
 Transparency No. P2C2-1

Formal Language
and Automata Theory

PART II: Chapter 2

Linear Grammars and

Normal Forms

Linear Grammars
and Normal forms

 Transparency No. P2C2-2

Linear Grammar

G = (N,S,S,P) : a CFG

 A,B: nonterminals

 a: terminal symbol

 y S*, x S*.

 Notes:

 1. All types of linear grammars are CFGs.

 2. All types of linear grammars generate the same class of
languages (i.e., regular languages)

Theorem: For any language L: the following statements are
equivalent:

 0. L is regular

 1. L = L(G1) for some RG G1 2. L=L(G2) for some SRG G2

 3. L=L(G3) from some LG G3 4. L=L(G4) for some SLG G4

Grammar Type Production form

right linear A yB or A x

Strongly right linear A aB | B |

Left linear A By or A x

Strongly left linear A Ba | B |

Linear Grammars
and Normal forms

 Transparency No. P2C2-3

Equivalence of linear languages and regular sets

 Pf: (2) => (1) and (4)=>(3) : trivial since SRG (SLG) are special
kinds of RG (LG).

 (1)=>(2) :1. replace each rule of the form:

 A a1 a2 …an B (n > 1)

 by the following rules

 A a1 B1, B1 a2 B2, …, Bn-2 an-1 Bn-1, Bn-1 an B

 where B1,B2,…,Bn-1 are new nonterminal symbols.

 2. Replace each rule of the form:

 A a1 a2 …an (n 1)

 by the following rules

 A a1B1 , B1 a2B2, …, Bn-1 anBn, Bn

 3. Let G’ be the resulting grammar. Then L(G) = L(G’).

 (3)=>(4) : Similar to (1) =>(2).

A B a1 a2 …an (n > 1) ==> A Bnan, Bn Bn-1an-1, ..., B2 Ba1

A a1 a2 …an (n 1) ==> A Bnan, Bn Bn-1an-1, ..., B2 B1a1 , B1

Linear Grammars
and Normal forms

 Transparency No. P2C2-4

Example:

 The right linear grammar :

 S abab S and S abc

 can be converted into a SRG as follows:

 S ababS =>

 S a [babS]

 [babS] b [abS]

 [abS] a [bS]

 [bS] b S

 S abc =>

 S a [bc]

 [bc] b [c]

 [c] c []

 []

Linear Grammars
and Normal forms

 Transparency No. P2C2-5

RGs and FAs

 pf: (0) =>(2), (0)=>(4)

 Let M = (Q,S,d,S,F) : A NFA allowing empty transitions.

 Define a SRG G2 and a SLG G4 as follows:

 G2 = (N2, S ,S2,P2) G4 = (N4, S ,S4,P4) where

 1. N2 = Q U {S2}, N4 = Q U {S4}, where S2 and S4 are

new symbols and

 P2 = {S2 A | A S } U { A aB | B d(A,a) }

 U{A | A F }. // to go to a final state from A,

use ‘a’ to reach B and then from B go to a final state.

 P4 = {S4 A | A F } U { B Aa | B d(A,a) }

 U {A | A S }. // to reach B from a start state,

reach A from a start state and then consume a.

Linear Grammars
and Normal forms

 Transparency No. P2C2-6

 Lem 01: If S2
+

G2a S*,then a = xB where xS*and BQ

 Lemma 1: S2
+

G2 xB iff B D(S,x).

 --- can be proved by ind. on derivation length(=>) and x (<=).

Hence x L(G2)

 iff S2 *
G2 x iff S2

+
G2 xB G2 x for a B F.

 iff B D(S,x) and B F iff x L(M)

 Lem 02:If S4
+

G4 aS*,then a=Bx where x S* and BQ.

 Lemma 2: S4
 +

G4 Bx iff F D(B,x) .

Hence S4 *G4 x

 iff S4 *G4 Bx G4 x for some start state B

 iff B S and F D(B,x) iff x L(M)

Theorem: L(M) = L(G2) = L(G4).

Linear Grammars
and Normal forms

 Transparency No. P2C2-7

From FA to LGs: An example

 Let M = ({A,B,C,D}, {a,b}, d, {A,B},{B,D}) where

 d is given as follows:

 > A <-- a --> C

 ^ ^
 b b

 V V

 >(B) <-- a--> (D)

==> G2 = ? G4 = ?

 E –a –> F is translated to :

 1. (G2) E aF : E // if E is a final state

 To reach a final state from E, go to F first by consuming an ‘a’ and

then try to reach a final state from F.

 2. (G4) F Ea : E // if E is a start state

 How to reach F from a start state? go to E first and then by

consuming a, you can reach F.

Linear Grammars
and Normal forms

 Transparency No. P2C2-8

Motivation: Derivation and path walk

 SＡ aB abC abaD aba.

 => { A aB, B bC, C aD, D … }

Conclusion: The forward walk of a path from a start state to a

final state is the same as the derivation of a SRG grammar.

A B

 D

C

a b

b a

A B

 D

C

a b

b a

A B

 D

C

a b

b a

A B

 D

C

a b

b a

Linear Grammars
and Normal forms

 Transparency No. P2C2-9

Derivation and backward path walk

 SD Ca Bba Aaba aba.

 => { D Ca, C Bb, B Aa, A … }

Conclusion: The backward walk of a path from a start state to a

final state is the same as the derivation of a SLG grammar.

A B

 D

C

a b

b a

A B

 D

C

a b

b a

A B

 D

C

a b

b a

A B

 D

C

a b

b a

Linear Grammars
and Normal forms

 Transparency No. P2C2-10

From FA to LGs: an example

 Let M = ({A,B,C,D}, {a,b}, d, {A,B},{B,D}) where

 d is given as follows:

 > A <-- a --> C

 ^ ^
 b b

 V V

 >(B) <-- a--> (D)

==> G2 = ? G4 = ?

 sol: S2 A | B sol: S4 B | D

 A aC | bB B Ab | Da |

 B aD | bA | D Cb | Ba

 C aA | bD C Aa | Db

 D aB | bC | A Bb | Ca |

Linear Grammars
and Normal forms

 Transparency No. P2C2-11

From Linear Grammars to FAs

 G = (N,S,S,P) : a SRG

 Define M = (N,S,d,{S},F) where

 F = {A | A P} and

 d = {(A,a,B) | A aB P,

 a S U {} }

Theorem: L(M) = L(G).

 G = (N,S,S,P) : a SLG

Define M’ = (N,S,d,S’,{S}) where

 S’ = {A | A P} and

 d = {(A,a,B) | B Aa P,

 a S U {} }

Theorem: L(M’) = L(G).

Example:

G : S aB | bA

 B aB |

 A bA |

=> M = ?

Example:

 G: S Ba | Ab

 A Ba |

 B Ab |

==> M’ = ?

Linear Grammars
and Normal forms

 Transparency No. P2C2-12

Other types of transformations

 FA LG = {SLG, SRG } (ok!)

 FA Regular Expression (ok!)

 SLGs SRGs (?)

 SLG FA SRG

 LG Regular Expression (?)

 LG FA Regular Expression

 Ex: Translate the SRG G: SaA | bB, A aS | , B bA | bS |

 into an equivalent SLG.

sol: The FA corresponding to G is M = (Q, {a,b}, d, S, {A,B}), where Q=

{S,A,B} and d = { (S, a, A), (S,b,B), (A, a,S), (B,b,A),(B,b,S)}

So the SLG for M (and G as well) is

 S' A | B, --- final states become start symbol; S' is the new start symbol

 S , --- start state becomes empty rule

 A Sa, B Sb, SAa, A Bb, S Bb. // do you find the rule from SRG

to SLG ?

Linear Grammars
and Normal forms

 Transparency No. P2C2-13

Exercises

 Convert the following SRG into an equivalent SLG ?

 S aS | bA | aB |

 A aB | bA | aS |

 B bA | aS

 Convert the following SLG into an equivalent SRG ?

 S Ca | Ab | Ba

 A Ba | Cb |

 B Ab | Sa

 C Aa | Bb |

Rules:

 A aB B Aa

 A B B A

empty rule: A e S’ A

start symbol: S S e

Rules:

 A Ba B aA

 A B B A

empty rule: A e S’ A

start symbol: S S e

Linear Grammars
and Normal forms

 Transparency No. P2C2-14

Chomsky normal form and Greibach normal form

 G = (N,S,P,S) : a CFG

 G is said to be in Chomsky Normal Form (CNF) iff all rules in

P have the form:

 A a or A BC

 where a S and A, B,C N. Note: B and C may equal to A.

 G is said to be in Greibach Normal Form (GNF) iff all rules in

P have the form:

 A a B1B2…Bk

 where k 0, a S and Bi N for all 1 i k .

 Note: when k = 0 => the rule reduces to A a.

Ex: Let G1: S AB | AC |SS, C SB, A [, B]

G2: S [B | [SB | [BS | SBS, B]

 ==> G1 is in CNF but not in GNF

 G2 is in GNF but not in CNF.

Linear Grammars
and Normal forms

 Transparency No. P2C2-15

Remarks about CNF and GNF

1. L(G1) = L(G2) = PAREN - {}.

2. No CFG in CNF or GNF can produce the null string . (Why ?)

Observation: Every rule in CNF or GNF has the form A a

 with |A| = 1 |a| since can not appear on the RHS.

 So

 Lemma: G: a CFG in CNF or GNF. Then a b only if |a| |b|.

Hence if S * x S* ==> |x| |S| = 1 => x != .

3. Apart from (2), CNF and GNF are as general as CFGs.

Theorem 21.2: For any CFG G, $ a CFG G’ in CNF and a CFG G’’

in GNF s.t. L(G’) = L(G’’) = L(G) - {}.

Linear Grammars
and Normal forms

 Transparency No. P2C2-16

Generality of CNF

 -rule: A .

 unit (chain) production: A B.

 Lemma: G: a CFG without unit and -rules. Then $ a CFG G’
in CNF form s.t. L(G) = L(G’).

Ex21.4: G: S aSb | ab has no unit nor -rules.

==> 1. For terminal symbol a and b, create two new nonterminal
symbol A and B and two new rules:

 A a, B b.

 2. Replace every a and b in G by A and B respectively.

 => S ASB | AB, A a, B b.

 3. S ASB is not in CNF yet ==> split it into smaller parts:

 (Say, let AS = AS) ==> S ASB and AS AS.

 4. The resulting grammar :

 S ASB | AB, A a, B b, AS AS is in CNF.

Linear Grammars
and Normal forms

 Transparency No. P2C2-17

generality of CNF

Ex21.5: G: S [S]S | SS | [] ==>

 A [, B], S ASBS | SS | AB

 ==> replace S ASBS by S ASBS ASB ASB,

 ==>replace ASB ASB by ASB ASB and AS AS.

 ==> G’: A [, B],

 S ASBS |SS |AB,

 ASB ASB, AS AS.

 (2) another possibility:

 S ASBS becomes S ASBS , AS AS, BS BS.

Problem: How to get rid of and unit productions:

Linear Grammars
and Normal forms

 Transparency No. P2C2-18

Elimination of e-rules (cont’d)

 It is possible that S * w w’ with |w’| < |w| because of the

-rules.

Ex1: G: S SaB | aB B bB | .

 => S SaB SaBaB aBaBaB aaBaB aaaB aaa.

 L(G) = (aB)+ = (ab*)+

Another equivalent CFG w/o -rules:

Ex2: G’: S SaB | Sa | aB | a B bB | b.

 S * S (a + aB)* (a+aB)+ B * b*B b+.

 => L(G’) = L(S) = (a + ab+)+ = (ab*)+

Problem: Is it always possible to create an equivalent CFG w/o

-rules ?

Ans: yes! but with proviso.

Linear Grammars
and Normal forms

 Transparency No. P2C2-19

Elimination of -rules (cont’d)

Def: 1. a nonterminal A in a CFG G is called nullable if it can

derive the empty string. i.e., A * .

 2. A grammar is called noncontracting if the application of a

rule cannot decrease the length of sentential forms.

 (i.e.,for all w,w’ (SUN)*, if w w’ then |w’| |w|.)

Lemma 1: G is noncontracting iff G has no -rule.

pf: G has -rule A => 1 = |A| > || = 0.

 G contracting => $a,b (NUS)* and A with aAb ab.

 => G contains an -rule.

Linear Grammars
and Normal forms

 Transparency No. P2C2-20

Simultaneous derivation:

Def: G: a CFG. ==>G : a binary relation on (N U S)* defined as

follows: for all a,b (NUS)*, a ==> b iff

 there are x0,x1,..,xn S*, rules A1 g1, …, An gn (n > 0) s.t.

 a = x0 A1 x1 A2 x2… An xn and

 b = x0 g1 x1 g2 x2… gn xn

==>n and ==>* are defined similarly like n and *.

Define ==>(n) =def (U k n ==>k).

Lemma:

 1. if a ==> b then a * b. Hence a ==>* b implies a * b.

 2. If b is a terminal string, then a n b implies a ==>(n) b.

 3. {x S* | S ==>* x } = L(G) = {x S* | S * x }.

Linear Grammars
and Normal forms

 Transparency No. P2C2-21

Find nullable symbols in a grammar

Problem: How to find all nullable nonterminals in a CFG ?

Note: If A is nullable then there are numbers n s.t. A ==> (n) .

Now let Nk = { A N | A ==>(k) }.

 1. NG (the set of all nullable nonterminals of G) = U k 0 NK.

 2. N1 = {A | A P}.

 3. Nk+1 = Nk U {A | A X1X2…Xn P (n >= 0) and All Xis Nk }.

 Ex: G : S ACA A aAa | B | C

 B bB | b C cC | .

=> N1 = ? {C}

 N2 = N1 U ?

 N3 = N2 U ?

 NG = ?

 Exercises: 1. Write an algorithm to find NG.

 2. Given a CFG G, how to determine if L(G) ?

Linear Grammars
and Normal forms

 Transparency No. P2C2-22

Adding rules into grammar w/t changing language

Lem 1.4: G = (N,S,P,S) : a CFG s.t. A * w. Then the CFG G’ =

(N,S, PU{ A w}, S) is equivalent to G.

pf: L(G) L(G’) : trivial since G G’ .

 L(G’) L(G): First define a ->>k
G’ b iff (a *G’ b and the rule A

w was applied k times in the derivation).

 Now it is easy to show by ind. on k that

 if a ->>k+1
G’ b then a ->>k

G’b (and hence a ->>0
G’ b and a *G b).

 Hence a *G’ b implies a *G b and L(G’) L(G).

Theorem 1.5: for any CFG G , there is a CFG G’ containing no -

rules s.t. L(G’) = L(G) - {}.

Pf: Define G’’ and G’ as follows:

 1. Let P’’ = P U D where D = {AX0X1…Xn | A X0A1X1…AnXnP,

 n 1, All Ais are nullable symbols and Xi (ＮUS)*. }.

 2. Let P’ be the resulting P’’ with all -rules removed.

Linear Grammars
and Normal forms

 Transparency No. P2C2-23

Elimination of e-rules (con’t)

By lem 1.4, L(G) = L(G’’). We now show L(G’) = L(G’’) - {}.

1. Since P’ P’’, L(G’) L(G’’). Moreover, since G’ contains no -
rules, L(G’) Hence L(G’) L(G’’) - {}.

2. For the other direction, first define S -->k
G’’ b iff

 S *G’’ b and all -rules A in P’’ are used k times totally in the
derivation. Note: if S -->0

G’’ b then S *
G’ b .

we show by induction on k that

 if S -->k+1
G’’ b and b then

 S -->k
G” b for all k 0 and hence S -->0

G’’ b and S *G’ b.

 As a result if S*G’’ bS+ then S*G' b. Hence L(G’’)-{} L(G’) .

 But now if S -->k+1
G’’ b then

 S *G’’ mBn --(B xAy)- mxAyn w1 … a’Ab’ --(A)

 a’b’ … b and then

 S *G’’ mBn --(B xy) mxyn w’1 … a’b’ … b .

 hence S -->k
G’’ b . QED

Linear Grammars
and Normal forms

 Transparency No. P2C2-24

Example 1.4:

Ex 1.4: G: S ACA A aAa | B | C

 B bB | b C cC | .

=> NG = {C, A, S}.

 Hence P’’ = P U { S ACA |AC|CA|AA|A|C|

 A aAa | aa | B | C |

 B bB | b

 C cC | c | }

and P’ = { S ACA |AC|CA|AA|A|C

 A aAa | aa | B | C

 B bB | b

 C cC | c }

Linear Grammars
and Normal forms

 Transparency No. P2C2-25

Elimination of unit-rules

Def: a rule of the form A B is called a unit rule or a chain rule.

 Note: if A B then aAb aBb does not increase the

length of the sentential form.

Problem: Is it possible to avoid unit-rules ?

Ex: A aA | a | B B bB | b | C

=> A B bB A bB

 b ==> replace A B by 3 rules: A b

 C A C

Problem: A B removed but new unit rule A C generated.

Linear Grammars
and Normal forms

 Transparency No. P2C2-26

Find potential unit-rules.

 Def: G: a CFG w/o -rules. A N (A is a nonterminal).

 Define CH(A) = {B N | A * B }

 Note: since G contains no -rules. A * B iff all rules applied

in the derivation are unit-rules.

Problem: how to find CH(A) for all A N.

Sol: Let CHK(A) = {B N | $n k, A n B } Then

 1. CH0 (A) = {A} since A 0 a iff a = A.

 2. CHk+1(A) = CHK(A) U {C | B C P and B CHK(A) }.

 3. CH(A) = U k 0 CHk(A).

Ex: G: S ACA |AC|CA|AA|A|C A aAa | aa | B | C

 B bB | b C cC | c

==> CH(S) = ? CH(A) = ?

 CH(B) = ? CH(C) = ?

S

A B

C

Linear Grammars
and Normal forms

 Transparency No. P2C2-27

Removing Unit-rules

Theorem 2.3: G: a CFG w/o -rules. Then there is a CFG H’

equivalent to G but contains no unit-rules.

Pf: H’’ and H’ are constructed as follows:

 1. Let P’’ = P U { A w | B CH(A) and B w P }. and

 2. let P’ = P’’ with all unit-rules removed.

 By lem 1.4, L(H’’) = L(G). the proof that L(H’’) = L(H’) is similar to

Theorem 1.5. left as an exercise (Hint: Unit rules applied in a

derivation can always be decreased to zero).

Ex: G: S ACA |AC|CA|AA|A|C A aAa | aa | B | C

 B bB | b C cC | c

==>CH(S)={S,A,C,B}, CH(A) = {A,B,C}, CH(B) ={B}, CH(C) = {C}.

Hence P’’ = P U { …. ? } and

 P’ = { ? }.

Note: if G contains no -rules, then so does H’.

Linear Grammars
and Normal forms

 Transparency No. P2C2-28

Contracting Grammars

 Given a CFG G , it would be better to replace G by another G’
if G’ contains fewer nonterminal symbols and/or production
rules.

 Like FAs, where inaccessible states can be removed,
some symbols and rules in a CFG can be removed w/t
affecting its accepted language.

Def: A nonterminal A in a CFG G is said to be grounding if it
can derive terminal strings. (i.e., there is w S* s.t. A* w.}
O/W we say A is nongrounding.

Note: Nongrounding symbols (and all rules using nonground
symbols) can be removed from the grammars.

Ex: G: S a | aS | bB B C | D | aB | BC

 ==> Only S is grounding and B,C, D are nongrounding

==> B,C,D and related rules can be removed from G.

 ==> G can be reduced to: S a | aS

Linear Grammars
and Normal forms

 Transparency No. P2C2-29

Finding nongrounding symbols

Given a CFG G = (N,S,P,S). the set of grounding symbols can be

defined inductively as follows:

1. Init: If there is a rule Aw in P s.t. w S*, then A is grounding.

2. ind.: If A w is a rule in P s.t. each symbol in w is either a

terminal or grounding then A is grounding.

Exercise: According to the above definition, write an algorithm to find

all grounding (and nongrounding) symbols for arbitrarily given

CFG.

Ex: S aS | b |cA | B | C | D A aC | cD | Dc | bBB

 B cC | D |b C cC | D D cD | dC

=> By init: S, B is grounding => S,B,A is grounding

=> G can be reduced to :

 S aS | b |cA | B A bBB B b

Linear Grammars
and Normal forms

 Transparency No. P2C2-30

Unreachable symbols

Def: a nonterminal symbol A in a CFG G is said to be reachable

iff it occurs in some sentential form of G. i.e., there are a,b s.t.

S * aAb. It A is not reachable, it is said to be unreachable.

 Note: Both nongrounding symbols and unreachable symbol

are useless in the sense that they can be removed from the

grammars w/o affecting the language accepted.

Problem: How to find reachable symbols in a CFG ?

Sol: The set of all reachable symbols in G is the least subset R

of N s.t. 1. the start symbol S R, and

 2. if A R and A aBb P, then B R.

Ex: S AC |BS | B A aA|aF B |CF | b C cC | D

 D aD | BD | C E aA |BSA F bB |b.

=> R = {S, A,B,C,F,D} and E is unreachable.

Linear Grammars
and Normal forms

 Transparency No. P2C2-31

Elimination of empty and unit productions

 The removal of -rules and unit-rules can be done simultaneously.

 G = (N,S,P,S) : a CFG. The EU-closure of P, denoted EU(P), is

the least set of rules including P s.t.

1. If A aBb and B EU(P) then A ab EU(P).

2. If A B EU(P) and B g EU(P) then A g EU(P).

 Quiz: What is the recursive definition of EU(P) ?

 Notes:

 1. EU(P) exists and is finite.

 If A a0A1a1A2…Anan contains n nonterminals on the RHS

==> there are at most 2n-1 new rules which can be added to

EU(P), due to (a) and this rule.

 If B g P and |N| = n then there are at most n-1 rules can

be added to EU(P) due to this rule and (b).

 2. It is easy to find EU(P).

Linear Grammars
and Normal forms

 Transparency No. P2C2-32

EU-closure of production rules

 Procedure EU(P)

1. P’ = P; NP = {};

2. for each -rule B P’ do

 for each rule A aBb do

 NP = NP U {A ab };

3. for each unit rule A B P’ where B A,

 for each rule B g do

 NP = NP U {A g};

4. If NP P’ then return (P’)

 else{P’ = P’ U NP; NP = {};

 goto 2}

Notation: let P’k =def the value of P’ after the kth iteration of

 statement 2 and 3.

Ex 21.5’: P={ S [S] | SS | }

1+3 => S [] --- 4.

2+3 => S S, S S --- 5.

=> EU(P) = P U { S [], S S }

Linear Grammars
and Normal forms

 Transparency No. P2C2-33

Equivalence of P and EU(P) (skipped!).

 G = (N,S,P,S), G’ = (N,S,EU(P), S).

Lem 1: for each rule A g EU(P), we have A *G g.

pf: By ind on k where k is the number of iteration of statement

2,3 of the program at which A g is obtained.

 1. k = 0. then A g EU(P) iff A g P. Hence A *G g.

 2. K = n+1 > 0.

 2.1: A g is obtained from statement 2.

 ==> $ B, a, b with ab = g s.t. A aBb and B P’n.

 Hence A *G aBb *Gab = g.

 2.2 A g is obtained from statement 3.

 ==> $ A B and B g P’n.

 Hence A *G B *G g.

Corollary: L(G) = L(G’).

Linear Grammars
and Normal forms

 Transparency No. P2C2-34

S can never occur at RHS (skipped!!)

 G = (N,S,P,S) : a CFG. Then there exists a CFG G’ = (N’,S,P’,S’)
s.t. (1) L(G’) = L(G) and (2) the start symbol S’ of G’ does not
occur at the RHS of all rules of P’.

Ex: G: S aS | AB |AC A aA |

 B bB | bS C cC | .

==> G’: S’ aS | AB |AC

 S aS | AB |AC A aA |

 B bB | bS C cC | .

ie., Let G’ = G if S does not occurs at the RHD of rules of G.

 o/w: let N’ = N U {S’} where S’ is a new nonterminal N.

 and Let P’ = P U {S’ a | S a P }.

 It is easy to see that G’ satisfies condition (2). Moreover

 for any a(N US)*, we have S’ +
G’ a iff S +

Ga.

 Hence L(G) = L(G’).

Linear Grammars
and Normal forms

 Transparency No. P2C2-35

Generality of Greibach normal form (skipped!)

 The topic about Greibach normal form will be skipped!

 Content reserved for self study.

 Claim: Every CFG G can be transformed into an equivalent

one G’ in gnf form (i.e., L(G’) = L(G) - { }).

Definition: (left-most derivation)

 a,b (N U S)* : two sentential forms

 a L-->G b =def $ x S*, A N, g (NUS)*, rule A -> d s.t.

 a = x A g and b = x d g.

 i.e., a L--> b iff a --> b and the left-most nonterminal

symbol A of b is replaced by the rhs d of some rule A-> d.

 Derivations and left-most derivations:

 Note: L-->G -->G but not the converse in general !

 Ex: G : A -> Ba | ABc; B -> a | Ab

 then aAb B --> aAb Ba and aAbB --> a Ba bB and

 aAbB L--> a Ba bB but not aAb B L--> aAb Ba

Linear Grammars
and Normal forms

 Transparency No. P2C2-36

Left-most derivations

 As usual, let L-->*
G be the ref. and trans. closure of L-->G.

 Equivalence of derivations and left-most derivations :

Theorem: A: a nonterminal; x: a terminal string. Then

 A -->* x iff A L-->* x.

pf: (<=:) trivial. Since L--> --> implies L-->* -->* .

 (=>:) left as an exercise.

 (It is easier to prove using parse tree.)

Linear Grammars
and Normal forms

 Transparency No. P2C2-37

Transform CFG to gnf

 G= (N,S,P,S) : a CFG where each rule has the form:

 A -> a or

 A -> B1 B2 …Bn (n > 1). // we can transform every cfg into

such from if it has no -rule.

 Now for each pair (A, a) with A N and a S, define the set

 R(A,a) =def { b N* | A L->* a b }.

Ex: If G1 = { S-> AB | AC | SS, C-> SB, A->[, B ->] }, then

 CSSB R(C,[) since

 C L-->SB L--> SS B L-->SS SB L--> ACSSB L--> [CSSB

 Claim: The set R(A,a) is regular over N*. In fact it can be

generated by the following left-linear grammar:

 G(A,a) = (N’, S’,P’,S’) where

 N’ = {X’ | X N}, S’ = N, S’ = A’ is the new start symbol,

 P’ = { X’ -> Y’w | X -> Yw P } U { X’ -> | X -> a P }

Linear Grammars
and Normal forms

 Transparency No. P2C2-38

 Ex: For G1, the CFG G1(C, [) has

 nonterminals: S’, A’,B’,C’,

 terminals: S,A,B,C,

 start symbol: C’

 rules P’ = { S’-> A’B | A’C | S’S, C’-> S’B, A’-> }

 cf: P = { S -> AB | AC | SS, C-> SB, A->[, B ->] }

 Note: Since G(A,a) is regular, there is a strongly right linear
grammar equivalent to it. Let G’(A,a) be one of such grammar.
Note every rule in G’(A,a) has the form X’ -> BY’ or X’ -> }

 let S(A,a) be the start symbol of the grammar G’(A,a).

 let G1 = G U U A N, a S G’(A,a) with terminal set S,

 and nonterminal set: N U nonterminals of all G’(A,a).

 1. Rules in G1 have the forms: X -> b, X->Bw or X -> e

 2. L(G) = L(G1) since no new nonterminals can be derived
from S, the start symbol of G and G1.

Linear Grammars
and Normal forms

 Transparency No. P2C2-39

Example:
 From G1, we have:

 R(S, [) = ? R(C,[) = ? R(A,[) = ? R(B,[) = ?

 All four grammar G(S,[), G(A,[), G(A, [) and G(B,[) have the
same rules:

 { S’ -> A’B | A’C | S’S, C’ -> S’B, A’ -> }, but

 with different start symbols: S’, C’, A’ and B’.

 The FAs corresponding to All G(A,a) have the same
transitions and common initial state (A’).

 They differs only on the final state.

 Exercises:

1. Find the common grammar rules corresponding to

 G(S,]), G(C,]), G(A,]) and G(B,])

 2. Draw All FAs corresponding to R(S,]), R(C,]), R(A,]) and

 R(B,]), respectively.

 3. Find regular expressions equivalent to the above four

 sets.

Linear Grammars
and Normal forms

 Transparency No. P2C2-40

S

S’ A’

B’ C’

B,C

B

S’ A’

B’ C’

B,C
S

B

S’ A’

B’ C’

B,C
S

B

S’ A’

B’ C’

B,C
S

B

R(S,[) = (B+C)S* R(C,[) = (B+C)S* B

R(A,[) = {} R(B,[) = {}.

FAs corresponding to various G(A,[)s.

Linear Grammars
and Normal forms

 Transparency No. P2C2-41

FAs corresponding to various G(A,])s.

common rules: S’ -> A’B | A’C | S’S, C’ -> S’B, B’ ->

S

S’ A’

B’ C’

B,C

B

S’ A’

B’ C’

B,C
S

B

S’ A’

B’ C’

B,C
S

B

S’ A’

B’ C’

B,C
S

B

R(S,]) = {} R(C,]) = {}

R(A,]) = {} R(B,]) = {}.

Linear Grammars
and Normal forms

 Transparency No. P2C2-42

Strongly right linear grammar corresponding to G(A,a)s

 G’(S,[) = { S(S,[) -> BX | CX X -> SX | }

 G’(C,[) = { S(C,[) -> BY | CY Y -> SY | BZ, Z -> }

 G’(A,[) = { S(A,[) -> }

 G’(B,[) = G’(S,]) = G’(C,]) = G’(A,]) = {}

 G’(B,]) = { S(B,]) -> }

 Let G2 = G1 with every rule of the form:

 X -> Bw

 replaced by the productions X -> b S(B,b)w for all b in S.

 Note: every production of G2 has the form:

 X -> b or X -> or X -> b S(B,b) w.

Let G3 = the resulting CFG by applying rule-elimination to G2.

Now it is easy to see that L(G) = L(G1) =?= L(G2) = L(G3).

 and G3 is in gnf.

Linear Grammars
and Normal forms

 Transparency No. P2C2-43

From G1 to G2

By def. G11 = G1 U UX in N, a in S G1(X, a)

 = G1 U { S(S,[) -> BX | CX X -> SX | } U

 { S(C,[) -> BY | CY Y -> SY | BZ, Z -> } U

 { S(A,[) -> } U

 { S(B,]) -> }

 Note: L(G11) = L(G1) why ?

and G12 = { S -> [S(A,[) B |] S(A,]) B | // S -> AB

 [S(A,[) C |] S(A,]) C | // S-> AC

 [S(S,[) S |] S(S,]) S // S-> SS,

 C-> [S(S,[) B |] S(S,]) B // C-> SB,

 A->[, B ->] } U ….

 /* { S(S,[) -> BX | CX X -> SX } U

 * { S(C,[) -> BY | CY Y -> SY | BZ, Z -> } U

*/ { S(A,[) -> } U { S(B,]) -> }

Linear Grammars
and Normal forms

 Transparency No. P2C2-44

From G2 to G3

 By applying -rule elimination to G12, we can get G13:

 First determine all nullable symbols: X, Z, S(A,[) , S(B,])

G12 = { S -> [S(A,[) B | [S(A,[) C | [S(S,[) S

 C-> [S(S,[) B

 A-> [, B ->] } U

 { S(S,[) ->] S(B,]) X | [S(C,[) X // BX| CX

 X -> [S(S,[) X | } U

 { S(C,[) ->] S(B,]) Y | [S(C,[) Y // BY | CY

 Y -> [S(S,[) Y |] S(B,]) Z // SY | BZ,

 Z -> } U { S(A,[) -> , S(B,]) -> }

Hence G13 = ?

Linear Grammars
and Normal forms

 Transparency No. P2C2-45

G13

G13 = { S -> [B | [C | [S(S,[) S

 C-> [S(S,[) B

 A-> [, B ->]

 S(S,[) ->] X |] | [S(C,[) X | [S(C,[) // BX| CX

 X -> [S(S,[) X | [S(S,[) X } U

 S(C,[) ->] Y | [S(C,[) Y

 Y ->]S(B,]) Y |] } //SY | BZ,

Lemma 21.7: For any nonterminal X and x in S*,

 X L-->*G1 x iff X L-->*G2 x.

Pf: by induction on n s.t. X ->n
G1 x.

 Case 1: n = 1. then the rule applied must be of the form:

 X -> b or X -> .

 But these rules are the same in both grammars.

Linear Grammars
and Normal forms

 Transparency No. P2C2-46

Equivalence of G1 and G2

 Inductive case: n > 1.

 X L-->G1 Bw L-->*G1 by = x iff

 X L-->G1 Bw L-->*G1 bB1B2…Bk w L-->*G1 bz1…zk z = x, where

 bB1B2…Bk w is the first sentential form in the sequence in which b

appears and B1B2…Bk belongs to R(B,b),

 iff (by definition of R(B,b) and G(B,b))

 X L-->G2 b S(B,b) w L-->*G1 b B1B2…Bk w L-->*G1 bz1…zk z,

where the subderivation S(B,b)
L-->*G1 B1B2…Bk is a

derivation in G(B,b) G1 G2.

 iff X L-->*G2 b S(B,b) w L-->*G2 b B1B2…Bk w L-->*G1 bz1…zk z = x

 But by ind. hyp., Bj
L-->*G2 zj (0 < j < k+1) and w L-->*G2 y.

 Hence X L-->*G2 x.

