
1

Context-Free Languages &

Grammars

(CFLs & CFGs)

Reading: Chapter 5

Not all languages are regular

 So what happens to the languages

which are not regular?

 Can we still come up with a language

recognizer?

 i.e., something that will accept (or reject)

strings that belong (or do not belong) to the

language?

2

3

Context-Free Languages

 A language class larger than the class of regular
languages

 Supports natural, recursive notation called “context-
free grammar”

 Applications:
 Parse trees, compilers

 XML

Regular

(FA/RE)

Context-

free

 (PDA/CFG)

4

An Example

 A palindrome is a word that reads identical from both
ends

 E.g., madam, redivider, malayalam, 010010010

 Let L = { w | w is a binary palindrome}

 Is L regular?

 No.

 Proof:
 Let w=0N10N (assuming N to be the p/l constant)

 By Pumping lemma, w can be rewritten as xyz, such that xykz is also L
(for any k≥0)

 But |xy|≤N and y≠

 ==> y=0+

 ==> xykz will NOT be in L for k=0

 ==> Contradiction

5

But the language of

palindromes…

 is a CFL, because it supports recursive

substitution (in the form of a CFG)

 This is because we can construct a

“grammar” like this:

1. A ==>

2. A ==> 0

3. A ==> 1

4. A ==> 0A0

5. A ==> 1A1

Terminal

Productions
Variable or non-terminal

How does this grammar work?

Same as:

 A => 0A0 | 1A1 | 0 | 1 |

How does the CFG for

palindromes work?

An input string belongs to the language (i.e.,

accepted) iff it can be generated by the CFG

 Example: w=01110

 G can generate w as follows:

1. A => 0A0

2. => 01A10

3. => 01110

6

G:

 A => 0A0 | 1A1 | 0 | 1 |

Generating a string from a grammar:

1. Pick and choose a sequence

of productions that would

allow us to generate the

string.

2. At every step, substitute one variable

with one of its productions.

7

Context-Free Grammar:

Definition

 A context-free grammar G=(V,T,P,S), where:
 V: set of variables or non-terminals

 T: set of terminals (= alphabet U {})

 P: set of productions, each of which is of the form
 V ==> 1 | 2 | …

 Where each i is an arbitrary string of variables and
terminals

 S ==> start variable

CFG for the language of binary palindromes:
G=({A},{0,1},P,A)
P: A ==> 0 A 0 | 1 A 1 | 0 | 1 |

8

More examples

 Parenthesis matching in code

 Syntax checking

 In scenarios where there is a general need
for:
 Matching a symbol with another symbol, or

 Matching a count of one symbol with that of
another symbol, or

 Recursively substituting one symbol with a string
of other symbols

9

Example #2

 Language of balanced paranthesis

 e.g., ()(((())))((()))….

 CFG?
G:

 S => (S) | SS |

How would you “interpret” the string “(((()))()())” using this grammar?

10

Example #3

 A grammar for L = {0m1n | m≥n}

 CFG? G:

 S => 0S1 | A

 A => 0A |

How would you interpret the string “00000111”

 using this grammar?

11

Example #4

A program containing if-then(-else) statements

if Condition then Statement else Statement

(Or)

if Condition then Statement

CFG?

More examples

 L1 = {0n | n≥0 }

 L2 = {0n | n≥1 }

 L3={0i1j2k | i=j or j=k, where i,j,k≥0}

 L4={0i1j2k | i=j or i=k, where i,j,k≥1}

12

13

Applications of CFLs & CFGs

 Compilers use parsers for syntactic checking

 Parsers can be expressed as CFGs
1. Balancing paranthesis:

 B ==> BB | (B) | Statement

 Statement ==> …

2. If-then-else:
 S ==> SS | if Condition then Statement else Statement | if Condition

then Statement | Statement

 Condition ==> …

 Statement ==> …

3. C paranthesis matching { … }

4. Pascal begin-end matching

5. YACC (Yet Another Compiler-Compiler)

14

More applications

 Markup languages

 Nested Tag Matching

 HTML

 <html> …<p> … … </p> … </html>

 XML

 <PC> … <MODEL> … </MODEL> .. <RAM> …

</RAM> … </PC>

15

Tag-Markup Languages

Roll ==> <ROLL> Class Students </ROLL>

Class ==> <CLASS> Text </CLASS>

Text ==> Char Text | Char

Char ==> a | b | … | z | A | B | .. | Z

Students ==> Student Students |

Student ==> <STUD> Text </STUD>

 Here, the left hand side of each production denotes one non-terminals

(e.g., “Roll”, “Class”, etc.)

Those symbols on the right hand side for which no productions (i.e.,

substitutions) are defined are terminals (e.g., ‘a’, ‘b’, ‘|’, ‘<‘, ‘>’, “ROLL”,

etc.)

16

Structure of a production

A =======> 1 | 2 | … | k

head body derivation

1. A ==> 1

2. A ==> 2

3. A ==> 3

…

K. A ==> k

The above is same as:

17

CFG conventions

 Terminal symbols <== a, b, c…

 Non-terminal symbols <== A,B,C, …

 Terminal or non-terminal symbols <== X,Y,Z

 Terminal strings <== w, x, y, z

 Arbitrary strings of terminals and non-
terminals <== , , , ..

18

Syntactic Expressions in

Programming Languages

 result = a*b + score + 10 * distance + c

Regular languages have only terminals
 Reg expression = [a-z][a-z0-1]*

 If we allow only letters a & b, and 0 & 1 for
constants (for simplification)
 Regular expression = (a+b)(a+b+0+1)*

terminals variables Operators are also

terminals

19

String membership

How to say if a string belong to the language
defined by a CFG?

1. Derivation
 Head to body

2. Recursive inference
 Body to head

Example:
 w = 01110

 Is w a palindrome?

Both are equivalent forms

G:

 A => 0A0 | 1A1 | 0 | 1 |

A => 0A0

 => 01A10

 => 01110

20

Simple Expressions…

 We can write a CFG for accepting simple
expressions

 G = (V,T,P,S)
 V = {E,F}

 T = {0,1,a,b,+,*,(,)}

 S = {E}

 P:
 E ==> E+E | E*E | (E) | F

 F ==> aF | bF | 0F | 1F | a | b | 0 | 1

21

Generalization of derivation

 Derivation is head ==> body

 A==>X (A derives X in a single step)

 A ==>*G X (A derives X in a multiple steps)

 Transitivity:

IFA ==>*GB, and B ==>*GC, THEN A ==>*G C

22

Context-Free Language

 The language of a CFG, G=(V,T,P,S),

denoted by L(G), is the set of terminal

strings that have a derivation from the

start variable S.

 L(G) = { w in T* | S ==>*G w }

 �

23

Left-most & Right-most

Derivation Styles

Derive the string a*(ab+10) from G:

E

==> E * E

==> F * E

==> aF * E

==> a * E

==> a * (E)

==> a * (E + E)

==> a * (F + E)

==> a * (aF + E)

==> a * (abF + E)

==> a * (ab + E)

==> a * (ab + F)

==> a * (ab + 1F)

==> a * (ab + 10F)

==> a * (ab + 10)

E =*=>G a*(ab+10)

Left-most

derivation:

E

==> E * E

==> E * (E)

==> E * (E + E)

==> E * (E + F)

==> E * (E + 1F)

==> E * (E + 10F)

==> E * (E + 10)

==> E * (F + 10)

==> E * (aF + 10)

==> E * (abF + 0)

==> E * (ab + 10)

==> F * (ab + 10)

==> aF * (ab + 10)

==> a * (ab + 10)

Right-most

derivation:

G:

 E => E+E | E*E | (E) | F

 F => aF | bF | 0F | 1F |

Always

substitute

leftmost

variable

Always

substitute

rightmost

variable

24

Leftmost vs. Rightmost

derivations

Q1) For every leftmost derivation, there is a rightmost

derivation, and vice versa. True or False?

Q2) Does every word generated by a CFG have a

leftmost and a rightmost derivation?

Q3) Could there be words which have more than one

leftmost (or rightmost) derivation?

True - will use parse trees to prove this

Yes – easy to prove (reverse direction)

Yes – depending on the grammar

How to prove that your CFGs

are correct?

(using induction)

25

26

CFG & CFL

 Theorem: A string w in (0+1)* is in

L(Gpal), if and only if, w is a palindrome.

 Proof:

 Use induction

 on string length for the IF part

 On length of derivation for the ONLY IF part

Gpal:

 A => 0A0 | 1A1 | 0 | 1 |

Parse trees

27

28

Parse Trees

 Each CFG can be represented using a parse tree:

 Each internal node is labeled by a variable in V

 Each leaf is terminal symbol

 For a production, A==>X1X2…Xk, then any internal node
labeled A has k children which are labeled from X1,X2,…Xk
from left to right

A

X1 Xi Xk … …

Parse tree for production and all other subsequent productions:

 A ==> X1..Xi..Xk

29

Examples

E

E + E

F F

a 1

Parse tree for a + 1

A

0 A 0

1 1 A

Parse tree for 0110
R

e
c
u

rs
iv

e
 i
n

fe
re

n
c
e

D
e

ri
v
a

ti
o

n

G:

 E => E+E | E*E | (E) | F

 F => aF | bF | 0F | 1F | 0 | 1 | a | b

G:

 A => 0A0 | 1A1 | 0 | 1 |

30

Parse Trees, Derivations, and

Recursive Inferences

A

X1 Xi Xk … …

R
e

c
u

rs
iv

e

in
fe

re
n

c
e

D
e

ri
v
a

ti
o

n

Production:

 A ==> X1..Xi..Xk

Parse tree
Left-most

derivation

Right-most

derivation

Derivation
Recursive

inference

31

Interchangeability of different

CFG representations

 Parse tree ==> left-most derivation
 DFS left to right

 Parse tree ==> right-most derivation
 DFS right to left

 ==> left-most derivation == right-most
derivation

 Derivation ==> Recursive inference
 Reverse the order of productions

 Recursive inference ==> Parse trees
 bottom-up traversal of parse tree

Connection between CFLs

and RLs

32

33

CFLs & Regular Languages

 A CFG is said to be right-linear if all the
productions are one of the following two
forms: A ==> wB (or) A ==> w

 Theorem 1: Every right-linear CFG generates
a regular language

 Theorem 2: Every regular language has a
right-linear grammar

 Theorem 3: Left-linear CFGs also represent
RLs

Where:

• A & B are variables,

• w is a string of terminals

What kind of grammars result for regular languages?

Some Examples

34

A B C

0

1 0

1 0,1

A B C

0

1 0

1

1

0

A => 01B | C

 B => 11B | 0C | 1A

 C => 1A | 0 | 1

Right linear CFG? Right linear CFG? Finite Automaton?

Ambiguity in CFGs and CFLs

35

36

Ambiguity in CFGs

 A CFG is said to be ambiguous if there
exists a string which has more than one
left-most derivation

LM derivation #1:

S => AS

 => 0A1S
 =>0A11S
 => 00111S
 => 00111

Example:

S ==> AS |

A ==> A1 | 0A1 | 01

Input string: 00111

 Can be derived in two ways

LM derivation #2:

S => AS
 => A1S
 => 0A11S
 => 00111S
 => 00111

37

Why does ambiguity matter?

string = a * b + c

E ==> E + E | E * E | (E) | a | b | c | 0 | 1

• LM derivation #1:

•E => E + E => E * E + E

 ==>* a * b + c

• LM derivation #2

•E => E * E => a * E =>

 a * E + E ==>* a * b + c

E

E + E

E * E

a b

c

 (a*b)+c

E

E * E

E + E a

b c

a*(b+c)

Values are

different !!!

The calculated value depends on which

of the two parse trees is actually used.

38

Removing Ambiguity in

Expression Evaluations

 It MAY be possible to remove ambiguity for
some CFLs
 E.g.,, in a CFG for expression evaluation by

imposing rules & restrictions such as precedence

 This would imply rewrite of the grammar

 Precedence: (), * , +

How will this avoid ambiguity?

E => E + T | T
T => T * F | F
F => I | (E)
I => a | b | c | 0 | 1

Modified unambiguous version:

Ambiguous version:

E ==> E + E | E * E | (E) | a | b | c | 0 | 1

39

Inherently Ambiguous CFLs

 However, for some languages, it may not be
possible to remove ambiguity

 A CFL is said to be inherently ambiguous if
every CFG that describes it is ambiguous

Example:
 L = { anbncmdm | n,m≥ 1} U {anbmcmdn | n,m≥ 1}

 L is inherently ambiguous

 Why?
Input string: anbncndn

40

Summary

 Context-free grammars

 Context-free languages

 Productions, derivations, recursive inference,
parse trees

 Left-most & right-most derivations

 Ambiguous grammars

 Removing ambiguity

 CFL/CFG applications
 parsers, markup languages

