 0F | 1F | 0 | 1 | a | b 

G: 

 A => 0A0 | 1A1 |  0 | 1 |  
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Parse Trees, Derivations, and 

Recursive Inferences 

A 

X1 Xi Xk … … 

R
e

c
u

rs
iv

e
  

in
fe

re
n

c
e

 

D
e

ri
v
a

ti
o

n
 

Production: 

 A ==> X1..Xi..Xk 

Parse tree 
Left-most 

derivation 

Right-most 

derivation 

Derivation 
Recursive 

inference 
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Interchangeability of different 

CFG representations 

 Parse tree ==> left-most derivation 
 DFS left to right 

 Parse tree ==> right-most derivation 
 DFS right to left 

 ==> left-most derivation == right-most 
derivation 

 Derivation ==> Recursive inference 
 Reverse the order of productions 

 Recursive inference ==> Parse trees 
 bottom-up traversal of parse tree 



Connection between CFLs 

and RLs 

32 
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CFLs & Regular Languages 

 A CFG is said to be right-linear if all the 
productions are one of the following two 
forms: A ==> wB (or) A ==> w 

 

 

 Theorem 1: Every right-linear CFG generates 
a regular language 

 Theorem 2: Every regular language has a 
right-linear grammar 

 Theorem 3: Left-linear CFGs also represent 
RLs 

Where:  

• A & B are variables,  

• w is a string of terminals 

What kind of grammars result for regular languages? 



Some Examples 
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A B C 

0 

1 0 

1 0,1 

A B C 

0 

1 0 

1 

1 

0 

A => 01B | C 

   B => 11B | 0C | 1A 

   C => 1A | 0 | 1 

Right linear CFG? Right linear CFG? Finite Automaton? 



Ambiguity in CFGs and CFLs 
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Ambiguity in CFGs 

 A CFG is said to be ambiguous if there 
exists a string which has more than one 
left-most derivation 

LM derivation #1: 

S => AS 

   => 0A1S  
   =>0A11S 
   => 00111S  
   => 00111 

Example: 

S ==> AS |  

A ==> A1 | 0A1 | 01 

 

Input string: 00111 

 Can be derived in two ways 

LM derivation #2: 

S => AS  
   => A1S   
   => 0A11S 
   => 00111S  
   => 00111 
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Why does ambiguity matter? 

string = a * b + c 

E ==> E + E | E * E | (E) | a | b | c | 0 | 1  

• LM derivation #1: 

•E => E + E => E * E + E  

     ==>* a * b + c 

• LM derivation #2 

•E => E * E => a * E =>  

   a * E + E ==>* a * b + c 

E 

E + E 

E * E 

a b 

c 

 (a*b)+c 

E 

E * E 

E + E a 

b c 

a*(b+c) 

Values are  

different !!! 

The calculated value depends on which  

of the two parse trees is actually used.  
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Removing Ambiguity in 

Expression Evaluations 

 It MAY be possible to remove ambiguity for 
some CFLs 
 E.g.,, in a CFG for expression evaluation by 

imposing rules & restrictions such as precedence 

 This would imply rewrite of the grammar 

  
 Precedence: (), * , + 

 

How will this avoid ambiguity? 

E => E + T | T 
T => T * F | F 
F => I | (E) 
I => a | b | c | 0 | 1   

 

Modified unambiguous version: 

Ambiguous version: 

E ==> E + E | E * E | (E) | a | b | c | 0 | 1  
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Inherently Ambiguous CFLs 

 However, for some languages, it may not be 
possible to remove ambiguity 

 

 A CFL is said to be inherently ambiguous if 
every CFG that describes it is ambiguous 

Example:  
 L = { anbncmdm | n,m≥ 1} U {anbmcmdn | n,m≥ 1} 

 L is inherently ambiguous 

 Why? 
Input string: anbncndn  
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Summary 

 Context-free grammars 

 Context-free languages 

 Productions, derivations, recursive inference, 
parse trees 

 Left-most & right-most derivations 

 Ambiguous grammars 

 Removing ambiguity 

 CFL/CFG applications 
 parsers, markup languages 

 


