Formal Language and Automata Theory

PART II: Chapter 2

Linear Grammars and Normal Forms

Transparency No. P2C2-1

Production form

<u>Linear Grammar</u>

- $G = (N, \Sigma, S, P) : a CFG$
- A,B: nonterminals
- a: terminal symbol
- $\mathbf{y} \in \Sigma^*$, $\mathbf{x} \in \Sigma^*$.

right linear $A \rightarrow yB$ or $A \rightarrow x$ als
bolStrongly right linear $A \rightarrow aB \mid B \mid \varepsilon$ Left linear $A \rightarrow By$ or $A \rightarrow x$ Strongly left linear $A \rightarrow Ba \mid B \mid \varepsilon$

• Notes:

- □ 1. All types of linear grammars are CFGs.
- 2. All types of linear grammars generate the same class of languages (i.e., regular languages)

Theorem: For any language L: the following statements are equivalent:

Grammar Type

- 0. L is regular
- \Box 1. L = L(G1) for some RG G1 2. L=L(G2) for some SRG G2
- □ 3. L=L(G3) from some LG G3 4. L=L(G4) for some SLG G4

Equivalence of linear languages and regular sets

- Pf: (2) => (1) and (4)=>(3) : trivial since SRG (SLG) are special kinds of RG (LG).
- (1)=>(2) :1. replace each rule of the form:

 $A \rightarrow a_1 a_2 \dots a_n B (n > 1)$

by the following rules

 $A \rightarrow a_1 B_1, B_1 \rightarrow a_2 B_2, ..., B_{n-2} \rightarrow a_{n-1} B_{n-1}, B_{n-1} \rightarrow a_n B$ where $B_1, B_2, ..., B_{n-1}$ are new nonterminal symbols.

2. Replace each rule of the form:

 $A \rightarrow a_1 a_2 \dots a_n \quad (n \ge 1)$ by the following rules

A → a_1B_1 , B_1 → a_2B_2 , ..., B_{n-1} → a_nB_n , B_n → ε 3. Let G' be the resulting grammar. Then L(G) = L(G'). • (3)=>(4) : Similar to (1) =>(2).

 $A \rightarrow B a_1 a_2 \dots a_n (n > 1) = > A \rightarrow B_n a_n, B_n \rightarrow B_{n-1} a_{n-1}, \dots, B_2 \rightarrow Ba_1$

 $\begin{array}{c} \mathsf{A} \xrightarrow{} \mathsf{a}_1 \ \mathsf{a}_2 \ \dots \mathsf{a}_n \ (n \ge 1) = > \mathsf{A} \xrightarrow{} \mathsf{B}_n \mathsf{a}_n, \ \mathsf{B}_n \xrightarrow{} \mathsf{B}_{n-1} \mathsf{a}_{n-1}, \ \dots, \ \mathsf{B}_2 \xrightarrow{} \mathsf{B}_1 \mathsf{a}_1 \ , \ \mathsf{B}_1 \\ \xrightarrow{} \varepsilon \end{array}$

Example:

```
The right linear grammar :
 \Box S \rightarrow abab S and S \rightarrow abc
 can be converted into a SRG as follows:
 \Box S \rightarrow ababS =>
 S \rightarrow a [babS]
 [babS] \rightarrow b [abS]
                [abS] \rightarrow a [bS]
 Π
                  [bS] →b S
 Π
 \Box S \rightarrow abc =>
         S \rightarrow a [bc]
 Π
 [bc] \rightarrow b [c]
       [c] → c []
 3 ← []
 Π
```

RGs and FAs

- pf: (0) =>(2), (0)=>(4)
- Let $M = (Q, \Sigma, \delta, S, F)$: A NFA allowing empty transitions.
- Define a SRG G₂ and a SLG G₄ as follows:
- G₂ = (N₂, Σ, S₂, P₂) G₄ = (N₄, Σ, S₄, P₄) where
 I. N₂ = Q U {S₂}, N₄ = Q U {S₄}, where S₂ and S₄ are new symbols and
 - $\Box P_2 = \{S_2 \rightarrow A \mid A \in S\} \cup \{A \rightarrow aB \mid B \in \delta(A,a)\}$

 $U{A \rightarrow \epsilon | A \in F}$. // to go to a final state from A, use 'a' to reach B and then from B go to a final state.

 $\Box P_4 = \{S_4 \rightarrow A \mid A \in F \} \cup \{B \rightarrow Aa \mid B \in \delta(A,a) \}$

U {A $\rightarrow \epsilon$ | A \in S }. // to reach B from a start state, reach A from a start state and then consume a.

- Lem 01: If $S_2 \rightarrow^+_{G2} \alpha \notin \Sigma^*$, then $\alpha = xB$ where $x \in \Sigma^*$ and $B \in Q$ • Lemma 1: $S_2 \rightarrow^+_{G2} xB$ iff $B \in \Delta(S, x)$.
- --- can be proved by ind. on derivation length(=>) and x (<=). Hence $x \in L(G_2)$
- $\begin{array}{ll} \text{iff } S_2 \xrightarrow{} *_{G2} x & \text{iff } S_2 \xrightarrow{} +_{G2} xB \xrightarrow{}_{G2} x \text{ for a } B \in \mathsf{F}. \\ \text{iff } B \in \Delta(\mathsf{S}, \mathsf{x}) \text{ and } B \in \mathsf{F} \text{ iff } \mathsf{x} \in \mathsf{L}(\mathsf{M}) \end{array}$
- Lem 02:If $S_4 \rightarrow^+_{G4} \alpha \notin \Sigma^*$, then α =Bx where $x \in \Sigma^*$ and $B \in Q$.
- Lemma 2: $S_4 \rightarrow _{G_4} Bx \text{ iff } F \cap \Delta(B,x) \neq \emptyset$.
- Hence $S_4 \rightarrow *_{G4} x$
 - iff $S_4 \rightarrow^*_{G4} Bx \rightarrow_{G4} x$ for some start state B
 - iff $B \in S$ and $F \cap \Delta(B,x) \neq \emptyset$ iff $x \in L(M)$

```
Theorem: L(M) = L(G_2) = L(G_4).
```

From FA to LGs: An example

- Let M = ({A,B,C,D}, {a,b}, δ, {A,B},{B,D}) where
- δ is given as follows:

Λ

b

> A <--- a ---> C

v v >(B) <-- a--> (D)

==> G2 = ?

G4 = ?

- **E** –a –> **F** is translated to :
- 1. (G2) E →aF : E →

b

$E \rightarrow \epsilon$ // if E is a final state

- To reach a final state from E, go to F first by consuming an 'a' and then try to reach a final state from F.
- 2. (G4) $F \rightarrow Ea$: $E \rightarrow \epsilon$ // if E is a start state
 - How to reach F from a start state? go to E first and then by consuming a, you can reach F.

Transparency No. P2C2-7

Motivation: Derivation and path walk

• $S \rightarrow A \rightarrow aB \rightarrow abC \rightarrow abaD \rightarrow aba.$ => { $A \rightarrow aB$, $B \rightarrow bC$, $C \rightarrow aD$, $D \rightarrow \varepsilon \dots$ }

Conclusion: The forward walk of a path from a start state to a final state is the same as the derivation of a SRG grammar.

Derivation and backward path walk

• $S \rightarrow D \rightarrow Ca \rightarrow Bba \rightarrow Aaba \rightarrow aba.$ => { $D \rightarrow Ca, C \rightarrow Bb, B \rightarrow Aa, A \rightarrow \varepsilon ...$ }

Conclusion: The backward walk of a path from a start state to a final state is the same as the derivation of a SLG grammar.

From FA to LGs: an example

- Let M = ({A,B,C,D}, {a,b}, δ, {A,B}, {B,D}) where
- δ is given as follows:

> A <--- a ---> C Λ b b V V >(B) <--- a--> (D) ==> G2 = ? sol: S2 \rightarrow A | B $A \rightarrow aC \mid bB$ $B \rightarrow aD \mid bA \mid \varepsilon$ $C \rightarrow aA \mid bD$ $D \rightarrow aB | bC | \epsilon$

G4 = ? sol: S4 \rightarrow B | D B \rightarrow Ab | Da | ε D \rightarrow Cb | Ba C \rightarrow Aa | Db A \rightarrow Bb | Ca | ε

From Linear Grammars to FAs

• $G = (N, \Sigma, S, P) : a SRG$ **Define M = (N**, Σ , δ ,{**S**},**F**) where \Box F = {A | A $\rightarrow \varepsilon \in$ P} and $\Box \delta = \{(A,a,B) \mid A \rightarrow aB \in P, \}$ $a \in \Sigma \cup \{\epsilon\}\}$ П Theorem: L(M) = L(G). • $G = (N, \Sigma, S, P) : a SLG$ Define M' = $(N, \Sigma, \delta, S', \{S\})$ where \Box S' = {A | A → ε ∈ P} and $\Box \delta = \{(A,a,B) \mid B \rightarrow Aa \in P, \}$ $a \in \Sigma \cup \{\varepsilon\} \}$ Π Theorem: L(M') = L(G).

Example:

$$G: S \rightarrow aB | bA$$

 $B \rightarrow aB | \varepsilon$
 $A \rightarrow bA | \varepsilon$
 $\Rightarrow M = ?$

Example: G: S \rightarrow Ba | Ab A \rightarrow Ba | ε B \rightarrow Ab | ε ==> M' = ?

Other types of transformations

- FA ↔ LG = {SLG, SRG } (ok!)
- FA ↔ Regular Expression (ok!)
- SLGs \leftrightarrow SRGs (?)
 - $\Box \mathsf{SLG} \leftrightarrow \mathsf{FA} \leftrightarrow \mathsf{SRG}$
- LG ↔ Regular Expression (?)
 □ LG ↔ FA ↔ Regular Expression
- Ex: Translate the SRG G: S→aA | bB, A →aS | ε, B → bA | bS | ε into an equivalent SLG.
- **sol:** The FA corresponding to G is M = (Q, {a,b}, δ , S, {A,B}), where Q= {S,A,B} and δ = { (S, a, A), (S,b,B), (A, a,S), (B,b,A),(B,b,S)}

So the SLG for M (and G as well) is

 $S' \rightarrow A \mid B, ---$ final states become start symbol; S' is the new start symbol

 $S \rightarrow \epsilon$, --- start state becomes empty rule

 $A \rightarrow Sa, B \rightarrow Sb, S \rightarrow Aa, A \rightarrow Bb, S \rightarrow Bb. // do you find the rule from SRG to SLG ?$

Transparency No. P2C2-12

Exercises

- Convert the following SRG into an equivalent SLG ?
 - $\Box S \rightarrow aS \mid bA \mid aB \mid \varepsilon$
 - $\Box A \rightarrow aB \mid bA \mid aS \mid \varepsilon$
 - $\Box B \rightarrow bA \mid aS$

- Convert the following SLG into an equivalent SRG ?
 - $\Box S \rightarrow Ca \mid Ab \mid Ba$
 - $\Box \mathbf{A} \rightarrow \mathbf{Ba} \mid \mathbf{Cb} \mid \varepsilon$
 - \square **B** \rightarrow **Ab** | **S**a
 - $\Box \ \mathbf{C} \rightarrow \mathbf{Aa} \mid \mathbf{Bb} \mid \varepsilon$

Rules: $A \rightarrow Ba \rightarrow B \rightarrow aA$ $A \rightarrow B \rightarrow B \rightarrow A$ empty rule: $A \rightarrow e \rightarrow S' \rightarrow A$ start symbol: $S \rightarrow S \rightarrow e$

Chomsky normal form and Greibach normal form

Linear Grammars and Normal forms

- $G = (N, \Sigma, P, S)$: a CFG
- G is said to be in *Chomsky Normal Form (CNF*) iff all rules in P have the form:

 $\Box A \rightarrow a \qquad \text{or} \quad A \rightarrow BC$

where $a \in \Sigma$ and A, B,C \in N. Note: B and C may equal to A.

 G is said to be in Greibach Normal Form (GNF) iff all rules in P have the form:

$$\Box \mathbf{A} \rightarrow \mathbf{a} \mathbf{B}_1 \mathbf{B}_2 \dots \mathbf{B}_k$$

where $k \ge 0$, $a \in \Sigma$ and $B_i \in N$ for all $1 \le i \le k$.

Note: when $k = 0 \Rightarrow$ the rule reduces to $A \rightarrow a$.

- Ex: Let G_1 : $S \rightarrow AB \mid AC \mid SS, C \rightarrow SB, A \rightarrow [, B \rightarrow]$ G_2 : $S \rightarrow [B \mid [SB \mid [BS \mid SBS, B \rightarrow]$
 - ==> G₁ is in CNF but not in GNF

G₂ is in GNF but not in CNF.

Remarks about CNF and GNF

1. $L(G_1) = L(G_2) = PAREN - \{\epsilon\}.$

2. No CFG in CNF or GNF can produce the null string ε . (Why ?) Observation: Every rule in CNF or GNF has the form $A \rightarrow \alpha$

with $|A| = 1 \le |\alpha|$ since ε can not appear on the RHS.

So

Lemma: G: a CFG in CNF or GNF. Then $\alpha \rightarrow \beta$ only if $|\alpha| \leq |\beta|$. Hence if S $\rightarrow^* x \in \Sigma^* => |x| \geq |S| = 1 => x != \epsilon$.

3. Apart from (2), CNF and GNF are as general as CFGs.

Theorem 21.2: For any CFG G, ∃ a CFG G' in CNF and a CFG G'' in GNF s.t. L(G') = L(G'') = L(G) - {ε}.

Generality of CNF

- ε -rule: $A \rightarrow \varepsilon$.
- unit (chain) production: $A \rightarrow B$.
- Lemma: G: a CFG without unit and ε-rules. Then ∃ a CFG G' in CNF form s.t. L(G) = L(G').

Ex21.4: G: S \rightarrow aSb | ab has no unit nor ε -rules.

- ==> 1. For terminal symbol a and b, create two new nonterminal symbol A and B and two new rules:
 - $\Box \qquad A \rightarrow a, \quad B \rightarrow b.$
 - **2.** Replace every a and b in G by A and B respectively.
 - $\Box \implies S \rightarrow ASB \mid AB, A \rightarrow a, B \rightarrow b.$
 - \square 3. S \rightarrow ASB is not in CNF yet ==> split it into smaller parts:
 - $\square \quad (Say, let AS = \square) ==> S \rightarrow \square B and \square \rightarrow AS.$
 - **4.** The resulting grammar :
 - $\Box \quad S \rightarrow \square B \mid AB, A \rightarrow a, B \rightarrow b, \square \rightarrow AS \text{ is in CNF.}$

Problem: How to get rid of ϵ and unit productions:

Elimination of e-rules (cont'd)

- It is possible that S →* w → w' with |w'| < |w| because of the ε-rules.
- **Ex1:** G: $S \rightarrow SaB \mid aB$ $B \rightarrow bB \mid \varepsilon$.
- => S → SaB → SaBaB → aBaBaB → aaBaB → aaaB → aaa. L(G) = $(aB)^+ = (ab^*)^+$

Another equivalent CFG w/o ε -rules: Ex2: G': S \rightarrow SaB | Sa | aB | a B \rightarrow bB | b. S \rightarrow * S (a + aB)* \rightarrow (a+aB)* B \rightarrow * b*B \rightarrow b*. => L(G') = L(S) = (a + ab*)* = (ab*)* Problem: Is it always possible to create an equivalent CFG w/o ε -rules ?

Ans: yes! but with proviso.

Elimination of ε-rules (cont'd)

Linear Grammars and Normal forms

- Def: 1. a nonterminal A in a CFG G is called nullable if it can derive the empty string. i.e., $A \rightarrow * \varepsilon$.
 - 2. A grammar is called noncontracting if the application of a rule cannot decrease the length of sentential forms.
 - (i.e., for all w, w' $\in (\Sigma UN)^*$, if w \rightarrow w' then $|w'| \ge |w|$.)

Lemma 1: G is noncontracting iff G has no ε -rule.

- pf: G has ε -rule A $\rightarrow \varepsilon$ => 1 = |A| > | ε | = 0.
 - G contracting => $\exists \alpha, \beta \in (NU\Sigma)^*$ and A → ε with $\alpha A\beta \rightarrow \alpha\beta$. => G contains an ε-rule.

Simultaneous derivation:

Def: G: a CFG. ==>_G : a binary relation on (N U Σ)* defined as follows: for all $\alpha, \beta \in (NU\Sigma)^*$, $\alpha ==> \beta$ iff there are $x_0, x_1, ..., x_n \in \Sigma^*$, rules $A_1 \rightarrow \gamma_1, ..., A_n \rightarrow \gamma_n$ (n > 0) s.t. $\alpha = x_0 A_1 x_1 A_2 x_2 ... A_n x_n$ and $\beta = x_0 \gamma_1 x_1 \gamma_2 x_2 ... \gamma_n x_n$

==>ⁿ and ==>* are defined similarly like \rightarrow ⁿ and \rightarrow *. Define ==>⁽ⁿ⁾ =_{def} (U_{k≤n} ==>^k). Lemma:

1. if $\alpha ==>\beta$ then $\alpha \rightarrow^* \beta$. Hence $\alpha ==>^* \beta$ implies $\alpha \rightarrow^* \beta$. 2. If β is a terminal string, then $\alpha \rightarrow^n \beta$ implies $\alpha ==>^{(n)} \beta$. 3. $\{x \in \Sigma^* \mid S ==>^* x \} = L(G) = \{x \in \Sigma^* \mid S \rightarrow^* x \}$.

Transparency No. P2C2-20

Find nullable symbols in a grammar

Problem: How to find all nullable nonterminals in a CFG? Note: If A is nullable then there are numbers n s.t. A ==> $(n) \epsilon$. Now let $N_k = \{ A \in N \mid A ==>^{(k)} \varepsilon \}$. 1. N_G (the set of all nullable nonterminals of G) = U $_{k>0}$ N_K. 2. $N_1 = {A | A \rightarrow \varepsilon \in P}.$ 3. $N_{k+1} = N_k U \{A \mid A \rightarrow X_1 X_2 \dots X_n \in P (n \ge 0) \text{ and All } X_i S \in N_k \}$. Ex: G: $S \rightarrow ACA$ $A \rightarrow aAa | B | C$ $B \rightarrow bB | b \qquad C \rightarrow cC | \epsilon.$ $\Rightarrow N_1 = ? {C}$ $N_2 = N_1 U ?$ $N_3 = N_2 U ?$ $N_{G} = ?$

Exercises: 1. Write an algorithm to find N_G.

2. Given a CFG G, how to determine if $\varepsilon \in L(G)$?

 Adding rules into grammar w/t changing language
 Linear Grammars and Normal forms

 Lem 1.4: G = (N,Σ,P,S) : a CFG s.t. A →* ω. Then the CFG G' = (N,Σ, PU{ A → ω}, S) is equivalent to G.

 pf: L(G) ⊆ L(G') : trivial since →_G ⊆ →_{G'}.

L(G') \subseteq L(G): First define $\alpha \rightarrow \beta_{G'} \beta$ iff ($\alpha \rightarrow \beta_{G'} \beta$ and the rule A $\rightarrow \alpha_{G'} \beta$ was applied k times in the derivation).

Now it is easy to show by ind. on k that

if $\alpha \rightarrow {}^{k+1}_{G'}\beta$ then $\alpha \rightarrow {}^{k}_{G'}\beta$ (and hence $\alpha \rightarrow {}^{0}_{G'}\beta$ and $\alpha \rightarrow {}^{*}_{G}\beta$). Hence $\alpha \rightarrow {}^{*}_{G'}\beta$ implies $\alpha \rightarrow {}^{*}_{G}\beta$ and L(G') \subseteq L(G).

Theorem 1.5: for any CFG G , there is a CFG G' containing no ε -rules s.t. L(G') = L(G) - { ε }.

Pf: Define G" and G' as follows:

 $n \ge 1$, All A_i s are nullable symbols and $X_i \in (NU\Sigma)^*$. }.

2. Let P' be the resulting P'' with all ε -rules removed.

Transparency No. P2C2-22

Elimination of e-rules (con't)

Linear Grammars and Normal forms

By lem 1.4, L(G) = L(G''). We now show $L(G') = L(G'') - \{\epsilon\}$.

- 1. Since $P' \subseteq P''$, $L(G') \subseteq L(G'')$. Moreover, since G' contains no ε -rules, $\varepsilon \notin L(G')$ Hence $L(G') \subseteq L(G'') \{\varepsilon\}$.
- 2. For the other direction, first define S --> $k_{G''}\beta$ iff

 $S \rightarrow^*_{G''} \beta$ and all ε -rules $A \rightarrow \varepsilon$ in P'' are used k times totally in the derivation. Note: if $S \rightarrow^*_{G'} \beta$ then $S \rightarrow^*_{G'} \beta$.

we show by induction on k that

if S -->^{k+1}_G, β and $\beta \neq \varepsilon$ then

S -->^k_G["] β for all k ≥0 and hence S -->⁰_G["] β and S \rightarrow *_G["] β . As a result if S \rightarrow *_G["] $\beta \in \Sigma$ ⁺ then S \rightarrow *_G['] β . Hence L(G^{''})-{ ϵ } \subseteq L(G[']). But now if S -->^{k+1}_G["] β then

 $S \rightarrow^{*}_{G''} \mu B_{\nu} - (B \rightarrow x\underline{A}y) \rightarrow \mu xAy_{\nu} \rightarrow w_{1} \rightarrow ... \rightarrow \alpha'\underline{A}\beta' - (A \rightarrow \varepsilon)$

 $\rightarrow \alpha'\beta' \rightarrow \dots \rightarrow \beta$ and then

 $S \rightarrow^*_{G''} \mu B_{\nu} - (B \rightarrow xy) \rightarrow \mu xy_{\nu} \rightarrow w'_1 \rightarrow ... \rightarrow \alpha'\beta' \rightarrow ... \rightarrow \beta$. hence $S - - >^k_{G''} \beta$. QED Example 1.4:

Ex 1.4: G: $\underline{S \rightarrow ACA}$ $A \rightarrow \underline{aAa} | B | C$ $B \rightarrow bB | b$ $C \rightarrow cC | \varepsilon$. => N_G = {C, A, S}.

Hence P'' = PU {
$$S \rightarrow ACA |AC|CA|AA|A|C|\epsilon$$

 $A \rightarrow aAa | aa | B | C | \epsilon$
 $B \rightarrow bB | b$
 $C \rightarrow cC | c | \epsilon$ }

and P' = { $S \rightarrow ACA |AC|CA|AA|A|C$ $A \rightarrow aAa | aa | B | C$ $B \rightarrow bB | b$ $C \rightarrow cC | c$ }

Elimination of unit-rules

Linear Grammars and Normal forms

Problem: Is it possible to avoid unit-rules ? Ex: $A \rightarrow aA \mid a \mid B \mid B \rightarrow bB \mid b \mid C$

$$\Rightarrow A \rightarrow B$$
 $\Rightarrow bB$ $A \rightarrow bB$ $\Rightarrow b ==> replace A \rightarrow B by 3 rules:$ $A \rightarrow b$ $\Rightarrow C$ $A \rightarrow C$

Problem: A \rightarrow B removed but new unit rule A \rightarrow C generated.

Find potential unit-rules.

Linear Grammars and Normal forms

Def: G: a CFG w/o ε -rules. A \in N (A is a nonterminal). Define CH(A) = {B \in N | A \rightarrow * B }

□ Note: since G contains no ε -rules. A \rightarrow * B iff all rules applied in the derivation are unit-rules.

Problem: how to find CH(A) for all $A \in N$.

Sol: Let $CH_{K}(A) = \{B \in N \mid \exists n \leq k, A \rightarrow^{n} B\}$ Then

1. $CH_0(A) = \{A\}$ since $A \rightarrow^0 \alpha$ iff $\alpha = A$.

2. $CH_{k+1}(A) = CH_{K}(A) \cup \{C \mid B \rightarrow C \in P \text{ and } B \in CH_{K}(A) \}.$

3. $CH(A) = U_{k \ge 0} CH_{k}(A)$.

Ex: G: $S \rightarrow ACA |AC|CA|AA|A|C A \rightarrow aAa | aa | B | C$

 $B \rightarrow bB \mid b$

 $C \rightarrow cC \mid c$

==> CH(S) = ? CH(A) = ? CH(B) = ? CH(C) = ?

Removing Unit-rules

Theorem 2.3: G: a CFG w/o ε-rules. Then there is a CFG H' equivalent to G but contains no unit-rules.

Pf: H" and H' are constructed as follows:

1. Let P'' = P U { $A \rightarrow w \mid B \in CH(A)$ and $B \rightarrow w \in P$ }. and

2. let P' = P'' with all unit-rules removed.

- By lem 1.4, L(H") = L(G). the proof that L(H") = L(H) is similar to Theorem 1.5. left as an exercise (Hint: Unit rules applied in a derivation can always be decreased to zero).
- Ex: G: $S \rightarrow ACA |AC|CA|AA|A|C$ $A \rightarrow aAa | aa | B | C$ $B \rightarrow bB | b$ $C \rightarrow cC | c$ ==>CH(S)={S,A,C,B}, CH(A) = {A,B,C}, CH(B) ={B}, CH(C) = {C}. Hence P'' = P U { ? } and P' = { ? }.

Note: if G contains no ε -rules, then so does H'.

Contracting Grammars

- Given a CFG G, it would be better to replace G by another G' if G' contains fewer nonterminal symbols and/or production rules.
 - Like FAs, where inaccessible states can be removed, some symbols and rules in a CFG can be removed w/t affecting its accepted language.
- Def: A nonterminal A in a CFG G is said to be grounding if it can derive terminal strings. (i.e., there is $w \in \Sigma^* \text{ s.t. } A \rightarrow^* w.$ } O/W we say A is nongrounding.
- Note: Nongrounding symbols (and all rules using nonground symbols) can be removed from the grammars.
- Ex: G: $S \rightarrow a \mid aS \mid bB$ $B \rightarrow C \mid D \mid aB \mid BC$
- ==> Only S is grounding and B,C, D are nongrounding
- ==> B,C,D and related rules can be removed from G.
- ==> G can be reduced to: $S \rightarrow a \mid aS$

Finding nongrounding symbols

Linear Grammars and Normal forms

- Given a CFG G = (N,S,P,S). the set of grounding symbols can be defined inductively as follows:
- **1.** Init: If there is a rule $A \rightarrow w$ in P s.t. $w \in \Sigma^*$, then A is grounding.
- ind.: If A → w is a rule in P s.t. each symbol in w is either a terminal or grounding then A is grounding.
- Exercise: According to the above definition, write an algorithm to find all grounding (and nongrounding) symbols for arbitrarily given CFG.
- Ex: $S \rightarrow aS | b | cA | B | C | D$ $A \rightarrow aC | cD | Dc | bBB$ $B \rightarrow cC | D | b$ $C \rightarrow cC | D$ $D \rightarrow cD | dC$
- => By init: S, B is grounding => S,B,A is grounding
- => G can be reduced to :

 $S \rightarrow aS | b | cA | B$ $A \rightarrow bBB$ $B \rightarrow b$

Unreachable symbols

Linear Grammars and Normal forms

Def: a nonterminal symbol A in a CFG G is said to be reachable iff it occurs in some sentential form of G. i.e., there are α,β s.t. $S \rightarrow \alpha A\beta$. It A is not reachable, it is said to be unreachable. I Note: Both nongrounding symbols and unreachable symbol are useless in the sense that they can be removed from the grammars w/o affecting the language accepted. **Problem: How to find reachable symbols in a CFG?** Sol: The set of all reachable symbols in G is the least subset R of N s.t. 1. the start symbol $S \in R$, and **2.** if $A \in R$ and $A \rightarrow \alpha B\beta \in P$, then $B \in R$. Ex: $S \rightarrow AC |BS| B A \rightarrow aA |aF B \rightarrow |CF| b C \rightarrow cC | D$ $D \rightarrow aD | BD | C \qquad E \rightarrow aA | BSA \quad F \rightarrow bB | b.$ => R = {S, A,B,C,F,D} and E is unreachable.

Elimination of empty and unit productions

- The removal of ε -rules and unit-rules can be done simultaneously.
- G = (N,S,P,S) : a CFG. The EU-closure of P, denoted EU(P), is the least set of rules including P s.t.
 - 1. If $A \rightarrow \alpha B\beta$ and $B \rightarrow \epsilon \in EU(P)$ then $A \rightarrow \alpha\beta \in EU(P)$.
 - 2. If $A \rightarrow B \in EU(P)$ and $B \rightarrow \gamma \in EU(P)$ then $A \rightarrow \gamma \in EU(P)$.
 - Quiz: What is the recursive definition of EU(P) ?

Notes:

- □ 1. EU(P) exists and is finite.
- □ If A → $\alpha_0 A_1 \alpha_1 A_2 ... A_n \alpha_n$ contains n nonterminals on the RHS ==> there are at most 2ⁿ-1 new rules which can be added to EU(P), due to (a) and this rule.
- □ If $B \rightarrow \gamma \in P$ and |N| = n then there are at most n-1 rules can be added to EU(P) due to this rule and (b).
- \Box 2. It is easy to find EU(P).

Transparency No. P2C2-31

```
Linear Grammars
                                                                              and Normal forms
     EU-closure of production rules
 Procedure EU(P)
                                                   Ex 21.5': P=\{S \rightarrow [S] | SS | \varepsilon\}
                                                   1+3 \Rightarrow S \rightarrow []
                                                                                          --- 4.
1. P' = P; NP = \{\};
                                                                                       --- 5.
                                                  2+3 \Rightarrow S \rightarrow S, S \rightarrow S
2. for each \varepsilon-rule B \rightarrow \varepsilon \in P' do
      for each rule A \rightarrow \alpha B\beta do
                                                   = EU(P) = P U { S \rightarrow [], S \rightarrow S }
       NP = NP U {A \rightarrow \alpha\beta };
3. for each unit rule A \rightarrow B \in P' where B \neq A,
      for each rule B \rightarrow \gamma do
     NP = NP U {A \rightarrow \gamma};
4. If NP \subseteq P' then return (P')
  else{P' = P' U NP; NP = {};
          goto 2}
Notation: let P'_{k} =_{def} the value of P' after the kth iteration of
 statement 2 and 3.
```

Equivalence of P and EU(P) (skipped!).

- $G = (N, \Sigma, P, S), G' = (N, \Sigma, EU(P), S).$
- Lem 1: for each rule $A \rightarrow \gamma \in EU(P)$, we have $A \rightarrow^*_G \gamma$.
- pf: By ind on k where k is the number of iteration of statement 2,3 of the program at which A $\rightarrow \gamma$ is obtained.
- 1. k = 0. then A $\rightarrow \gamma \in EU(P)$ iff A $\rightarrow \gamma \in P$. Hence A $\rightarrow^*_G \gamma$.
- 2. K = n+1 > 0.
 - 2.1: A $\rightarrow \gamma$ is obtained from statement 2.
 - ==> \exists B, α , β with $\alpha\beta = \gamma$ s.t. A $\rightarrow \alpha$ B β and B $\rightarrow \varepsilon \in$ P'_n.
 - $\Box \text{ Hence } A \rightarrow^*_G \alpha B\beta \rightarrow^*_G \alpha\beta = \gamma.$
 - **2.2** A $\rightarrow \gamma$ is obtained from statement 3.
 - ==> $\exists A \rightarrow B \text{ and } B \rightarrow \gamma \in P'_n$.
 - □ Hence A \rightarrow^*_{G} B \rightarrow^*_{G} γ.

```
Corollary: L(G) = L(G').
```

S can never occur at RHS (skipped!!)

- G = (N,Σ,P,S) : a CFG. Then there exists a CFG G' = (N',Σ,P',S') s.t. (1) L(G') = L(G) and (2) the start symbol S' of G' does not occur at the RHS of all rules of P'.
- Ex:G: $S \rightarrow aS \mid AB \mid AC$ $A \rightarrow aA \mid \varepsilon$ $B \rightarrow bB \mid bS$ $C \rightarrow cC \mid \varepsilon$.==> G':S' $\rightarrow aS \mid AB \mid AC$ $A \rightarrow aA \mid \varepsilon$ $S \rightarrow aS \mid AB \mid AC$ $A \rightarrow aA \mid \varepsilon$ $B \rightarrow bB \mid bS$ $C \rightarrow cC \mid \varepsilon$.

ie., Let G' = G if S does not occurs at the RHD of rules of G. o/w: let N' = N U {S'} where S' is a new nonterminal \notin N. and Let P' = P U {S' $\rightarrow \alpha \mid S \rightarrow \alpha \in P$ }. It is easy to see that G' satisfies condition (2). Moreover for any $\alpha \in (N \cup \Sigma)^*$, we have S' $\rightarrow^+_{G'} \alpha$ iff S $\rightarrow^+_{G} \alpha$. Hence L(G) = L(G').

<u>Generality of Greibach normal form (skipped!)</u>

- The topic about Greibach normal form will be skipped!
 - □ Content reserved for self study.
- Claim: Every CFG G can be transformed into an equivalent one G' in gnf form (i.e., L(G') = L(G) - { ε }).

Definition: (left-most derivation)

- □ $\alpha,\beta \in (N \cup \Sigma)^*$: two sentential forms
- $\begin{array}{ll} \alpha \mathrel{{}^{\text{L}}\text{--}}_{\mathsf{G}} \beta \mathrel{=}_{\mathsf{def}} \exists \mathbf{x} \in \Sigma^*, \mathbf{A} \in \mathsf{N}, \gamma \in (\mathsf{NU}\Sigma)^*, \text{ rule } \mathbf{A} \mathrel{->} \delta \text{ s.t.} \\ \\ \alpha \mathrel{=} \mathbf{x} \mathsf{A} \gamma \text{ and } \beta \mathrel{=} \mathbf{x} \delta \gamma. \end{array}$
- □ i.e., $\alpha \vdash --> \beta$ iff $\alpha \vdash --> \beta$ and the left-most nonterminal symbol A of β is replaced by the rhs δ of some rule A-> δ.

• Derivations and left-most derivations:

□ Note: L -->_G ⊆ -->_G but not the converse in general !

□ Ex: G : A -> Ba | ABc; B -> a | Ab

I then aAb B --> aAb Ba and aAbB --> a Ba bB and

aAbB L--> a Ba bB but not aAb B L--> aAb Ba

Left-most derivations

Linear Grammars and Normal forms

As usual, let ^L-->*_G be the ref. and trans. closure of ^L-->_G.

 Equivalence of derivations and left-most derivations : Theorem: A: a nonterminal; x: a terminal string. Then A -->* x iff A ^L-->* x.

 pf: (<=:) trivial. Since ^L--> ⊆ --> implies ^L-->* ⊆ -->*.
 (=>:) left as an exercise.
 (It is easier to prove using parse tree.) **Transform CFG to gnf**

- G= (N,Σ,P,S) : a CFG where each rule has the form:
 A -> a or
 - **Δ** A -> $B_1 B_2 \dots B_n$ (n > 1). // we can transform every cfg into such from if it has no ε-rule.
- Now for each pair (A, a) with $A \in N$ and $a \in \Sigma$, define the set $R(A,a) =_{def} \{ \beta \in N^* \mid A ^{L} > * a \beta \}.$
- Ex: If G1 = { S-> AB | AC | SS, C-> SB, A->[, B ->] }, then
 - $\Box \quad CSSB \in R(C,[) \text{ since }$
 - □ C^L--><u>S</u>B^L--> SS B^L--> SS SB^L--> ACSSB^L--> [CSSB
- Claim: The set R(A,a) is regular over N*. In fact it can be generated by the following left-linear grammar:

•
$$G(A,a) = (N', \Sigma', P', S')$$
 where

□ N' = {X' | X ∈ N}, Σ ' = N, S' = A' is the new start symbol,

 $\Box \mathbf{P}' = \{ \mathbf{X}' \rightarrow \mathbf{Y}' \omega \mid \mathbf{X} \rightarrow \mathbf{Y} \omega \in \mathbf{P} \} \cup \{ \mathbf{X}' \rightarrow \varepsilon \mid \mathbf{X} \rightarrow \mathbf{a} \in \mathbf{P} \}$ Transparency No. P2C2-37

- ✓ Ex: For G1, the CFG G1(C, [) has
 - □ nonterminals: S', A',B',C',
 - □ terminals: S,A,B,C,
 - □ start symbol: C'
 - I rules P' = { S'-> A'B | A'C | S'S, C'-> S'B, A'->ε }
 I cf: P = { S -> AB | AC | SS, C-> SB, A->[, B ->] }
 - Note: Since G(A,a) is regular, there is a strongly right linear grammar equivalent to it. Let G'(A,a) be one of such grammar. Note every rule in G'(A,a) has the form X' -> BY' or X' ->ε }
 - Iet S_(A,a) be the start symbol of the grammar G'(A,a).
 - let $G_1 = G U U_{A \in N, a \in \Sigma} G'(A,a)$ with terminal set Σ ,
 - **I** and nonterminal set: N U nonterminals of all G'(A,a).
 - **1 1 . Rules in G**₁ have the forms: X -> b, X->B ω or X -> e
 - □ 2. L(G) = L(G₁) since no new nonterminals can be derived from S, the start symbol of G and G_1 .

Example: From G1, we have:

- $\Box R(S, [) = ? R(C, [) = ? R(A, [) = ? R(B, [) = ?)$
- All four grammar G(S,[), G(A,[), G(A, [) and G(B,[) have the same rules:
- \Box {S' -> A'B | A'C | S'S, C' -> S'B, A' -> ε }, but
- □ with different start symbols: S', C', A' and B'.
- I The FAs corresponding to All G(A,a) have the same transitions and common initial state (A').
- □ They differs only on the final state.
- Exercises:
 - 1. Find the common grammar rules corresponding to G(S,]), G(C,]), G(A,]) and G(B,])
 - 2. Draw All FAs corresponding to R(S,]), R(C,]), R(A,]) and R(B,]), respectively.
 - 3. Find regular expressions equivalent to the above four sets.

Transparency No. P2C2-39

Transparency No. P2C2-41

Strongly right linear grammar corresponding to G(A,a)s and Normal forms

- $\begin{array}{l} \square & G'(S,[) = \{ S_{(S,[)} \rightarrow BX \mid CX \ X \rightarrow SX \mid \epsilon \} \\ \square & G'(C,[) = \{ S_{(C,[)} \rightarrow BY \mid CY \ Y \rightarrow SY \mid BZ, Z \rightarrow \epsilon \} \\ \square & G'(A,[) = \{ S_{(A,[)} \rightarrow \epsilon \} \end{array}$
- $\Box G'(B,[) = G'(S,]) = G'(C,]) = G'(A,]) = \{\}$

$$\Box G'(B,]) = \{ S_{(B,])} \rightarrow \epsilon \}$$

Let G₂ = G₁ with every rule of the form:

X -> Βω

replaced by the productions X -> b $S_{(B,b)}\omega$ for all b in Σ .

• Note: every production of G2 has the form:

 $X \rightarrow b \text{ or } X \rightarrow \varepsilon \text{ or } X \rightarrow b S_{(B,b)} \omega.$

Let G_3 = the resulting CFG by applying ε rule-elimination to G_2 . Now it is easy to see that $L(G) = L(G_1) = ?= L(G_2) = L(G_3)$. and G3 is in gnf.

Linear Grammars

<u>From G_1 to G_2 </u>

By def. $G1_1 = G1 \cup U_{X \text{ in } N. a \text{ in } \Sigma} G1(X, a)$ = G1 U { $S_{(S,I)} \rightarrow BX | CX X \rightarrow SX | \varepsilon$ } U $\{ S_{(C,I)} \rightarrow BY | CY Y \rightarrow SY | BZ, Z \rightarrow \epsilon \} U$ { S_(A,Γ) -> ε } U { S_(B,1) -> ε } □ Note: $L(G1_1) = L(G1)$ why? and $G1_2 = \{ S \rightarrow [S_{(A,[)} B \mid] S_{(A,[)} B \mid // S \rightarrow AB \}$ $[S_{(A,[)} C |] S_{(A,[)} C | // S-> AC$ $[S_{(S,I)} S |] S_{(S,I)} S // S-> SS,$ $C \rightarrow [S_{(S,I)} B |] S_{(S,I)} B$ // C-> SB, A->[, B->] } U { S_(S,[) -> BX | CX X -> SX ε } U /* $\{ S_{(C,I)} \rightarrow BY | CY Y \rightarrow SY | BZ, Z \rightarrow \varepsilon \} U$ * */ $\{ S_{(A,I)} \rightarrow \varepsilon \} \cup \{ S_{(B,I)} \rightarrow \varepsilon \}$ Transparency No. P2C2-43

From G_2 to G_3

- By applying ε -rule elimination to G1₂, we can get G1₃:
- First determine all nullable symbols: X, Z, S_(A,[), S_(B,])

Linear Grammars and Normal forms <u>G1</u>₃ $G1_3 = \{ S \rightarrow [B | [C | [S_{(S,I)} S]$ C-> [S_(S,I) B A-> [, B->] $S_{(S,I)} \rightarrow X \mid J \mid S_{(C,I)} \times S_{(C,I)}$ // BX| CX **X** -> $[S_{(S,I)} X | [S_{(S,I)} X]$ **} U** S_(C,I) ->] Y | [S_(C,I) Y $Y = ->]S_{(B,1)} Y |] \} //SY | BZ,$ **Lemma 21.7:** For any nonterminal X and x in Σ^* , $X^{L} ->^{*}_{G1} x \text{ iff } X^{L} ->^{*}_{G2} x.$ Pf: by induction on n s.t. X -> n_{G1} x. Case 1: n = 1. then the rule applied must be of the form: X -> b or X -> ε. But these rules are the same in both grammars.

Transparency No. P2C2-45

Equivalence of G₁ and G₂

Inductive case: n > 1. $X^{L} - >_{G1} B_{\omega}^{L} - >_{G1}^{*} by = x$ iff $X^{L}_{--} >_{G^{1}} B_{\omega} \stackrel{L}{\to} *_{G^{1}} bB_{1}B_{2}...B_{k} \omega \stackrel{L}{\to} *_{G^{1}} bz_{1}...z_{k} z = x$, where \square bB₁B₂...B_k ω is the first sentential form in the sequence in which b appears and $B_1B_2...B_k$ belongs to R(B,b), iff (by definition of R(B,b) and G(B,b)) $X \xrightarrow{L} = S_{G2} b S_{(B,b)} \omega \xrightarrow{L} = S_{G1}^* b B_1 B_2 \dots B_k \omega \xrightarrow{L} = S_{G1}^* b z_1 \dots z_k z_k$ where the subderivation $S_{(B,b)} \stackrel{L}{\longrightarrow} B_1 B_2 \dots B_k$ is a derivation in $G(B,b) \subset G1 \cap G2$. iff X ^L-->*_{G2} b S_(B,b) ω ^L-->*_{G2} b B₁B₂...B_k ω ^L-->*_{G1} bz₁...z_k z = x But by ind. hyp., $B_i^{L} - >_{G2}^* z_i$ (0 < j < k+1) and $\omega^{L} - >_{G2}^* y$. Hence X^{L} -->*_{G2} x.