
1

Context-Free Languages &

Grammars

(CFLs & CFGs)

Reading: Chapter 5

Not all languages are regular

 So what happens to the languages

which are not regular?

 Can we still come up with a language

recognizer?

 i.e., something that will accept (or reject)

strings that belong (or do not belong) to the

language?

2

3

Context-Free Languages

 A language class larger than the class of regular
languages

 Supports natural, recursive notation called “context-
free grammar”

 Applications:
 Parse trees, compilers

 XML

Regular

(FA/RE)

Context-

free

 (PDA/CFG)

4

An Example

 A palindrome is a word that reads identical from both
ends

 E.g., madam, redivider, malayalam, 010010010

 Let L = { w | w is a binary palindrome}

 Is L regular?

 No.

 Proof:
 Let w=0N10N (assuming N to be the p/l constant)

 By Pumping lemma, w can be rewritten as xyz, such that xykz is also L
(for any k≥0)

 But |xy|≤N and y≠

 ==> y=0+

 ==> xykz will NOT be in L for k=0

 ==> Contradiction

5

But the language of

palindromes…

 is a CFL, because it supports recursive

substitution (in the form of a CFG)

 This is because we can construct a

“grammar” like this:

1. A ==> 

2. A ==> 0

3. A ==> 1

4. A ==> 0A0

5. A ==> 1A1

Terminal

Productions
Variable or non-terminal

How does this grammar work?

Same as:

 A => 0A0 | 1A1 | 0 | 1 | 

How does the CFG for

palindromes work?

An input string belongs to the language (i.e.,

accepted) iff it can be generated by the CFG

 Example: w=01110

 G can generate w as follows:

1. A => 0A0

2. => 01A10

3. => 01110

6

G:

 A => 0A0 | 1A1 | 0 | 1 | 

Generating a string from a grammar:

1. Pick and choose a sequence

of productions that would

allow us to generate the

string.

2. At every step, substitute one variable

with one of its productions.

7

Context-Free Grammar:

Definition

 A context-free grammar G=(V,T,P,S), where:
 V: set of variables or non-terminals

 T: set of terminals (= alphabet U {})

 P: set of productions, each of which is of the form
 V ==> 1 | 2 | …

 Where each i is an arbitrary string of variables and
terminals

 S ==> start variable

CFG for the language of binary palindromes:
G=({A},{0,1},P,A)
P: A ==> 0 A 0 | 1 A 1 | 0 | 1 | 

8

More examples

 Parenthesis matching in code

 Syntax checking

 In scenarios where there is a general need
for:
 Matching a symbol with another symbol, or

 Matching a count of one symbol with that of
another symbol, or

 Recursively substituting one symbol with a string
of other symbols

9

Example #2

 Language of balanced paranthesis

 e.g., ()(((())))((()))….

 CFG?
G:

 S => (S) | SS | 

How would you “interpret” the string “(((()))()())” using this grammar?

10

Example #3

 A grammar for L = {0m1n | m≥n}

 CFG? G:

 S => 0S1 | A

 A => 0A | 

How would you interpret the string “00000111”

 using this grammar?

11

Example #4

A program containing if-then(-else) statements

if Condition then Statement else Statement

(Or)

if Condition then Statement

CFG?

More examples

 L1 = {0n | n≥0 }

 L2 = {0n | n≥1 }

 L3={0i1j2k | i=j or j=k, where i,j,k≥0}

 L4={0i1j2k | i=j or i=k, where i,j,k≥1}

12

13

Applications of CFLs & CFGs

 Compilers use parsers for syntactic checking

 Parsers can be expressed as CFGs
1. Balancing paranthesis:

 B ==> BB | (B) | Statement

 Statement ==> …

2. If-then-else:
 S ==> SS | if Condition then Statement else Statement | if Condition

then Statement | Statement

 Condition ==> …

 Statement ==> …

3. C paranthesis matching { … }

4. Pascal begin-end matching

5. YACC (Yet Another Compiler-Compiler)

14

More applications

 Markup languages

 Nested Tag Matching

 HTML

 <html> …<p> … … </p> … </html>

 XML

 <PC> … <MODEL> … </MODEL> .. <RAM> …

</RAM> … </PC>

15

Tag-Markup Languages

Roll ==> <ROLL> Class Students </ROLL>

Class ==> <CLASS> Text </CLASS>

Text ==> Char Text | Char

Char ==> a | b | … | z | A | B | .. | Z

Students ==> Student Students | 

Student ==> <STUD> Text </STUD>

 Here, the left hand side of each production denotes one non-terminals

(e.g., “Roll”, “Class”, etc.)

Those symbols on the right hand side for which no productions (i.e.,

substitutions) are defined are terminals (e.g., ‘a’, ‘b’, ‘|’, ‘<‘, ‘>’, “ROLL”,

etc.)

16

Structure of a production

A =======> 1 | 2 | … | k

head body derivation

1. A ==> 1

2. A ==> 2

3. A ==> 3

…

K. A ==> k

The above is same as:

17

CFG conventions

 Terminal symbols <== a, b, c…

 Non-terminal symbols <== A,B,C, …

 Terminal or non-terminal symbols <== X,Y,Z

 Terminal strings <== w, x, y, z

 Arbitrary strings of terminals and non-
terminals <== , , , ..

18

Syntactic Expressions in

Programming Languages

 result = a*b + score + 10 * distance + c

Regular languages have only terminals
 Reg expression = [a-z][a-z0-1]*

 If we allow only letters a & b, and 0 & 1 for
constants (for simplification)
 Regular expression = (a+b)(a+b+0+1)*

terminals variables Operators are also

terminals

19

String membership

How to say if a string belong to the language
defined by a CFG?

1. Derivation
 Head to body

2. Recursive inference
 Body to head

Example:
 w = 01110

 Is w a palindrome?

Both are equivalent forms

G:

 A => 0A0 | 1A1 | 0 | 1 | 

A => 0A0

 => 01A10

 => 01110

20

Simple Expressions…

 We can write a CFG for accepting simple
expressions

 G = (V,T,P,S)
 V = {E,F}

 T = {0,1,a,b,+,*,(,)}

 S = {E}

 P:
 E ==> E+E | E*E | (E) | F

 F ==> aF | bF | 0F | 1F | a | b | 0 | 1

21

Generalization of derivation

 Derivation is head ==> body

 A==>X (A derives X in a single step)

 A ==>*G X (A derives X in a multiple steps)

 Transitivity:

IFA ==>*GB, and B ==>*GC, THEN A ==>*G C

22

Context-Free Language

 The language of a CFG, G=(V,T,P,S),

denoted by L(G), is the set of terminal

strings that have a derivation from the

start variable S.

 L(G) = { w in T* | S ==>*G w }

 �

23

Left-most & Right-most

Derivation Styles

Derive the string a*(ab+10) from G:

E

==> E * E

==> F * E

==> aF * E

==> a * E

==> a * (E)

==> a * (E + E)

==> a * (F + E)

==> a * (aF + E)

==> a * (abF + E)

==> a * (ab + E)

==> a * (ab + F)

==> a * (ab + 1F)

==> a * (ab + 10F)

==> a * (ab + 10)

E =*=>G a*(ab+10)

Left-most

derivation:

E

==> E * E

==> E * (E)

==> E * (E + E)

==> E * (E + F)

==> E * (E + 1F)

==> E * (E + 10F)

==> E * (E + 10)

==> E * (F + 10)

==> E * (aF + 10)

==> E * (abF + 0)

==> E * (ab + 10)

==> F * (ab + 10)

==> aF * (ab + 10)

==> a * (ab + 10)

Right-most

derivation:

G:

 E => E+E | E*E | (E) | F

 F => aF | bF | 0F | 1F | 

Always

substitute

leftmost

variable

Always

substitute

rightmost

variable

24

Leftmost vs. Rightmost

derivations

Q1) For every leftmost derivation, there is a rightmost

derivation, and vice versa. True or False?

Q2) Does every word generated by a CFG have a

leftmost and a rightmost derivation?

Q3) Could there be words which have more than one

leftmost (or rightmost) derivation?

True - will use parse trees to prove this

Yes – easy to prove (reverse direction)

Yes – depending on the grammar

How to prove that your CFGs

are correct?

(using induction)

25

26

CFG & CFL

 Theorem: A string w in (0+1)* is in

L(Gpal), if and only if, w is a palindrome.

 Proof:

 Use induction

 on string length for the IF part

 On length of derivation for the ONLY IF part

Gpal:

 A => 0A0 | 1A1 | 0 | 1 | 

Parse trees

27

28

Parse Trees

 Each CFG can be represented using a parse tree:

 Each internal node is labeled by a variable in V

 Each leaf is terminal symbol

 For a production, A==>X1X2…Xk, then any internal node
labeled A has k children which are labeled from X1,X2,…Xk
from left to right

A

X1 Xi Xk … …

Parse tree for production and all other subsequent productions:

 A ==> X1..Xi..Xk

29

Examples

E

E + E

F F

a 1

Parse tree for a + 1

A

0 A 0

1 1 A



Parse tree for 0110
R

e
c
u

rs
iv

e
 i
n

fe
re

n
c
e

D
e

ri
v
a

ti
o

n

G:

 E => E+E | E*E | (E) | F

 F => aF | bF | 0F | 1F | 0 | 1 | a | b

G:

 A => 0A0 | 1A1 | 0 | 1 | 

30

Parse Trees, Derivations, and

Recursive Inferences

A

X1 Xi Xk … …

R
e

c
u

rs
iv

e

in
fe

re
n

c
e

D
e

ri
v
a

ti
o

n

Production:

 A ==> X1..Xi..Xk

Parse tree
Left-most

derivation

Right-most

derivation

Derivation
Recursive

inference

31

Interchangeability of different

CFG representations

 Parse tree ==> left-most derivation
 DFS left to right

 Parse tree ==> right-most derivation
 DFS right to left

 ==> left-most derivation == right-most
derivation

 Derivation ==> Recursive inference
 Reverse the order of productions

 Recursive inference ==> Parse trees
 bottom-up traversal of parse tree

Connection between CFLs

and RLs

32

33

CFLs & Regular Languages

 A CFG is said to be right-linear if all the
productions are one of the following two
forms: A ==> wB (or) A ==> w

 Theorem 1: Every right-linear CFG generates
a regular language

 Theorem 2: Every regular language has a
right-linear grammar

 Theorem 3: Left-linear CFGs also represent
RLs

Where:

• A & B are variables,

• w is a string of terminals

What kind of grammars result for regular languages?

Some Examples

34

A B C

0

1 0

1 0,1

A B C

0

1 0

1

1

0

A => 01B | C

 B => 11B | 0C | 1A

 C => 1A | 0 | 1

Right linear CFG? Right linear CFG? Finite Automaton?

Ambiguity in CFGs and CFLs

35

36

Ambiguity in CFGs

 A CFG is said to be ambiguous if there
exists a string which has more than one
left-most derivation

LM derivation #1:

S => AS

 => 0A1S
 =>0A11S
 => 00111S
 => 00111

Example:

S ==> AS | 

A ==> A1 | 0A1 | 01

Input string: 00111

 Can be derived in two ways

LM derivation #2:

S => AS
 => A1S
 => 0A11S
 => 00111S
 => 00111

37

Why does ambiguity matter?

string = a * b + c

E ==> E + E | E * E | (E) | a | b | c | 0 | 1

• LM derivation #1:

•E => E + E => E * E + E

 ==>* a * b + c

• LM derivation #2

•E => E * E => a * E =>

 a * E + E ==>* a * b + c

E

E + E

E * E

a b

c

 (a*b)+c

E

E * E

E + E a

b c

a*(b+c)

Values are

different !!!

The calculated value depends on which

of the two parse trees is actually used.

38

Removing Ambiguity in

Expression Evaluations

 It MAY be possible to remove ambiguity for
some CFLs
 E.g.,, in a CFG for expression evaluation by

imposing rules & restrictions such as precedence

 This would imply rewrite of the grammar

 Precedence: (), * , +

How will this avoid ambiguity?

E => E + T | T
T => T * F | F
F => I | (E)
I => a | b | c | 0 | 1

Modified unambiguous version:

Ambiguous version:

E ==> E + E | E * E | (E) | a | b | c | 0 | 1

39

Inherently Ambiguous CFLs

 However, for some languages, it may not be
possible to remove ambiguity

 A CFL is said to be inherently ambiguous if
every CFG that describes it is ambiguous

Example:
 L = { anbncmdm | n,m≥ 1} U {anbmcmdn | n,m≥ 1}

 L is inherently ambiguous

 Why?
Input string: anbncndn

40

Summary

 Context-free grammars

 Context-free languages

 Productions, derivations, recursive inference,
parse trees

 Left-most & right-most derivations

 Ambiguous grammars

 Removing ambiguity

 CFL/CFG applications
 parsers, markup languages

