
 Transparency No. P2C1

Formal Language
and Automata Theory

Part II

Pushdown Automata and

Context-Free Languages

 Transparency No. P2C1

Formal Language
and Automata Theory

Chapter 1

Context-Free Grammars

and Languages

(Lecture 19,20)

CFGs and CFLs

 Transparency No. P2C1-3

Bacus-Naur Form

 Regular Expr is too limited to describe practical

programming languages.

 Bacus-Naur Form (BNF)

 A popular formalism used to describe practical

programming languages:

 Example BNF: (p116)
 <stmt> ::= <if-stmt> | <while-stmt> | <begin-stmt> | <assg-stmt>

 <if-stmt> ::= if <bool-expr> then <stmt> else <stmt>

 <while-stmt> ::= while <bool-expr> do <stmt>

 <begin_stmt> ::= begin <stmt-list> end

 <stmt-list> ::=<stmt> | <stmt> ; <stmt-list>

 <assg-stmt> ::= <var> := <arith-expr>

 <bool-expr> ::= <arith-expr> <comp-op> <arith-expr>

 <comp-op> ::= < | > | <= | >= | NEQ

 <arith-expr> ::= <var> | <const> | (<arith-expr> <arith-op> <arith-expr>)

 <arith-op> ::= + | - | * | /

 <const> ::= 0 | 1 | 2 | ... |8 | 9

 <var> ::= a | b | c |... |x | y | z

CFGs and CFLs

 Transparency No. P2C1-4

Derivations

 <stmt>

 <while-stmt>

 while <bool-expr> do <stmt>

 while <arith-expr><compare-op><arith-expr> do <stmt>

 while <var><compare-op><arith-expr> do <stmt>

 while <var> > <arith-expr> do <stmt>

 while x > <var> do <stmt>

 while x > y do <stmt>

 ….

 while x > y do begin x := (x+1); y := (y-1) end

Question: how to determine if the string

while x > y do begin x := (x+1); y := (y-1) end

 belongs to the language represented by the above grammar?

Sol: Since the string can be derived from the grammar.

CFGs and CFLs

 Transparency No. P2C1-5

CFGs

 Facts:

 1. each nonterminal symbol can derive many different

strings.

 2. Every string in a derivation is called a sentential form.

 3. Every sentential form containing no nonterminal

symbols is called a sentence.

 4. The language L(G) generated by a CFG G is the set of

sentences derivable from a distinguished nonterminal

called the start symbol of G. (eg. <stmt>)

 5. A language is said to be context free (or a context free

language (CFL)) if it can be generated by a CFG.

 A sentence may have many different derivations; a

grammar is called unambiguous if this cannot happen

 (eg: previous grammar is unambiguous)

CFGs and CFLs

 Transparency No. P2C1-6

CFGs: related facts

 CFG are more expressive than FAs (and regular expressions)

 (i.e., all regular languages are context-free, but not vice versa.)

 Example CFLs which are not regular:

 {anbn | n 0}

 {Palindrome over {a,b}} = {x {a,b}* | x = rev(x)}

 {balanced strings of parentheses}

 Not all sets are CFLs:

 Ex: {anbncn | n 0 } is not context-free.

CFGs and CFLs

 Transparency No. P2C1-7

CFGs and CFLs: a formal defintion

 a CFG is a quadruple G = (N,S,P,S) where

 N is a finite set (of nonterminal symbols)

 S is a finite set (of terminal symbols) disjoint from N.

 S N is the start symbol.

 P is a a finite subset of N x (N S)* (The productions)

 Conventions:

 nonterminals: A,B,C,…

 terminals: a,b,c,…

 strings in (N S)* : a,b,g,…

 Each (A,a) P is called a production rule and is usually
written as: A a.

 A set of rules with the same LHS:

 A a1 A a2 A a3 can be abbreviated as

 A a1 | a2 | a3.

CFGs and CFLs

 Transparency No. P2C1-8

Derivations

 Let a,b (N S)* we say b is derivable from a in one step,

 in symbols, a G b

 (G may be omitted if there is no ambiguity)

 if b can be obtained from a by replacing some occurrence of
a nonterminal symbol A in a with g, where A g P; i.e.,

 if there exist a1,a2 (N S)* and production A g s.t.

 a = a1 A a2 and b = a1 g a2.

 Let *G be the reflexive and transitive closure of G, i.e.,

 define a 0
G a for any a

 a k+1
G b iff there is g s.t. a k

G g and g G b.

 Then a *G b iff $ k 0 s.t. a k
G b.

 Any string in (N U S)* derivable from S (i.e., S *
G a) is

called a sentential form, in particular, if a is a terminal string
(i.e., a S*), a is called a sentence.

CFGs and CFLs

 Transparency No. P2C1-9

Language generated by a CFG

 The language generated by G, denoted L(G), is the set

L(G) =def { x S* | S *G x }.

 A language B S* is a context-free language (CFL) if B = L(G)

for some CFG G.

Ex 19.1: The nonregular set A= {anbn | n 0 } is a CFL. Since it

can be generated by the grammar G:

 S e | aSb

 or more precisely G = (N,S,P,S) where

 N = {S}

 S = {a,b}

 P = { S e, S aSb }

 a3b3 L(G) since S aSb aaSbb aaaSbbb aaabbb.

 S 4 aaabbb and S * aaabbb

CFGs and CFLs

 Transparency No. P2C1-10

Techniques for show L = L(G)

 But how to show that L(G) = A (= {anbn | n 0 }) ?

 a consequence of the following lemmas:

 Lem 1: S n+1 anbn for all n 0.

 Lemm2: If S * x ==> x is of the form akSbk or akbk.

 (in particular, if x is a sentence => x A).

 Pf: of lem 1:

 by ind. on n. n = 0 ==> S e. (ok)

 n = k+1 > 0 : By ind. hyp. S k+1 akbk

 S aSb k+1 ak+1bk+1. S n+1 anbn.

 Pf of lem2: by ind. on k s.t. S k x.

 k = 0 => S 0 S = a0Sb0.

 k = t+1 > 0. S t amSbm amaSbbm (ok) or

 ambm. (ok).

CFGs and CFLs

 Transparency No. P2C1-11

Balanced Parentheses

Ex 19.2: The set of palindromes P = { x {a,b}* | x = rev(x) }.

 can be generated by the grammar G:

 S e | a | b | aSa | bSb.

cf: The inductive definition of P

 1. Initial condition: e, a and b are palindromes.

 2. recursive condition:

 If S is a palindrome, then so are aSa and bSb.

 Balanced Parentheses:

 Ex1: 2+3x5-4x6 ==> ((2+3)x(5-(4x6)))

 ==> (() (()))

 --- balanced parentheses.

 Ex2: unbalanced parentheses:

 (()) ((())))) --- no of “(“ no of “)”.

 (() (()))) ((()) --- unmatched “)” encountered.

CFGs and CFLs

 Transparency No. P2C1-12

Balanced Parentheses

 Formal definition:

 let S { [,] }. Define L,R: S* N as follows:

 L(x) = number of “[“ in x.

 R(x) = number of “]” in x.

 a string x S* is said to be balanced iff

(i) L(x) = R(x) -- equal # of left and right parentheses.

(ii) for all prefix y of x, L(y) R(y).

 --- no dangling right parenthesis.

 Now define PAREN = { x { [,] }* | x is balanced }.

 Thm 20.1 : PAREN can be generated by the CFG G:

 S e | [S] | S S

pf: 1. L(G) PAREN.

Lem1: If S * x then x is balanced. In particular, if x contains
no S => x PAREN. L(G) PAREN.

CFGs and CFLs

 Transparency No. P2C1-13

proof of theorem 20.1

pf of lem1 : by ind. on k s.t. S k x.

 k = 0 => S 0 S = x is balanced.

 k = t + 1 > 0:

 ==> S t ySz yz (1) or

 y[S]z (2) or

 ySSz (3).

By ind. hyp., ySz is balanced.

=> L(yz) = L(ySz) = R(ySz) = R(yz) and

 if y = wu => L(w) R(w) since w is also a prefix of ySz.

 if z = wu => L(yw) = L(ySw) R(ySw) = R(yw).

 yz is balanced.

 Case (2) and (3) can be proved similarly.

CFGs and CFLs

 Transparency No. P2C1-14

Proof of theoreom 20.1 (cont’d)

Pf: PAREN L(G) (i.e., if x is balanced ==> S * x.)

 By ind. on |x|.

1. |x| = 0 ==> x = e ==> S e (ok).

 2. |x| > 0. Then either

 (a) $ a proper prefix y of x that is balanced or

 (b) No proper prefixes y of x are balanced.

 In case (a), we have x = y z with |y|,|z| < |x| for some z.

 => L(z) = L(x) - L(y) = R(x) - R(y) = R(z)

For all prefix w with z = w w’: L(w) = L(yw) - L(y) R(yw) - R(y) = R(w)

 ==> both y and z are balanced ==> by ind. hyp., S * y and S * z

 ==> S SS * yS *yz.

In case (b): x = [z] for some z (why ?)

 Moreover it can be shown that z is balanced too.

 Hence S * z. ==> S * [S] * [z] = x. QED

CFGs and CFLs

 Transparency No. P2C1-15

Pushdown Automata: a preview

 FAs recognize regular languages.

 What kinds of machines recognize CFLs ?

 ===> Pushdown automata (PDAs)

 PDA:

 Like FAs but with an additional stack as working memory.

 Actions of a PDA

 1. Move right one tape cell (as usual FAs)

 2. push a symbol onto stack

 3. pop a symbol from the stack.

 Actions of a PDA depend on

 1. current state 2. currently scanned I/P symbol

 3. current top stack symbol.

 A string x is accepted by a PDA if it can enter a final state
(or clear all stack symbols) after scanning the entire input.

 More details defer to later chapters.

