Formal Language and Automata Theory

Part II

Pushdown Automata and Context-Free Languages

Transparency No. P2C1

Formal Language and Automata Theory

Chapter 1

Context-Free Grammars and Languages (Lecture 19,20)

Transparency No. P2C1

Bacus-Naur Form

- Regular Expr is too limited to describe practical programming languages.
- Bacus-Naur Form (BNF)
 - A popular formalism used to describe practical programming languages:
 - Example BNF: (p116)
 - ::= <if-stmt> | <while-stmt> | <begin-stmt> | <assg-stmt> <stmt> <if-stmt> ::= if <bool-expr> then <stmt> else <stmt> ::= while <bool-expr> do <stmt> <while-stmt> <begin_stmt> ::= begin <stmt-list> end <stmt-list> ::=<stmt> | <stmt> ; <stmt-list> <assg-stmt> ::= <var> := <arith-expr> <bool-expr> ::= <arith-expr> <comp-op> <arith-expr> <comp-op> ::= < | > | <= | >= | NEQ <arith-expr> ::= <var> | <const> | (<arith-expr> <arith-op> <arith-expr>) ::= + | - | * | / <arith-op> <const> ::= 0 | 1 | 2 | ... |8 | 9 ::= a | b | c |... |x | y | z <var> Transparency No. P2C1-3

Derivations

•Question: how to determine if the string

□while x > y do begin x := (x+1); y := (y-1) end

belongs to the language represented by the above grammar?

Sol: Since the string can be derived from the grammar.

• <u><stmt></u>

<while-stmt>

while <bool-expr> do <stmt>

while <arith-expr><compare-op><arith-expr> do <stmt>

while <var><compare-op><arith-expr> do <stmt>

while <var> > <arith-expr> do <stmt>

while x > <var> do <stmt>

while x > y do <stmt>

```
....
```

while x > y do begin x := (x+1); y := (y-1) end

<u>CFGs</u>

• Facts:

- 1. each nonterminal symbol can derive many different strings.
- **2.** Every string in a derivation is called a sentential form.
- 3. Every sentential form containing no nonterminal symbols is called a sentence.
- I 4. The language L(G) generated by a CFG G is the set of sentences derivable from a distinguished nonterminal called the start symbol of G. (eg. <stmt>)
- Include 1 5. A language is said to be *context free* (or a context free language (CFL)) if it can be generated by a CFG.
- A sentence may have many different derivations; a grammar is called unambiguous if this cannot happen
- [] (eg: previous grammar is unambiguous)

CFGs: related facts

- CFG are more expressive than FAs (and regular expressions)
- (i.e., all regular languages are context-free, but not vice versa.)
- Example CFLs which are not regular:
 - $\Box \ \{a^nb^n \mid n \ge 0\}$
 - □ {Palindrome over $\{a,b\}$ } = {x ∈ $\{a,b\}^* | x = rev(x)$ }
 - [] {balanced strings of parentheses}
- Not all sets are CFLs:
 - □ Ex: $\{a^nb^nc^n \mid n \ge 0\}$ is not context-free.

CFGs and CFLs: a formal defintion

- a CFG is a quadruple $G = (N, \Sigma, P, S)$ where
 - □ N is a finite set (of nonterminal symbols)
 - $\Box \Sigma$ is a finite set (of terminal symbols) disjoint from N.
 - \Box S \in N is the start symbol.
 - \square P is a a finite subset of N x (N $\cup \Sigma$)* (The productions)

• Conventions:

- □ nonterminals: A,B,C,...
- □ terminals: a,b,c,...
- □ strings in (N \cup Σ)* : α,β,γ,...
- □ Each (A, α) ∈ P is called a production rule and is usually written as: A → α .
- □ A set of rules with the same LHS:

 $\begin{array}{ll} \mathsf{A} \rightarrow \alpha_1 & \mathsf{A} \rightarrow \alpha_2 & \mathsf{A} \rightarrow \alpha_3 & \mathsf{can} \ \mathsf{be} \ \mathsf{abbreviated} \ \mathsf{as} \\ \mathsf{A} \rightarrow \alpha_1 \mid \alpha_2 \mid \ \alpha_3. \end{array}$

Derivations

- Let $\alpha, \beta \in (N \cup \Sigma)^*$ we say β is derivable from α in one step, in symbols, $\alpha \rightarrow_G \beta$
 - (G may be omitted if there is no ambiguity) if β can be obtained from α by replacing some occurrence of a nonterminal symbol A in α with γ , where A $\rightarrow \gamma \in P$; i.e., if there exist $\alpha_1, \alpha_2 \in (N \cup \Sigma)^*$ and production A $\rightarrow \gamma$ s.t.

$$\alpha = \alpha_1 A \alpha_2$$
 and $\beta = \alpha_1 \gamma \alpha_2$.

• Let \rightarrow^*_G be the reflexive and transitive closure of \rightarrow_G , i.e., define $\alpha \rightarrow^0_G \alpha$ for any α

 $\alpha \rightarrow^{k+1}_{G} \beta$ iff there is γ s.t. $\alpha \rightarrow^{k}_{G} \gamma$ and $\gamma \rightarrow_{G} \beta$.

Then $\alpha \rightarrow^*_{G} \beta$ iff $\exists k \ge 0$ s.t. $\alpha \rightarrow^k_{G} \beta$.

Any string in (N U Σ)* derivable from S (i.e., S →*_G α) is called a sentential form, in particular, if α is a terminal string (i.e., α ∈ Σ*), α is called a sentence.

Language generated by a CFG

- The language generated by G, denoted L(G), is the set $L(G) =_{def} \{ x \in \Sigma^* \mid S \rightarrow^*_G x \}.$
- A language B ⊆ Σ* is a context-free language (CFL) if B = L(G) for some CFG G.
- Ex 19.1: The nonregular set A= $\{a^nb^n \mid n \ge 0\}$ is a CFL. Since it can be generated by the grammar G:
 - $S \rightarrow \epsilon \mid aSb$

or more precisely $G = (N, \Sigma, P, S)$ where

- $\Box N = \{S\}$
- $\Box \Sigma = \{a,b\}$
- $\Box P = \{ S \rightarrow \varepsilon, S \rightarrow aSb \}$
- $a^{3}b^{3} \in L(G)$ since $S \rightarrow aSb \rightarrow aaSbb \rightarrow aaaSbbb \rightarrow aaabbb.$
 - $\therefore S \rightarrow^4$ aaabbb and S \rightarrow^* aaabbb

Techniques for show L = L(G)

- But how to show that $L(G) = A (= \{a^n b^n \mid n \ge 0\})$?
- a consequence of the following lemmas:
 - □ Lem 1: $S \rightarrow^{n+1} a^n b^n$ for all $n \ge 0$.
 - □ Lemm2: If S \rightarrow * x ==> x is of the form a^kSb^k or a^kb^k.

(in particular, if x is a sentence => $x \in A$).

• Pf: of lem 1:

Π

- □ by ind. on n. $n = 0 = > S \rightarrow e$. (ok)
- □ n = k+1 > 0 : By ind. hyp. S \rightarrow ^{k+1} a^kb^k
- $\Box :: S \rightarrow aSb \rightarrow^{k+1} a^{k+1}b^{k+1} :: S \rightarrow {}^{n+1} a^{n}b^{n}.$
- Pf of lem2: by ind. on k s.t. $S \rightarrow^k x$.
 - $\Box k = 0 \Longrightarrow S \rightarrow^{0} S = a^{0}Sb^{0}.$
 - □ k = t+1 > 0. S $\rightarrow^{t} a^{m}Sb^{m} \rightarrow a^{m}aSbb^{m}$ (ok) or

 \rightarrow a^mb^m. (ok).

Balanced Parentheses

- Ex 19.2: The set of palindromes P = { $x \in \{a,b\}^* | x = rev(x) \}$. can be generated by the grammar G:
 - $S \rightarrow \varepsilon | a | b | aSa | bSb.$
- cf: The inductive definition of P
 - **1.** Initial condition: ϵ , a and b are palindromes.
 - 2. recursive condition:
 - If S is a palindrome, then so are aSa and bSb.
- Balanced Parentheses:

Ex2: unbalanced parentheses:

 $(())((()))) = --- no of "(" \neq no of ")".$ (())(()))((()) = --- unmatched ")" encountered.

Balanced Parentheses

- Formal definition:
- let $\Sigma \supseteq \{ [,] \}$. Define L,R: $\Sigma^* \rightarrow N$ as follows:
 - $\Box L(x) = number of "[" in x.$
 - \square R(x) = number of "]" in x.
- a string $x \in \Sigma^*$ is said to be balanced iff
 - (i) L(x) = R(x) -- equal # of left and right parentheses.
 - (ii) for all prefix y of x, $L(y) \ge R(y)$.

--- no dangling right parenthesis.

- Now define PAREN = { $x \in \{[,]\}^* | x \text{ is balanced }\}$.
- Thm 20.1 : PAREN can be generated by the CFG G:

 $S \rightarrow \varepsilon | [S] | S S$

pf: 1. L(G) \subseteq PAREN.

Lem1: If S \rightarrow * x then x is balanced. In particular, if x contains no S => x \in PAREN. \therefore L(G) \subseteq PAREN.

proof of theorem 20.1

pf of lem1 : by ind. on k s.t. $S \rightarrow^{k} x$. $k = 0 \Rightarrow S \rightarrow^{0} S = x$ is balanced. k = t + 1 > 0: $\Rightarrow y[S]z$ (1) or $\Rightarrow y[S]z$ (2) or $\Rightarrow ySSz$ (3).

By ind. hyp., ySz is balanced.

$$\Rightarrow$$
 L(yz) = L(ySz) = R(ySz) = R(yz) and

if $y = wu => L(w) \ge R(w)$ since w is also a prefix of ySz.

if
$$z = wu \Rightarrow L(yw) = L(ySw) \ge R(ySw) = R(yw)$$
.

 \therefore yz is balanced.

Case (2) and (3) can be proved similarly.

Proof of theoreom 20.1 (cont'd)

Pf: PAREN \subseteq L(G) (i.e., if x is balanced ==> S \rightarrow * x.)

By ind. on |x|.

1.
$$|\mathbf{x}| = 0 \implies \mathbf{x} = \varepsilon \implies \mathbf{S} \rightarrow \varepsilon$$
 (ok).

2. |x| > 0. Then either

(a) \exists a proper prefix y of x that is balanced or

(b) No proper prefixes y of x are balanced.

In case (a), we have x = y z with |y|,|z| < |x| for some z.</p>

$$=> L(z) = L(x) - L(y) = R(x) - R(y) = R(z)$$

For all prefix w with z = w w': $L(w) = L(yw) - L(y) \ge R(yw) - R(y) = R(w)$

In case (b): x = [z] for some z (why ?)

Moreover it can be shown that z is balanced too.

Hence S $\rightarrow^* z$. ==> S $\rightarrow^* [S] \rightarrow^* [z] = x$. QED

Pushdown Automata: a preview

- FAs recognize regular languages.
- What kinds of machines recognize CFLs ?
 ===> Pushdown automata (PDAs)
- PDA:
 - **Like FAs but with an additional** *stack* as working memory.
 - □ Actions of a PDA
 - 1. Move right one tape cell (as usual FAs)
 - 2. push a symbol onto stack
 - 3. pop a symbol from the stack.
 - Actions of a PDA depend on
 - 1. current state 2. currently scanned I/P symbol
 - 3. current top stack symbol.
 - A string x is accepted by a PDA if it can enter a final state (or clear all stack symbols) after scanning the entire input.
 - □ More details defer to later chapters.