Context-Free Languages \& Grammars
 (CFLs \& CFGs)

Reading: Chapter 5

Not all languages are regular

- So what happens to the languages which are not regular?
- Can we still come up with a language recognizer?
- i.e., something that will accept (or reject) strings that belong (or do not belong) to the language?

Context-Free Languages

- A language class larger than the class of regular languages
- Supports natural, recursive notation called "contextfree grammar"
- Applications:
- Parse trees, compilers
- XML

An Example

- A palindrome is a word that reads identical from both ends
- E.g., $\overrightarrow{\text { madam }} \stackrel{\text { redivider, }}{\vec{m}} \stackrel{\text { malayatam }}{ }, \overrightarrow{010010010}$
- Let $L=\{w \mid w$ is a binary palindrome $\}$
- Is L regular?
- No.
- Proof:
- Let $\mathrm{W}=0^{\mathrm{N}} 10^{\mathrm{N}} \quad$ (assuming N to be the p / l constant)
- By Pumping lemma, w can be rewritten as xyz, such that $x y^{k} z$ is also L (for any $\mathrm{k} \geq 0$)
- But $|x y| \leq N$ and $y \neq \varepsilon$
- $==>y=0^{+}$
- ==> xyk will NOT be in L for $\mathrm{k}=0$
- ==> Contradiction

But the language of palindromes...

is a CFL, because it supports recursive

 substitution (in the form of a CFG)- This is because we can construct a "grammar" like this:

How does this grammar work?

How does the CFG for palindromes work?

An input string belongs to the language (i.e., accepted) iff it can be generated by the CFG

- Example: w=01110

$$
\frac{\mathrm{G}:}{\mathrm{A}}=>0 \mathrm{~A} 0|1 \mathrm{~A} 1| 0|1| \varepsilon
$$

- G can generate w as follows:

Generating a string from a grammar:

1. A	$=>0 A 0$
2.	
	$=>01 A 10$
3.	
	$=>01110$

Context-Free Grammar: Definition

- A context-free grammar $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{P}, \mathrm{S})$, where:
- V: set of variables or non-terminals
- T: set of terminals (= alphabet $U\{\varepsilon\}$)
- P: set of productions, each of which is of the form $V==>\alpha_{1}\left|\alpha_{2}\right| \ldots$
- Where each α_{i} is an arbitrary string of variables and terminals
- S ==> start variable

CFG for the language of binary palindromes: $G=(\{A\},\{0,1\}, P, A)$
P: A ==> $0 \mathrm{~A} 0|1 \mathrm{~A} 1| 0|1| \varepsilon$

More examples

- Parenthesis matching in code
- Syntax checking
- In scenarios where there is a general need for:
- Matching a symbol with another symbol, or
- Matching a count of one symbol with that of another symbol, or
- Recursively substituting one symbol with a string of other symbols

Example \#2

- Language of balanced paranthesis e.g., ()((()))))((()))....
- CFG?

$$
\frac{\mathrm{G}:}{\mathrm{S}}=>(\mathrm{S})|\mathrm{SS}| \varepsilon
$$

How would you "interpret" the string "((())))()())" using this grammar?

Example \#3

- A grammar for $L=\left\{0^{m} 1^{n} \mid m \geq n\right\}$
- CFG?

How would you interpret the string "00000111" using this grammar?

Example \#4

A program containing if-then(-else) statements
if Condition then Statement else Statement
(Or)
if Condition then Statement
CFG?

More examples

- $L_{1}=\left\{0^{n} \mid n \geq 0\right\}$
- $L_{2}=\left\{0^{n} \mid n \geq 1\right\}$
- $L_{3}=\left\{0^{i 1} 1^{j} 2^{k} \mid i=j\right.$ or $j=k$, where $\left.i, j, k \geq 0\right\}$
- $L_{4}=\left\{0^{i} 12^{k} \mid i=j\right.$ or $i=k$, where $\left.i, j, k \geq 1\right\}$

Applications of CFLs \& CFGs

- Compilers use parsers for syntactic checking Parsers can be expressed as CFGs

1. Balancing paranthesis:

- B ==> BB | (B) | Statement
- Statement ==> ...

2. If-then-else:

- $S==>$ SS | if Condition then Statement else Statement | if Condition then Statement | Statement
- Condition ==> ...
- Statement ==> ...

3. C paranthesis matching $\{\ldots\}$
4. Pascal begin-end matching
5. YACC (Yet Another Compiler-Compiler)

More applications

- Markup languages
- Nested Tag Matching
- HTML
- <html> ...<p> </p> ... </html>
- XML
- <PC> ... <MODEL> ... </MODEL> .. <RAM> ... </RAM> ... </PC>

Tag-Markup Languages

Roll $==>$ <ROLL> Class Students </ROLL>
Class ==> <CLASS> Text </CLASS>
Text ==> Char Text | Char
Char ==> a | b | ... | z | A | B | .. | Z
Students ==> Student Students $\mid \varepsilon$ Student ==> <STUD> Text </STUD>

Here, the left hand side of each production denotes one non-terminals (e.g., "Roll", "Class", etc.)

Those symbols on the right hand side for which no productions (i.e., substitutions) are defined are terminals (e.g., 'a', 'b', 'l', ‘<', '>’, "ROLL", etc.)

Structure of a production

The above is same as:

$$
\begin{array}{ll}
\text { 1. } & A==>\alpha_{1} \\
\text { 2. } & A==>\alpha_{2} \\
\text { 3. } & A==>\alpha_{3} \\
\text { ‥ } & A==>\alpha_{k}
\end{array}
$$

CFG conventions

- Terminal symbols <== a, b, c...
- Non-terminal symbols <== A,B,C, ...
- Terminal or non-terminal symbols <== X,Y,Z
- Terminal strings <== w, x, y, z
- Arbitrary strings of terminals and nonterminals $<==\alpha, \beta, \gamma, .$.

Syntactic Expressions in Programming Languages

Regular languages have only terminals

- Reg expression = [a-z][a-z0-1]*
- If we allow only letters a \& b, and 0 \& 1 for constants (for simplification)
- Regular expression $=(a+b)(a+b+0+1)^{*}$

String membership

How to say if a string belong to the language defined by a CFG?

1. Derivation

- Head to body

2. Recursive inference

Both are equivalent forms

- Body to head

Example:

- $w=01110$
- Is w a palindrome?

Simple Expressions...

- We can write a CFG for accepting simple expressions
- $G=(V, T, P, S)$
- $V=\{E, F\}$
- $T=\left\{0,1, a, b,+,{ }^{*},(),\right\}$
- $S=\{E\}$
- P :
- E ==>E+E|E*E|(E)|F
- $F==>a F|b F| 0 F|1 F| a|b| 0 \mid 1$

Generalization of derivation

- Derivation is head ==> body
$\begin{array}{ll}\text { - } A==>X & \text { (A derives } X \text { in a single step) } \\ \text { - } A=={ }^{*}{ }_{G} X \quad \text { (A derives } X \text { in a multiple steps) }\end{array}$
- Transitivity:

IFA $==>^{*}{ }_{G} B$, and $B==>{ }_{G} C$, THEN $A==>{ }_{G} C$

Context-Free Language

The language of a CFG, $G=(V, T, P, S)$, denoted by $L(G)$, is the set of terminal strings that have a derivation from the start variable S .

$$
\text { - } \mathrm{L}(\mathrm{G})=\left\{\mathrm{w} \text { in } \mathrm{T}^{*} \mid \mathrm{S}==>_{\mathrm{G}}{ }_{\mathrm{G}} \mathrm{w}\right\}
$$

Left-most \& Right-most

Derivation Styles

Derive the string $\mathrm{a}^{*}(a b+10)$ from $G: \quad E={ }^{*}=>_{G} a^{*}(a b+10)$

Left-most derivation:
Always substitute leftmost variable

$$
\begin{aligned}
& \text {-E } \\
& \text { •==> E E } \\
& \text { •==> E * (E) } \\
& \text {-==> E * }(E+E) \\
& \text {-==> E * }(E+F) \\
& \text { •==> E * (E + 1F) } \\
& \text {-==> E * (E + 10F) } \\
& \text { - ==> E * (E + 10) } \\
& \text { 』==> E * (F + 10) } \\
& \text {-==> E * (aF + 10) }
\end{aligned}
$$

Right-most derivation:

Always substitute rightmost variable

Leftmost vs. Rightmost derivations

Q1) For every leftmost derivation, there is a rightmost derivation, and vice versa. True or False?

True - will use parse trees to prove this
Q2) Does every word generated by a CFG have a leftmost and a rightmost derivation?

Yes - easy to prove (reverse direction)
Q3) Could there be words which have more than one leftmost (or rightmost) derivation?

Yes - depending on the grammar

How to prove that your CFGs are correct?

(using induction)

CFG \& CFL
 $$
\begin{aligned} & \frac{\mathrm{G}_{\text {pal }}:}{\mathrm{A} \stackrel{-}{=} 0 \mathrm{~A} 0|1 \mathrm{~A} 1| 0|1| \varepsilon} . \end{aligned}
$$

- Theorem: A string win $(0+1)^{*}$ is in $L\left(G_{\text {pal }}\right)$, if and only if, w is a palindrome.
- Proof:
- Use induction
- on string length for the IF part
- On length of derivation for the ONLY IF part

Parse Trees

- Each CFG can be represented using a parse tree:
- Each internal node is labeled by a variable in V
- Each leaf is terminal symbol
- For a production, $A==>X_{1} X_{2} \ldots X_{k}$, then any internal node labeled A has k children which are labeled from $X_{1}, X_{2}, \ldots X_{k}$ from left to right

Parse tree for production and all other subsequent productions:

Examples

Parse tree for $a+1$

```
G:
E => E+E|E*E|(E)|F
F => aF|bF|OF| 1F|0|1|a|b
```


Parse Trees, Derivations, and Recursive Inferences

Interchangeability of different CFG representations

- Parse tree ==> left-most derivation
- DFS left to right
- Parse tree ==> right-most derivation
- DFS right to left
- ==> left-most derivation == right-most derivation
- Derivation ==> Recursive inference
- Reverse the order of productions
- Recursive inference ==> Parse trees
- bottom-up traversal of parse tree

Connection between CFLs and RLs

What kind of grammars result for regular languages?

CFLs \& Regular Languages

- A CFG is said to be right-linear if all the productions are one of the following two forms: $A==>w B$ (or) $A==>w$

Where:

- A \& B are variables,
- w is a string of terminals
- Theorem 1: Every right-linear CFG generates a regular language
- Theorem 2: Every regular language has a right-linear grammar
- Theorem 3: Left-linear CFGs also represent RLs

Some Examples

Right linear CFG?

Right linear CFG?

$$
\begin{aligned}
>A & =>01 B \mid C \\
B & =>11 B|0 C| 1 A \\
C & =>1 A|0| 1
\end{aligned}
$$

Finite Automaton?

Ambiguity in CFGs and CFLs

Ambiguity in CFGs

- A CFG is said to be ambiguous if there exists a string which has more than one left-most derivation

Example:

$$
\begin{aligned}
& S==>A S \mid \varepsilon \\
& A==>A 1|0 A 1| 01
\end{aligned}
$$

Input string: 00111

> LM derivation \#1:
> $S=>A S$
> => 0A1S
> =>0A11S
> => 00111 S
> => 00111

LM derivation \#2:

$$
\begin{aligned}
S & =>~ A S \\
& =>A 1 S \\
& \Rightarrow>0 A 11 S \\
& =>00111 S \\
& =>00111
\end{aligned}
$$

Can be derived in two ways

Why does ambiguity matter?

$$
E==>E+E|E * E|(E)|a| b|c| 0 \mid 1
$$

string $=a * b+c$

- LM derivation \#1:

$$
\begin{aligned}
\cdot E & =>E+E=>E * E+E \\
& ==>^{*} a * b+c
\end{aligned}
$$

- LM derivation \#2

$$
\begin{aligned}
& \bullet E=>E * E=>a * E=> \\
& a * E+E==)^{*} a * b+c
\end{aligned}
$$

The calculated value depends on which
 of the two parse trees is actually used.

Removing Ambiguity in Expression Evaluations

- It MAY be possible to remove ambiguity for some CFLs
- E.g.,, in a CFG for expression evaluation by imposing rules \& restrictions such as precedence
- This would imply rewrite of the grammar

Modified unambiguous version:

- Precedence: (), * , +

$$
\begin{aligned}
& E=>E+T \mid T \\
& T=>T * F \mid F \\
& F=>| |(E) \\
& I=>a|b| c|0| 1
\end{aligned}
$$

Ambiguous version:
$E==>E+E|E * E|(E)|a| b|c| 0 \mid 1$

Inherently Ambiguous CFLs

- However, for some languages, it may not be possible to remove ambiguity
- A CFL is said to be inherently ambiguous if every CFG that describes it is ambiguous
Example:
- $L=\left\{a^{n} b^{n} c^{m} d^{m} \mid n, m \geq 1\right\} \cup\left\{a^{n} b^{m} c^{m} d^{n} \mid n, m \geq 1\right\}$
- L is inherently ambiguous
- Why?

Input string: $a^{n} b^{n} c^{n} d^{n}$

Summary

- Context-free grammars
- Context-free languages
- Productions, derivations, recursive inference, parse trees
- Left-most \& right-most derivations
- Ambiguous grammars
- Removing ambiguity
- CFL/CFG applications
- parsers, markup languages

