Part II

Pushdown Automata and Context-Free Languages

Chapter 1

Context-Free Grammars and Languages (Lecture 19,20)

Bacus-Naur Form

- Regular Expr is too limited to describe practical programming languages.
- Bacus-Naur Form (BNF)
— A popular formalism used to describe practical programming languages:
- Example BNF: (p116)

Derivations

-Question: how to determine if the string
Dwhile $\mathrm{x}>\mathrm{y}$ do begin $\mathrm{x}:=(\mathrm{x}+1)$; $\mathrm{y}:=(\mathrm{y}-1)$ end belongs to the language represented by the above grammar? Sol: Since the string can be derived from the grammar.

- <stmt>
<while-stmt>
while <bool-expr> do <stmt>
while <arith-expr><compare-op><arith-expr> do <stmt>
while <var><compare-op><arith-expr> do <stmt>
while <var>> <arith-expr> do <stmt>
while $x>$ <var> do <stmt>
while x > y do <stmt>
while $x>y$ do begin $x:=(x+1) ; y:=(y-1)$ end
- Facts:
\square 1. each nonterminal symbol can derive many different strings.
\square 2. Every string in a derivation is called a sentential form.
\square 3. Every sentential form containing no nonterminal symbols is called a sentence.
\square 4. The language $L(G)$ generated by a CFG G is the set of sentences derivable from a distinguished nonterminal called the start symbol of G. (eg. <stmt>)
\square 5. A language is said to be context free (or a context free language (CFL)) if it can be generated by a CFG.
\square A sentence may have many different derivations; a grammar is called unambiguous if this cannot happen
(eg: previous grammar is unambiguous)

CFGs: related facts

- CFG are more expressive than FAs (and regular expressions) (i.e., all regular languages are context-free, but not vice versa.)
- Example CFLs which are not regular:
$\square\left\{a^{n} b^{n} \mid n \geq 0\right\}$
$\square\{$ Palindrome over $\{a, b\}\}=\left\{x \in\{a, b\}^{*} \mid x=\operatorname{rev}(x)\right\}$
\square \{balanced strings of parentheses\}
- Not all sets are CFLs:
— Ex: $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context-free.
- a CFG is a quadruple $\mathbf{G}=(\mathbf{N}, \Sigma, \mathrm{P}, \mathrm{S})$ where
$\square \mathbf{N}$ is a finite set (of nonterminal symbols)
$\square \Sigma$ is a finite set (of terminal symbols) disjoint from \mathbf{N}.
$\square S \in \mathbf{N}$ is the start symbol.
$\square \mathbf{P}$ is a a finite subset of $\mathbf{N} \times(\mathbf{N} \cup \Sigma)^{*}$ (The productions)
- Conventions:

B nonterminals: A, B, C, \ldots
\square terminals: a,b,c,...
\square strings in $(N \cup \Sigma)^{*}: \alpha, \beta, \gamma, \ldots$
\square Each $(A, \alpha) \in P$ is called a production rule and is usually written as: $\mathrm{A} \rightarrow \alpha$.
\square A set of rules with the same LHS:
$\mathrm{A} \rightarrow \alpha_{1} \quad \mathrm{~A} \rightarrow \alpha_{2} \quad \mathrm{~A} \rightarrow \alpha_{3}$ can be abbreviated as $\mathrm{A} \rightarrow \alpha_{1}\left|\alpha_{2}\right| \alpha_{3}$.

Derivations

- Let $\alpha, \beta \in(\mathrm{N} \cup \Sigma)^{*}$ we say β is derivable from α in one step, in symbols, $\alpha \rightarrow_{\mathrm{G}} \beta$
(G may be omitted if there is no ambiguity)
if β can be obtained from α by replacing some occurrence of a nonterminal symbol \mathbf{A} in α with γ, where $\mathbf{A} \rightarrow \gamma \in \mathrm{P}$; i.e., if there exist $\alpha_{1}, \alpha_{2} \in(N \cup \Sigma)^{*}$ and production $A \rightarrow \gamma$ s.t.

$$
\alpha=\alpha_{1} A \alpha_{2} \text { and } \beta=\alpha_{1} \gamma \alpha_{2} .
$$

- Let $\rightarrow^{*}{ }_{G}$ be the reflexive and transitive closure of \rightarrow_{G}, i.e., define $\quad \alpha \rightarrow{ }_{G} \alpha$ for any α $\alpha \rightarrow^{k+1}{ }_{G} \beta$ iff there is γ s.t. $\alpha \rightarrow^{k}{ }_{G} \gamma$ and $\gamma \rightarrow_{G} \beta$.
Then $\quad \alpha \rightarrow^{*}{ }_{G} \beta$ iff $\exists k \geq 0$ s.t. $\alpha \rightarrow_{G} \beta$.
- Any string in ($\mathrm{N} \cup \Sigma$) ${ }^{*}$ derivable from S (i.e., $\mathrm{S} \rightarrow{ }_{\mathrm{G}}{ }^{*} \alpha$) is called a sentential form, in particular, if α is a terminal string (i.e., $\alpha \in \Sigma^{*}$), α is called a sentence.
- The language generated by G, denoted $L(G)$, is the set

$$
L(G)==_{\text {def }}\left\{x \in \Sigma^{*} \mid S \rightarrow{ }_{G}^{*} x\right\} .
$$

- A language $B \subseteq \Sigma^{*}$ is a context-free language (CFL) if $B=L(G)$ for some CFG G.
Ex 19.1: The nonregular set $A=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is a CFL. Since it can be generated by the grammar \mathbf{G} :

$S \rightarrow \varepsilon \mid a S b$

or more precisely $\mathbf{G}=(\mathbf{N}, \Sigma, \mathrm{P}, \mathrm{S})$ where
[$\mathbf{N}=\{\mathbf{S}\}$

- $\Sigma=\{a, b\}$
$\square \mathrm{P}=\{\mathrm{S} \rightarrow \varepsilon, \mathrm{S} \rightarrow \mathrm{aSb}\}$
$\bullet a^{3} b^{3} \in L(G)$ since $S \rightarrow a S b \rightarrow$ aaSbb \rightarrow aaaSbbb \rightarrow aaabbb.
$\therefore S \rightarrow^{4}$ aaabbb and $S \rightarrow^{*}$ aaabbb

Techniques for show $L=L(G)$

- But how to show that $L(G)=A\left(=\left\{a^{n} b^{n} \mid n \geq 0\right\}\right)$?
- a consequence of the following lemmas:
(Lem 1: $S \rightarrow^{n+1} a^{n} b^{n}$ for all $n \geq 0$.
- Lemm2: If $S \rightarrow^{*} x==>x$ is of the form $a^{k} S b^{k}$ or $a^{k} b^{k}$. (in particular, if x is a sentence $=>x \in A$).
- Pf: of lem 1:
\square by ind. on $n . n=0==>S \rightarrow e$ (ok)
$\square \mathbf{n}=\mathbf{k + 1}>0$: By ind. hyp. $S \rightarrow{ }^{\mathbf{k}+1} \mathbf{a}^{\mathbf{k}} b^{\mathbf{k}}$
$\square \therefore S \rightarrow \mathbf{a S b} \rightarrow^{\mathbf{k + 1}} \mathbf{a}^{\mathbf{k + 1}} \mathbf{b}^{\mathbf{k + 1}} . \therefore \mathbf{S} \rightarrow{ }^{\mathrm{n}+1} \mathbf{a}^{\mathrm{n}} \mathbf{b}^{\mathrm{n}}$.
- Pf of lem2: by ind. on k s.t. $S \rightarrow^{k} x$.
$\square k=0=>S \rightarrow^{0} S=a^{0} S^{0}$.
$\square k=t+1>0 . S \rightarrow^{\mathrm{t}} \mathrm{a}^{\mathrm{m}} \mathrm{Sb}^{\mathrm{m}} \rightarrow \mathrm{a}^{\mathrm{m}} \mathrm{aSbb}^{\mathrm{m}}$ (ok) or
—

$$
\rightarrow \mathbf{a}^{\mathrm{m}} \mathbf{b}^{\mathrm{m}} . \quad \text { (ok). }
$$

Balanced Parentheses

Ex 19.2: The set of palindromes $P=\left\{x \in\{a, b\}^{*} \mid x=\operatorname{rev}(x)\right\}$. can be generated by the grammar G :

$\mathrm{S} \rightarrow \varepsilon|\mathrm{a}| \mathrm{b} \mid \mathrm{aSa\mid bSb}$.

cf: The inductive definition of P

1. Initial condition: ε, a and b are palindromes.
2. recursive condition:

If S is a palindrome, then so are aSa and bSb .

- Balanced Parentheses:

$$
\begin{aligned}
& E x 1: 2+3 \times 5-4 \times 6==> \\
&==>((2+3) \times(5-(4 \times 6))) \\
&\left(\begin{array}{c}
(1)))
\end{array}\right)
\end{aligned}
$$

--- balanced parentheses.
Ex2: unbalanced parentheses:
(() ((())))) --- no of "(" \neq no of ")".
(() (())) ((()) --- unmatched ")" encountered.

- Formal definition:
- let $\Sigma \supseteq\{[]$,$\} . Define L,R: \Sigma^{*} \rightarrow \mathbf{N}$ as follows:
] $L(x)=$ number of "[" in x.
[$R(x)=$ number of "]" in x.
- a string $x \in \Sigma^{*}$ is said to be balanced iff
(i) $L(x)=R(x)$-- equal \# of left and right parentheses.
(ii) for all prefix y of $x, L(y) \geq R(y)$. --- no dangling right parenthesis.
- Now define PAREN $=\left\{x \in\{[,]\}^{*} \mid x\right.$ is balanced $\}$.
- Thm 20.1 : PAREN can be generated by the CFG G:

$$
\mathbf{S \rightarrow \varepsilon} \boldsymbol{f} \quad[\mathrm{S}] \quad \mid \quad \mathbf{S} \mathbf{S}
$$

pf: 1. $L(G) \subseteq$ PAREN.
Lem1: If $S \rightarrow$ * x then x is balanced. In particular, if x contains no $S=>x \in$ PAREN. $\therefore L(G) \subseteq P A R E N$.
pf of lem1 : by ind. on k s.t. $S \rightarrow^{k} x$.
$k=0=>S \rightarrow^{0} S=x$ is balanced.
$\mathrm{k}=\mathrm{t}+1>0$:
$==>S \rightarrow^{t} y S z$
$\rightarrow \mathrm{yz}$
(1) or
$\rightarrow \mathrm{y}[\mathrm{S}] \mathrm{z}$
(2) or
$\rightarrow \mathrm{ySSz}$
(3).

By ind. hyp., $y S z$ is balanced.
$=>L(y z)=L(y S z)=R(y S z)=R(y z)$ and
if $y=w u=>L(w) \geq R(w)$ since w is also a prefix of $y S z$. if $z=w u=>L(y w)=L(y S w) \geq R(y S w)=R(y w)$.
$\therefore \mathrm{yz}$ is balanced.
Case (2) and (3) can be proved similarly.

Proof of theoreom 20.1 (cont'd)

Pf: PAREN $\subseteq L(G)$ (i.e., if x is balanced $==>S \rightarrow{ }^{*} x$.)
By ind. on $|x|$.

1. $|x|=0==>x=\varepsilon==>S \rightarrow \varepsilon$ (ok).
2. $|x|>0$. Then either
(a) \exists a proper prefix y of x that is balanced or
(b) No proper prefixes y of x are balanced.

- In case (a), we have $x=y z$ with $|y|,|z|<|x|$ for some z.
$=>L(z)=L(x)-L(y)=R(x)-R(y)=R(z)$
For all prefix w with $z=w w \prime: L(w)=L(y w)-L(y) \geq R(y w)-R(y)=R(w)$
$==>$ both y and z are balanced $==>$ by ind. hyp., $S \rightarrow^{*} y$ and $S \rightarrow^{*} z$ $==>$ S \rightarrow SS \rightarrow^{*} yS $\rightarrow^{*} y z$.
In case (b): $x=[z]$ for some z (why ?)
Moreover it can be shown that z is balanced too.
Hence $S \rightarrow^{*} z$. $==>S \rightarrow^{*}[S] \rightarrow^{*}[z]=x$. QED
- FAs recognize regular languages.
- What kinds of machines recognize CFLs ?
===> Pushdown automata (PDAs)
- PDA:
\square Like FAs but with an additional stack as working memory.
- Actions of a PDA

1. Move right one tape cell (as usual FAs)
2. push a symbol onto stack
3. pop a symbol from the stack.
\square Actions of a PDA depend on
4. current state 2. currently scanned I/P symbol
5. current top stack symbol.
\square A string x is accepted by a PDA if it can enter a final state (or clear all stack symbols) after scanning the entire input.
\square More details defer to later chapters.
