Context-Free Languages &
Grammars

g (CFLs & CFGs)

Reading: Chapter 5

:L Not all languages are regular

= S0 what happens to the languages
which are not regular?

= Can we still come up with a language
recognizer?
= i.e., something that will accept (or reject)

strings that belong (or do not belong) to the
language”?

* Context-Free Languages

= A language class larger than the class of regular
languages

= Supports natural, recursive notation called “context-
free grammar”

= Applications:

= Parse trees, compilers
= XML

An Example

= A palindrome is a word that reads identical from both
ends

= E.g., madam, redivider, malayalam, 010010010
= LetL={w |wis a binary palindrome}
= Is L regular?

= No.

= Proof:

= Let w=0ON10ON (assuming N to be the p/l constant)

= By Pumping lemma, w can be rewritten as xyz, such that xykz is also L
(for any k=0)

= But |xy|<N and y#¢

n ==>y=0"

= ==> xy*z will NOT be in L for k=0
=« ==> Contradiction

But the language of

i palindromes...

iIs a CFL, because it supports recursive
substitution (in the form of a CFG)

= [|his is because we can construct a
“‘grammar’” like this:

A ==> ¢ Same as:
1. - -
>Termina| A=>0A0|1A1| 0]1]e

2. A==>0
| 3. A%
Variable or non-terminal

Productions |, A ==> 0A0
5. A==>1A1

How does this grammar work?

How does the CFG for
palindromes work?

An input string belongs to the language (i.e.,
accepted) iff it can be generated by the CFG

Example: w=01110

G:
A=>0A0|1A1| 01]e

G can generate w as follows:

1.

2.

3.

A

=> 0A0
=>01A10
=>01110

Generating a string from a grammar:

1. Pick and choose a sequence
of productions that would
allow us to generate the
string.
2. Atevery step, substitute one variable
with one of its productions.

Context-Free Grammar:

i Definition

= A context-free grammar G=(V,T,P,S), where:

= V: set of variables or non-terminals
= T:set of terminals (= alphabet U {c})
= P: set of productions, each of which is of the form
V=>u,]0,]...
= Where each o, is an arbitrary string of variables and
terminals

= S ==> start variable

CFG for the language of binary palindromes:
G=({A},{0,1},P.A)
P: A==>0A0|1A1|0|1]e

i More examples

= Parenthesis matching in code

= Syntax checking

= |n scenarios where there is a general need
for:
= Matching a symbol with another symbol, or

= Matching a count of one symbol with that of
another symbol, or

= Recursively substituting one symbol with a string
of other symbols

Example #2

= Language of balanced paranthesis

e.g., O((ND)).--.
- CFG?
'S=>(S)|SS | ¢

How would you “interpret” the string “(((()))()())” using this grammar?

Example #3

= A grammar for L = {0™1" | m=2n}

s CFG?

>0S1|A

G:
S
A=> 0A]|¢

How would you interpret the string “00000111”
using this grammar?

10

i Example #4

A program containing if-then(-else) statements

CFG?

if Condition then Statement else Statement
(Or)
if Condition then Statement

11

i More examples

= L, ={0"| n=20}
s L,={0" | n21}
s L,={0"12% | i=j or j=k, where i,j,k=0}
s L,={0"2K | i=j or i=k, where i,j,k=1}

12

Applications of CFLs & CFGs

1.

Compilers use parsers for syntactic checking
Parsers can be expressed as CFGs

Balancing paranthesis:
« B==>BB| (B)| Statement
= Statement ==> ...

If-then-else:

= S ==>S8S | if Condition then Statement else Statement | if Condition
then Statement | Statement

= Condition ==> ...
= Statement ==> ...

C paranthesis matching { ... }
Pascal begin-end matching
YACC (Yet Another Compiler-Compiler)

13

:L More applications

= Markup languages

= Nested Tag Matching
« HTML

<html|> ...<p> </p> ... </htmI>

« XML

<PC> ... <MODEL> ... </MODEL> .. <RAM> ...
</RAM> ... </PC>

14

i Tag-Markup Languages

Roll ==> <ROLL> Class Students </ROLL>
Class ==> <CLASS> Text </CLASS>

Text ==> Char Text | Char
Char==>a|b|...|z|A|B]|.. |Z
Students ==> Student Students | ¢

Student ==> <STUD> Text </STUD>

Here, the left hand side of each production denotes one non-terminals
(e.g., “Roll”, “Class”, etc.)
Those symbols on the right hand side for which no productions (i.e.,

etc.)

substitutions) are defined are terminals (e.g., ‘a’, ‘b’, ‘[', '<’, >’, “ROLL",

15

Structure of a production

The above is same as:

SEN

A==> O3

:L CFG conventions

= [erminal symbols <==a, b, c...

= Non-terminal symbols <== A,B,C, ...

= [erminal or non-terminal symbols <== X,Y,Z
= [erminal strings <==w, X, y, z

= Arbitrary strings of terminals and non-

terminals <==q, B, v, .. -

Syntactic Expressions in

:L Programming Languages

result = a*b + score + 10 * distance + ¢

terminals variables Operators are also
terminals

Regular languages have only terminals
= Reg expression = [a-z][a-z0-1]*
= If we allow only letters a & b, and 0 & 1 for

constants (for simplification)
= Regular expression = (a+b)(a+b+0+1)*

18

:| String membership

How to say if a string belong to the language
defined by a CFG?

1. Derivation)
= Head to body

2. Recursive inference
= Body to head »

Example: =>0A0|1A1] 0| 1]¢
= w=01110 \
= Isw a palindrome?

> Both are equivalent forms

G:
A

19

i Simple Expressions...

= We can write a CFG for accepting simple
expressions
s G=(V,T,P,S)
s V= {E,F}
= T={0,1,a,b,+,%,(,)}
= S ={E}
= P:
« E==>E+E|E*E|(E) | F
« F==>aF |bF|OF |[1F |a|b |01

20

:L Generalization of derivation

= Derivation is head ==> body

s A==>X (A derives X in a single step)
s A==>%, X (A derives X in a multiple steps)

s | ransitivity:
IFA ==>*.B, and B ==>*,C, THEN A ==>*, C

21

:L Context-Free Language

= The language of a CFG, G=(V,T,P,S),
denoted by L(G), is the set of terminal
strings that have a derivation from the
start variable S.

« L(G)={winT*|S ==>* W}

22

Left-most & Right-most
Derivation Styles

Derive the string a*(ab+10) from G:

Left-most
derivation:

Always
substitute
leftmost
variable

El==>E*E
§l==>F*E
§-==>aF*E
§-==>a*E
===>a" (E)
===>a* (E +E)
i-——>a (F +E)
=>a*(aF + E)

' w==>a* (abF +E) |

»==>a " (ab + E)
. w==>a* (ab + F)

i-——>a (ab + 1F)
'\ m==>a "~ (ab+1OF)§

' a==>a * (ab + 10)

G:

E=>E+E |E*E | (E)|F
F=>aF |bF | OF | 1F |

E ="=>; a*(ab+10)

E+1F)

E +10)
F +10)

(

(

(
s " e
- w==>E * (E + 10F)
. » .

*

*

Right-most
derivation:

: aF +10) |
' a==>E * (abF + 0) |
a==>E * (ab + 10) |
§-==>F*(ab+10)
===> aF * (ab + 10)
'w==>3a* (ab + 10) !

Always
substitute
rightmost
variable

23

Leftmost vs. Rightmost

i derivations

Q1) For every leftmost derivation, there is a rightmost
derivation, and vice versa. True or False?

True - will use parse trees to prove this

Q2) Does every word generated by a CFG have a
leftmost and a rightmost derivation?

Yes — easy to prove (reverse direction)

Q3) Could there be words which have more than one
leftmost (or rightmost) derivation?

Yes — depending on the grammar
24

How to prove that your CFGs

!L are correct?

(using induction)

25

i CFG & CFL QALiOAOHAHOHls

= Theorem: A string w in (0+1)* is in

L(G,4), if and only if, w is a palindrome.

= Proof:

= Use induction

= on string length for the IF part
= On length of derivation for the ONLY IF part

26

!L Parse trees

27

Parse Trees

= Each CFG can be represented using a parse tree:
= Each internal node is labeled by a variable in V
= Each leaf is terminal symbol

= For a production, A==>X,X,...X,, then any internal node
labeled A has k children which are labeled from X,,X,,... X,
from left to right

Parse tree for production and all other subsequent productions:
A==> X, . X.. X, A

ANAN

Examples

E
T
E + E
VAN
F /N F
/ v
a \1

"
Parse tree fora + 1

G:

E=>E+E|E*E|(E)|F

F=>aF |bF|OF|1F|O|1|a]|b

Recursive inference

G:
A

Parse tree for 07110

=>0A0 |1A1]| 0 1]e

Derivation

29

Parse Trees, Derivations, and

i Recursive Inferences

Production:

A A==>X,. X..X,

1 /\\
X, e Xl X

Recursive
inference
Derivation

Left-most , — Parse tree

/ derivation / \

Derivation | Right-most

o Recursive
derivation .
inference

30

Interchangeability of different

:L CFG representations

s Parse tree ==> |eft-most derivation

= DFS left to right /Uﬂ\

N

= Parse tree ==> right-most derivation
= DFS right to left %’lk\

s ==> |eft-most derivation == right-most
derivation

s Derivation ==> Recursive inference
= Reverse the order of productions

= Recursive inference ==> Parse trees
= bottom-up traversal of parse tree

31

Connection between CFLs

!L and RLs

32

What kind of grammars result for regular languages?

i CFLs & Regular Languages

= A CFG is said to be right-linear if all the
productions are one of the following two
forms: A ==>wB (or) A ==>w

Where:
* A & B are variables,
* W is a string of terminals

= Theorem 1: Every right-linear CFG generates
a regular language

= [heorem 2: Every regular language has a
right-linear grammar

= [heorem 3: Left-linear CFGs also represent
RLs

33

Some Examples

1

Right linear CFG?

0,1

Right linear CFG?

»A=>01B|C
B=>11B|0C | 1A
C=>1A|0]1

Finite Automaton?

34

!L Ambiguity in CFGs and CFLs

35

i Ambiguity in CFGs

= A CFG is said to be ambiguous if there
exists a string which has more than one
left-most derivation

Example:
S==>AS | ¢ LM derivation #1: LM derivation #2:
S =>AS S =>AS
A==>A1|0A1]|01
| | => 0A1S =>A1S
=>0A11S => 0A11S
=> 00111S => 00111S
Input string: 00111 => 00111 => 00111

Can be derived in two ways
36

Why does ambiguity matter?

. Values are
E==>E+E|E"E|(E)[a|b|c|O]1 different !!
string=a*b +c

E
* LM derivation #1: / ‘ \
E=>E+E=>E*E+E == E 4+ E =) (a*b)+c
==>*gq*b+C /|\ \
E- * E c
/ |
a b
E
* LM derivation #2 / ‘ \
sE=>E*E=>a*E= — E * E =) a*(b+c
a*E+E==>*a*b+c / /|\ (<)
a E + E
The calculated value depends on which t|) c|;

of the two parse trees is actually used.

37

Removing Ambiguity in

:L Expression Evaluations

= It MAY be possible to remove ambiguity for
some CFLs

= E.g.,,ina CFG for expression evaluation by
imposing rules & restrictions such as precedence

= This would imply rewrite of the grammar

Modified unambiguous version:

= Precedence: (), *, + E=>E+T|T
T=>T*F|F
F=>1](E)
I=>a|blc|0]|1
Ambiguous version: How will this avoid ambiguity?

E==>E+E|E*E|(E)|a|b|c|O0]|1 »

i Inherently Ambiguous CFLs

= However, for some languages, it may not be
possible to remove ambiguity

s A CFL is said to be inherently ambiguous if
every CFG that describes it is ambiguous

Example:
= L={a"b"c™d™ | n,m= 1} U {a"b™c™d" | n,m= 1}
= L is inherently ambiguous
= Why?

Input string: a"b"c"d"

39

i Summary

= Context-free grammars
= Context-free languages

s Productions, derivations, recursive inference,
parse trees

= Left-most & right-most derivations
= Ambiguous grammars

= Removing ambiguity

s CFL/CFG applications

= parsers, markup languages

40

