Formal Language
and Automata Theory

Part li

Pushdown Automata and
Context-Free Languages

Transparenc y No. P2C1

Formal Language
and Automata Theory

Chapter 1

Context-Free Grammars
and Languages

(Lecture 19,20)

CFGs and CFLs
Bacus-Naur Form

® Regular Expr is too limited to describe practical
programming languages.
® Bacus-Naur Form (BNF)

0 A popular formalism used to describe practical
programming languages:
0 Example BNF: (p116)

<stmt> .= <if-stmt> | <while-stmt> | <begin-stmt> | <assg-stmt>
<if-stmt> ;= if <bool-expr> then <stmt> else <stmt>

<while-stmt> ::= while <bool-expr> do <stmt>

<begin_stmt> ::= begin <stmt-list> end

<stmt-list> s=<stmt> | <stmt> ; <stmt-list>

<assg-stmt> ::= <var> := <arith-expr>

<bool-expr> ::= <arith-expr> <comp-op> <arith-expr>

<comp-op> n=<|>]|<=|>=]|NEQ

<arith-expr> ;= <var> | <const> | (<arith-expr> <arith-op> <arith-expr>)
<arith-op> =] -

<const> =0[|1]2].../18]9

<var> nm=al|bj|c]|.|x]|]y]|z

Transparency No. P2C1-3

CFGs and CFLs
Derivations

®Question: how to determine if the string
Owhile x >y do begin x := (x+1); y := (y-1) end
belongs to the language represented by the above grammar?
Sol: Since the string can be derived from the grammar.

® <stmt>
<while-stmt>
while <bool-expr> do <stmt>
while <arith-expr><compare-op><arith-expr> do <stmt>
while <var><compare-op><arith-expr> do <stmt>
while <var> > <arith-expr> do <stmt>
while x > <var> do <stmt>
while x > y do <stmt>

while x > y do begin x := (x+1); y := (y-1) end

Transparency No. P2C1-4

CFGs and CFLs
CFGs

® Facts:

0 1. each nonterminal symbol can derive many different
strings.

0 2. Every string in a derivation is called a sentential form.

0 3. Every sentential form containing no nonterminal
symbols is called a sentence.

[4. The language L(G) generated by a CFG G is the set of
sentences derivable from a distinguished nonterminal
called the start symbol of G. (eg. <stmt>)

0 5. A language is said to be context free (or a context free
language (CFL)) if it can be generated by a CFG.

[0 A sentence may have many different derivations; a
grammar is called unambiguous if this cannot happen

0 (eg: previous grammar is unambiguous)

Transparency No. P2C1-5

CFGs and CFLs
CFGs: related facts

® CFG are more expressive than FAs (and regular expressions)
(i.e., all regular languages are context-free, but not vice versa.)
® Example CFLs which are not regular:

0 {a"b" | n > 0}

0 {Palindrome over {a,b}} = {x € {a,b}* | x = rev(x)}

[{balanced strings of parentheses}
® Not all sets are CFLs:

0 Ex: {a"b"c" | n > 0 } is not context-free.

Transparency No. P2C1-6

CFGs and CFLs
CFGs and CFLs: a formal defintion

® a CFG is a quadruple G = (N,X,P,S) where

0 N is a finite set (of nonterminal symbols)

0 X is a finite set (of terminal symbols) disjoint from N.

0 S € N is the start symbol.

0 P is a afinite subset of N x (N U X)* (The productions)
® Conventions:

0 nonterminals: A,B,C,...

0 terminals: a,b,c,...

0 strings in (N U 2)* : a,B,y,...

[0 Each (A,a) € P is called a production rule and is usually
writtenas: A -2 a.

0 A set of rules with the same LHS:
A->a;, A>oa, Ao, canbe abbreviated as
Ao |a,| a,.

Transparency No. P2C1-7

CFGs and CFLs
Derivations

® Let o, e(NUX)" we say B is derivable from a in one step,
in symbols, a 25
(G may be omitted if there is no ambiguity)

if B can be obtained from a by replacing some occurrence of
a nonterminal symbol A in o with y, where A 2 y € P; i.e.,

if there exist a,,a, € (N U X)* and production A - y s.t.
a=0o,Aa, andB=aqa,ya,.

® Let >*; be the reflexive and transitive closure of 2, i.e.,

define o 2% a foranya
a >k B iff there is ys.t. a 2K yandy 2>4p.

Then o 2>*;piffak=>0s.t. a 2k B.

® Any string in (N U X)* derivable from S (i.e.,S 2*;a) is
called a sentential form, in particular, if o is a terminal string
(i.e., a € %), a is called a sentence.

Transparency No. P2C1-8

CFGs and CFLs
Language generated by a CFG

® The language generated by G, denoted L(G), is the set
L(G) =ges { X € Z*|S 2%s X }.
® A language B c X* is a context-free language (CFL) if B = L(G)
for some CFG G.

Ex 19.1: The nonregular set A= {a"b" | n >0} is a CFL. Since it
can be generated by the grammar G:

S 2> ¢|aShb
or more precisely G = (N,X,P,S) where
0 N={S}
0 2 ={a,b}
OP={S>¢ S->aSb}
® alb3 € L(G) since S &> aSb »> aaSbb - aaaSbbb - aaabbb.
. S 2% aaabbb and S 2>* aaabbb

Transparency No. P2C1-9

CFGs and CFLs
Techniques for show L =L(G)

® But how to showthatL(G)=A(={a"b"|n>0}) ?
® a consequence of the following lemmas:
0 Lem1: S >n1arb" foralln>0.
0 Lemm2: If S 2>* x ==> x is of the form akSbk or akbk.
(in particular, if x is a sentence =>x € A).
® Pf: of lem 1:
0 byind.onn. n=0==>8 - e. (0k)
0 n=k+1>0:Byind. hyp. S > k* akpk
0 .. S >aSb >kl gk*lpk+1 . § 5> n+1 gnpn,
® Pf of lem2: by ind. on k s.t. S 2>k x.
0 k=0=>8 >9SS =a%Sb0.
0 k=t+1>0.S >tam™Sb™ > am™aSbb™ (ok) or
[- a™b™. (ok).

Transparency No. P2C1-10

CFGs and CFLs
Balanced Parentheses

Ex 19.2: The set of palindromes P = { x € {a,b}* | x = rev(x) }.
can be generated by the grammar G:
S>¢|a|b]|aSa| bSh.

cf: The inductive definition of P
1. Initial condition: g, a and b are palindromes.
2. recursive condition:

If S is a palindrome, then so are aSa and bSbh.
® Balanced Parentheses:
Ex1: 24+3x5-4x6 ==> ((2+3)x(5-(4x6)))
=>(() C)
--- balanced parentheses.
Ex2: unbalanced parentheses:

(CNOC)N N --- no of “(“ # no of “)”.
((C) ()W) =---unmatched “)” encountered.

Transparency No. P2C1-11

CFGs and CFLs
Balanced Parentheses

® Formal definition:
® letX > {[,]} Define L,R: * - N as follows:
0 L(x) = number of “[* Inx.
0 R(x) = number of “]” in x.
® a string x € X* is said to be balanced iff
(i) L(x) = R(x) -- equal # of left and right parentheses.
(ii) for all prefix y of x, L(y) > R(y).
--- no dangling right parenthesis.
® Now define PAREN ={x e {[,]}*| xis balanced }.
® Thm 20.1 : PAREN can be generated by the CFG G:
S2>¢| [S] | SS
pf: 1. L(G) c PAREN.
Lem1: If S 2 * x then x is balanced. In particular, if x contains
no S => x € PAREN. .. L(G) c PAREN.

Transparency No. P2C1-12

CFGs and CFLs
proof of theorem 20.1

pf of lem1 : by ind. onk s.t. S 2k x.
k=0=>S -2>0S =xis balanced.

k=t+1>0:

==> § >!'ySz 2 yz (1) or
- y[S]z (2) or
- ySSz (3).

By ind. hyp., ySz is balanced.
=> L(yz) = L(ySz) = R(ySz) = R(yz) and
if y =wu =>L(w) = R(w) since w is also a prefix of ySz.
if z=wu=>L(yw) = L(ySw) = R(ySw) = R(yw).
". yz is balanced.
Case (2) and (3) can be proved similarly.

Transparency No. P2C1-13

CFGs and CFLs
Proof of theoreom 20.1 (cont’d)

Pf: PAREN c L(G) (i.e., if x is balanced ==> S > * x.)
By ind. on |x].
1. |X| =0 ==>x=¢g==>8 > ¢ (0k).
2. |x| > 0. Then either
(a) 3 a proper prefix y of x that is balanced or
(b) No proper prefixes y of x are balanced.
® In case (a), we have x =y z with |y|,|z| < |x| for some z.
=>L(z) = L(x) - L(y) = R(x) - R(y) = R(z)
For all prefix w withz=w w’;: L(w)=L(yw) - L(y) > R(yw) - R(y) = R(w)
==> both y and z are balanced ==> by ind. hyp., S>*yand S >*z
==>S > SS >*yS >%yz.
In case (b): x = [z] for some z (why ?)
Moreover it can be shown that z is balanced too.
Hence S >*z. ==>$§ >*[S] 2*[z] = x. QED

Transparency No. P2C1-14

CFGs and CFLs
Pushdown Automata: a preview

® FAs recognize regular languages.
® What kinds of machines recognize CFLs ?
===> Pushdown automata (PDAs)
® PDA:
[Like FAs but with an additional stack as working memory.
[Actions of a PDA
1. Move right one tape cell (as usual FASs)
2. push a symbol onto stack
3. pop a symbol from the stack.
[Actions of a PDA depend on
1. current state 2. currently scanned I/P symbol
3. current top stack symbol.

0 A string x is accepted by a PDA if it can enter a final state
(or clear all stack symbols) after scanning the entire input.

[0 More details defer to later chapters.

Transparency No. P2C1-15

