PART II: Chapter 2

Linear Grammars and Normal Forms

$\mathbf{G}=(\mathbf{N}, \Sigma, \mathbf{S}, \mathbf{P}):$ a CFG

- A,B: nonterminals
- a: terminal symbol
- $\mathrm{y} \in \Sigma^{*}, \mathrm{x} \in \Sigma^{*}$.
- Notes:

Grammar Type	Production form
right linear	$A \rightarrow y B$ or $A \rightarrow x$
Strongly right linear	$A \rightarrow a B\|B\| \varepsilon$
Left linear	$A \rightarrow B y$ or $A \rightarrow x$
Strongly left linear	$A \rightarrow B a\|B\| \varepsilon$

ㄱ 1. All types of linear grammars are CFGs.
\square 2. All types of linear grammars generate the same class of languages (i.e., regular languages)
Theorem: For any language L : the following statements are equivalent:
© O. L is regular

- 1. $L=L(G 1)$ for some $R G G 1$ 2. $L=L(G 2)$ for some SRG G2
— 3. L=L(G3) from some LG G3 4. L=L(G4) for some SLG G4

Equivalence of linear languages and regular sets

- Pf: (2) => (1) and (4)=>(3) : trivial since SRG (SLG) are special kinds of RG (LG).
- (1)=>(2):1. replace each rule of the form:

$$
A \rightarrow a_{1} a_{2} \ldots a_{n} B(n>1)
$$

by the following rules

$$
A \rightarrow a_{1} B_{1}, B_{1} \rightarrow a_{2} B_{2}, \ldots, B_{n-2} \rightarrow a_{n-1} B_{n-1}, B_{n-1} \rightarrow a_{n} B
$$

where $B_{1}, B_{2}, \ldots, B_{n-1}$ are new nonterminal symbols.
2. Replace each rule of the form:

$$
A \rightarrow a_{1} a_{2} \ldots a_{n}(n \geq 1)
$$

by the following rules

$$
A \rightarrow a_{1} B_{1}, B_{1} \rightarrow a_{2} B_{2}, \ldots, B_{n-1} \rightarrow a_{n} B_{n}, B_{n} \rightarrow \varepsilon
$$

3. Let G^{\prime} be the resulting grammar. Then $L(G)=L\left(G^{\prime}\right)$.

- (3) $=>(4)$: Similar to (1) =>(2).
$A \rightarrow B a_{1} a_{2} \ldots a_{n}(n>1)=A \rightarrow B_{n} a_{n}, B_{n} \rightarrow B_{n-1} a_{n-1}, \ldots, B_{2} \rightarrow B a_{1}$ $A \rightarrow a_{1} a_{2} \ldots a_{n}(n \geq 1)=A \rightarrow B_{n} a_{n}, B_{n} \rightarrow B_{n-1} a_{n-1}, \ldots, B_{2} \rightarrow B_{1} a_{1}, B_{1}$ $\rightarrow \varepsilon$

Example:

- The right linear grammar :
$\square S \rightarrow$ abab S and $S \rightarrow$ abc
\square can be converted into a SRG as follows:
〕 $S \rightarrow$ ababS $=>$
\square
$\square S \rightarrow$ abc $=>$
- $\quad S \rightarrow$ a [bc]
$\square \quad[b c] \rightarrow b[c]$
$\square \quad[\mathrm{c}] \rightarrow \mathrm{c}[]$
—
[]$\rightarrow \varepsilon$

RGs and FAs

Linear Grammars and Normal forms

- pf: (0) =>(2), (0)=>(4)
- Let $M=(Q, \Sigma, \delta, S, F)$: A NFA allowing empty transitions.
- Define a SRG G_{2} and a SLG G_{4} as follows:
- $\mathbf{G}_{2}=\left(N_{2}, \Sigma, S_{2}, P_{2}\right) \quad G_{4}=\left(N_{4}, \Sigma, S_{4}, P_{4}\right)$ where
- 1. $N_{2}=Q U\left\{S_{2}\right\}, N_{4}=Q \cup\left\{S_{4}\right\}$, where S_{2} and S_{4} are new symbols and
$\square P_{2}=\left\{S_{2} \rightarrow A \mid A \in S\right\} U\{A \rightarrow a B \mid B \in \delta(A, a)\}$
$\mathbf{U}\{\mathrm{A} \rightarrow \varepsilon \mid \mathrm{A} \in \mathrm{F}\}$. // to go to a final state from A , use ' a ' to reach B and then from B go to a final state.
$\square P_{4}=\left\{S_{4} \rightarrow A \mid A \in F\right\} \cup\{B \rightarrow A a \mid B \in \delta(A, a)\}$ $U\{A \rightarrow \varepsilon \mid A \in S\}$. // to reach B from a start state, reach A from a start state and then consume a.
- Lem 01: If $\mathrm{S}_{2} \rightarrow^{+}{ }_{\mathrm{G} 2} \alpha \notin \Sigma^{*}$, then $\alpha=\mathrm{xB}$ where $\mathrm{x} \in \Sigma^{*}$ and $\mathrm{B} \in \mathbf{Q}$
- Lemma 1: $\mathrm{S}_{2} \rightarrow^{+}{ }_{\mathrm{G} 2} \mathrm{xB}$ iff $\mathrm{B} \in \Delta(\mathrm{S}, \mathrm{x})$.
--- can be proved by ind. on derivation length(=>) and $x(<=)$. Hence $x \in L\left(G_{2}\right)$ iff $\mathrm{S}_{2} \rightarrow^{*}{ }_{\mathrm{G} 2} \mathrm{x} \quad$ iff $\mathrm{S}_{2} \rightarrow^{+}{ }_{\mathrm{G} 2} \mathrm{xB} \rightarrow_{\mathrm{G} 2} \mathrm{x}$ for $\mathrm{a} B \in \mathrm{~F}$. iff $B \in \Delta(S, x)$ and $B \in F$ iff $x \in L(M)$
- Lem 02:If $\mathrm{S}_{4} \rightarrow^{+}{ }_{G 4} \alpha \notin \Sigma^{*}$, then $\alpha=B x$ where $x \in \Sigma^{*}$ and $B \in \mathbf{Q}$.
- Lemma 2: $S_{4} \rightarrow^{+}{ }_{\mathrm{G} 4} \mathrm{Bx}$ iff $\mathrm{F} \cap \Delta(\mathrm{B}, \mathrm{x}) \neq \varnothing$.

Hence $\mathrm{S}_{4} \rightarrow{ }^{*}{ }_{G 4} \mathrm{X}$
iff $\mathrm{S}_{4} \rightarrow^{*}{ }_{G 4} \mathrm{Bx} \rightarrow_{\mathrm{G4}} \mathrm{x}$ for some start state B
iff $B \in S$ and $F \cap \Delta(B, x) \neq \varnothing \quad$ iff $x \in L(M)$
Theorem: $\mathrm{L}(\mathrm{M})=\mathrm{L}\left(\mathrm{G}_{2}\right)=\mathrm{L}\left(\mathrm{G}_{4}\right)$.

- Let $M=(\{A, B, C, D\},\{a, b\}, \delta,\{A, B\},\{B, D\})$ where
- δ is given as follows:
$\underset{\wedge}{\mathrm{A}}<-\mathrm{a}-\mathrm{-} \boldsymbol{C}$

$\begin{array}{cc} \stackrel{b}{v} & \begin{array}{c} b \\ V \\ >(B) \end{array}<--a--> \\ (D \end{array}$

==> G2 = ?
G4 = ?
$E-a \rightarrow F$ is translated to :

1. (G2) $E \rightarrow a F: \quad E \rightarrow \varepsilon \quad / /$ if E is a final state

- To reach a final state from E, go to F first by consuming an ' a ' and then try to reach a final state from F.

2. (G4) F Ea:
$E \rightarrow \varepsilon \quad / /$ if E is a start state

- How to reach F from a start state? go to E first and then by consuming a, you can reach F.

Motivation: Derivation and path walk

- $\mathrm{S} \rightarrow \mathrm{A} \rightarrow \mathrm{aB} \rightarrow \mathrm{abC} \rightarrow \mathrm{abaD} \rightarrow \mathrm{aba}$.
$=>\{A \rightarrow a B, B \rightarrow b C, C \rightarrow a D, D \rightarrow \varepsilon \ldots\}$

Conclusion: The forward walk of a path from a start state to a final state is the same as the derivation of a SRG grammar.

Derivation and backward path walk

- $\mathrm{S} \rightarrow \mathrm{D} \rightarrow \mathrm{Ca} \rightarrow \mathrm{Bba} \rightarrow \mathrm{Aaba} \rightarrow$ aba.
$=>\{D \rightarrow C a, C \rightarrow B b, B \rightarrow A a, A \rightarrow \varepsilon \ldots\}$

Conclusion: The backward walk of a path from a start state to a final state is the same as the derivation of a SLG grammar.

- Let $M=(\{A, B, C, D\},\{a, b\}, \delta,\{A, B\},\{B, D\})$ where
- δ is given as follows:
$\underset{\wedge}{ } \mathrm{A}<-\mathrm{a}-\mathrm{C}$

==> G2 = ?
sol: $\mathrm{S} 2 \rightarrow \mathrm{~A} \mid \mathrm{B}$
$A \rightarrow a C \mid b B$
$\mathrm{B} \rightarrow \mathrm{aD}|\mathrm{bA}| \varepsilon$
$\mathrm{C} \rightarrow \mathrm{aA} \mid \mathrm{bD}$
$D \rightarrow a B|b C| \varepsilon$

G4 = ?
sol: S4 \rightarrow B | D
$\mathrm{B} \rightarrow \mathrm{Ab}|\mathrm{Da}| \varepsilon$
$\mathrm{D} \rightarrow \mathrm{Cb} \mid \mathrm{Ba}$
$\mathrm{C} \rightarrow \mathrm{Aa} \mid \mathrm{Db}$
$\mathrm{A} \rightarrow \mathrm{Bb}|\mathrm{Ca}| \varepsilon$

- G = (N, $\Sigma, S, P):$ a SRG Define $\mathbf{M}=(\mathbf{N}, \Sigma, \delta,\{S\}, F)$ where
$\square F=\{A \mid A \rightarrow \varepsilon \in P\}$ and
$\square \delta=\{(A, a, B) \mid A \rightarrow a B \in P$, $\square \quad a \in \Sigma U\{\varepsilon\}\}$
Theorem: $\mathrm{L}(\mathrm{M})=\mathrm{L}(\mathrm{G})$.
- $\mathbf{G}=(\mathbf{N}, \Sigma, \mathbf{S}, \mathbf{P})$: a SLG

Define $\mathbf{M}^{\prime}=\left(\mathbf{N}, \Sigma, \delta, S^{\prime},\{S\}\right)$ where
$\square \mathbf{S}^{\prime}=\{\mathrm{A} \mid \mathrm{A} \rightarrow \varepsilon \in \mathrm{P}\}$ and
$\square \delta=\{(A, a, B) \mid B \rightarrow A a \in P$,
$\square \quad a \in \Sigma U\{\varepsilon\} \quad\}$
Theorem: L(M') = L(G).

Example:

G: S \rightarrow aB|bA
$B \rightarrow \mathrm{aB} \mid \varepsilon$ $\mathrm{A} \rightarrow \mathrm{bA} \mid \varepsilon$
=> $\mathrm{M}=$?

Example:

$\mathrm{G}: \mathrm{S} \rightarrow \mathrm{Ba} \mid \mathrm{Ab}$ $\mathrm{A} \rightarrow \mathrm{Ba\mid} \mid \varepsilon$ $\mathrm{B} \rightarrow \mathrm{Ab} \mid \varepsilon$
$==>M^{\prime}=$?

- FA \leftrightarrow LG = \{SLG, SRG \} (ok!)
- FA \leftrightarrow Regular Expression (ok!)
- SLGs \leftrightarrow SRGs (?)

- SLG \leftrightarrow FA \leftrightarrow SRG

- LG \leftrightarrow Regular Expression

प LG $\leftrightarrow F A \leftrightarrow$ Regular Expression

- Ex: Translate the SRG G: S $\rightarrow \mathrm{aA}|\mathrm{bB}, \mathrm{A} \rightarrow \mathrm{aS}| \varepsilon, \mathrm{B} \rightarrow \mathrm{bA}|\mathrm{bS}|$ ε into an equivalent SLG.
sol: The $F A$ corresponding to G is $M=(Q,\{a, b\}, \delta, S,\{A, B\})$, where $Q=$ $\{S, A, B\}$ and $\delta=\{(S, a, A),(S, b, B),(A, a, S),(B, b, A),(B, b, S)\}$
So the SLG for M (and G as well) is
S' \rightarrow A | B, --- final states become start symbol; S' is the new start symbol
$S \rightarrow \varepsilon, \quad---$ start state becomes empty rule
$\mathrm{A} \rightarrow \mathrm{Sa}, \mathrm{B} \rightarrow \mathbf{S b}, \mathbf{S} \rightarrow \mathrm{Aa}, \mathbf{A} \rightarrow \mathrm{Bb}, \mathbf{S} \rightarrow \mathbf{B b}$. // do you find the rule from SRG to SLG ?
- Convert the following SRG into an equivalent SLG ?
$\square S \rightarrow a S|b A| a B \mid \varepsilon$
$\square \mathrm{A} \rightarrow \mathrm{aB}|\mathrm{bA}| \mathrm{aS} \mid \varepsilon$
$\mathrm{BB} \rightarrow \mathrm{bA} \mid \mathrm{aS}$

Rules:

$$
\begin{aligned}
A \rightarrow a B & \rightarrow B \rightarrow A a \\
A \rightarrow B & \rightarrow B \rightarrow A \\
\text { empty rule: } A \rightarrow e & \rightarrow S \rightarrow A \\
\text { start symbol: } \quad S & \rightarrow S \rightarrow e
\end{aligned}
$$

- Convert the following SLG into an equivalent SRG ?
$\square \mathrm{S} \rightarrow \mathrm{Ca|Ab|Ba}$
$\square \mathrm{A} \rightarrow \mathrm{Ba}|\mathrm{Cb}| \varepsilon$
$\square B \rightarrow \mathbf{A b | S a}$
- C $\rightarrow \mathrm{Aa}|\mathrm{Bb}| \varepsilon$

Rules:

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{Ba} \rightarrow \mathrm{~B} \rightarrow \mathrm{aA} \\
& \mathrm{~A} \rightarrow \mathrm{~B} \rightarrow \mathrm{~B} \rightarrow \mathrm{~A}
\end{aligned}
$$

empty rule: $\mathrm{A} \rightarrow \mathrm{e} \rightarrow \mathrm{S}^{\prime} \rightarrow \mathrm{A}$ start symbol: $\quad \mathrm{S} \rightarrow \mathrm{S} \rightarrow \mathrm{e}$

- $\mathbf{G}=(\mathbf{N}, \Sigma, \mathbf{P}, \mathbf{S})$: a CFG
- G is said to be in Chomsky Normal Form (CNF) iff all rules in P have the form:
$\square A \rightarrow a \quad$ or $\quad A \rightarrow B C$
where $a \in \Sigma$ and $A, B, C \in N$. Note: B and C may equal to A.
- G is said to be in Greibach Normal Form (GNF) iff all rules in P have the form:
$\square A \rightarrow a B_{1} B_{2} \ldots B_{k}$
where $k \geq 0, a \in \Sigma$ and $B_{i} \in N$ for all $1 \leq i \leq k$.
Note: when $k=0=>$ the rule reduces to $A \rightarrow a$.
Ex: Let $\mathrm{G}_{1}: \mathrm{S} \rightarrow \mathrm{AB}|\mathrm{AC}| \mathrm{SS}, \mathrm{C} \rightarrow \mathrm{SB}, \quad \mathrm{A} \rightarrow[, \mathrm{B} \rightarrow$]
$\mathrm{G}_{2}: \mathrm{S} \rightarrow$ [B|[SB|[BS|SBS,$\quad B \rightarrow$]
$\Rightarrow G_{1}$ is in CNF but not in GNF
G_{2} is in GNF but not in CNF.

1. $L\left(G_{1}\right)=L\left(G_{2}\right)=$ PAREN $-\{\varepsilon\}$.
2. No CFG in CNF or GNF can produce the null string ε. (Why ?) Observation: Every rule in CNF or GNF has the form $A \rightarrow \alpha$ with $|A|=1 \leq|\alpha|$ since ε can not appear on the RHS.

So

Lemma: G: a CFG in CNF or GNF. Then $\alpha \rightarrow \beta$ only if $|\alpha| \leq|\beta|$. Hence if $S \rightarrow^{*} x \in \Sigma^{*}==>|x| \geq|S|=1=>x!=\varepsilon$.
3. Apart from (2), CNF and GNF are as general as CFGs.

Theorem 21.2: For any CFG G, \exists a CFG G' in CNF and a CFG G" in GNF s.t. $L\left(G^{\prime}\right)=L\left(G^{\prime \prime}\right)=L(G)-\{\varepsilon\}$.

Generality of CNF

- ε-rule: $\mathrm{A} \rightarrow \varepsilon$.
- unit (chain) production: $A \rightarrow B$.
- Lemma: G: a CFG without unit and ε-rules. Then \exists a CFG G’ in CNF form s.t. $L(G)=L\left(G^{\prime}\right)$.
Ex21.4: $\mathrm{G}: \mathrm{S} \rightarrow \mathrm{aSb} \mid \mathrm{ab}$ has no unit nor ε-rules.
$==>1$. For terminal symbol a and b, create two new nonterminal symbol A and B and two new rules:
D $\quad \mathrm{A} \rightarrow \mathrm{a}, \quad \mathrm{B} \rightarrow \mathrm{b}$.
(2. Replace every a and b in G by A and B respectively. $\square=>S \rightarrow A S B \mid A B, \quad A \rightarrow a, B \rightarrow b$.
- 3. $S \rightarrow$ ASB is not in CNF yet $==>$ split it into smaller parts:
(Say, let AS $=\square$) $==>S \rightarrow \square B$ and $\square \rightarrow$ AS.
© 4. The resulting grammar :
$\square \quad S \rightarrow \square B \mid A B, A \rightarrow a, B \rightarrow b, \square \rightarrow A S$ is in CNF.

generality of CNF

Linear Grammars and Normal forms

Ex21.5: G: S \rightarrow [S]S |SS| [] ==>
$\square \mathrm{A} \rightarrow[, \mathrm{B} \rightarrow \mathrm{]}, \mathrm{~S} \rightarrow \mathrm{ASBS}|\mathrm{SS}| \mathrm{AB}$
$\square==>$ replace $S \rightarrow$ ASBS by $S \rightarrow \square S \square$ ASB,
$\square==>$ replace $\square \rightarrow$ ASB by $\square \rightarrow \square \mathrm{B}$ and $\square \rightarrow$ AS.
[==> G': A \rightarrow [, B \rightarrow],
ロ
$S \rightarrow \square \mathbf{S S} \mid \mathrm{AB}$,
$\square \quad \square \rightarrow \square \mathbf{B}, \square \rightarrow$ AS.

- (2) another possibility:
$\square \mathbf{S ~} \rightarrow$ ASBS becomes $S \rightarrow \square, \square, \square \rightarrow$ AS, $\square \rightarrow$ BS.

Problem: How to get rid of ε and unit productions:

Elimination of e-rules (cont'd)

- It is possible that $S \rightarrow^{*} w \rightarrow$ w' with $\left|w^{\prime}\right|<|w|$ because of the ε-rules.
Ex1: G: $\mathrm{S} \rightarrow \mathrm{SaB}|\mathrm{aB} \quad \mathrm{B} \rightarrow \mathrm{bB}| \varepsilon$.
$=\mathrm{S} \rightarrow \mathrm{SaB} \rightarrow \mathrm{SaBaB} \rightarrow$ aBaBaB \rightarrow aaBaB \rightarrow aaaB \rightarrow aaa.
$L(G)=(a B)^{+}=\left(a b^{*}\right)^{+}$

Another equivalent CFG w/o ε-rules:
Ex2: G': $\quad S \rightarrow S a B|S a| a B|a \quad B \rightarrow b B| b$. $S \rightarrow{ }^{*} S(a+a B)^{*} \rightarrow \quad(a+a B)^{+} \quad B \rightarrow{ }^{*} b^{*} B \rightarrow b^{+}$.
$=>L\left(G^{\prime}\right)=L(S)=\left(a+a b^{+}\right)^{+}=\left(a b^{*}\right)^{+}$
Problem: Is it always possible to create an equivalent CFG w/o ع-rules?
Ans: yes! but with proviso.

Def: 1. a nonterminal A in a CFG G is called nullable if it can derive the empty string. i.e., $A \rightarrow{ }^{*} \varepsilon$.
2. A grammar is called noncontracting if the application of a rule cannot decrease the length of sentential forms.
(i.e.,for all $w, w^{\prime} \in(\Sigma U N)^{*}$, if $w \rightarrow w^{\prime}$ then $\left|w^{\prime}\right| \geq|w|$.)

Lemma 1: G is noncontracting iff G has no ε-rule.
pf: G has ε-rule $A \rightarrow \varepsilon \quad \Rightarrow \quad 1=|A|>|\varepsilon|=0$.
G contracting $=>\exists \alpha, \beta \in(N U \Sigma)^{*}$ and $A \rightarrow \varepsilon$ with $\alpha A \beta \rightarrow \alpha \beta$.
=> G contains an ε-rule.

Simultaneous derivation:

Def: G: a CFG. $==>_{G}$: a binary relation on $(N U \Sigma)^{*}$ defined as follows: for all $\alpha, \beta \in(N U \Sigma)^{*}, \alpha==>\beta$ iff
there are $x_{0}, x_{1}, \ldots, x_{n} \in \Sigma^{*}$, rules $A_{1} \rightarrow \gamma_{1}, \ldots, A_{n} \rightarrow \gamma_{n}(n>0)$ s.t.

$$
\begin{array}{lllllll}
\alpha=x_{0} & A_{1} & x_{1} & A_{2} & x_{2} & \ldots & A_{n} \\
x_{n}
\end{array} \text { and }
$$

$==>^{n}$ and $==>^{*}$ are defined similarly like \rightarrow^{n} and \rightarrow^{*}.
Define $==>^{(n)}=_{\operatorname{def}}\left(U_{k \leq n}==>^{k}\right)$.
Lemma:

1. if $\alpha==>\beta$ then $\alpha \rightarrow^{*} \beta$. Hence $\alpha==>^{*} \beta$ implies $\alpha \rightarrow^{*} \beta$.
2. If β is a terminal string, then $\alpha \rightarrow^{n} \beta$ implies $\alpha==>^{(n)} \beta$.
3. $\left\{x \in \Sigma^{*} \mid S=>^{*} x\right\}=L(G)=\left\{x \in \Sigma^{*} \mid S \rightarrow^{*} x\right\}$.

Problem: How to find all nullable nonterminals in a CFG ? Note: If A is nullable then there are numbers n s.t. $A==>{ }^{(n)} \varepsilon$.
Now let $N_{k}=\{A \in N \mid A==>(k) \varepsilon\}$.

1. \mathbf{N}_{G} (the set of all nullable nonterminals of G$)=\mathrm{U}_{\mathrm{k} \geq 0} \mathbf{N}_{\mathrm{K}}$.
2. $N_{1}=\quad\{A \mid A \rightarrow \varepsilon \in P\}$.
3. $N_{k+1}=N_{k} \cup\left\{A \mid A \rightarrow X_{1} X_{2} \ldots X_{n} \in P(n>=0)\right.$ and All $\left.X_{i} s \in N_{k}\right\}$.

Ex: G: $\quad S \rightarrow$ ACA $\quad A \rightarrow a A a|B| C$
$B \rightarrow \mathrm{bB}|\mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{cC}| \varepsilon$.
$\Rightarrow N_{1}=$?

$$
\begin{align*}
& \mathbf{N}_{2}=N_{1} U ? \\
& N_{3}=N_{2} U ? \\
& N_{G}=?
\end{align*}
$$

Exercises: 1. Write an algorithm to find N_{G}.
2. Given a CFG G, how to determine if $\varepsilon \in L(G)$?

Lem 1.4: $G=(N, \Sigma, P, S):$ a CFG s.t. $A \rightarrow^{*} \omega$. Then the CFG G' $=$ $(N, \Sigma, \operatorname{PU}\{A \rightarrow \omega\}, S$) is equivalent to G.
pf: $\mathrm{L}(\mathrm{G}) \subseteq \mathrm{L}\left(\mathrm{G}^{\prime}\right)$: trivial since $\rightarrow_{\mathrm{G}} \subseteq \rightarrow_{\mathrm{G}^{\prime}}$.
$L\left(G^{\prime}\right) \subseteq L(G)$: First define $\alpha->{ }^{k}{ }_{G^{\prime}} \beta$ iff $\left(\alpha \rightarrow_{G^{\prime}} \beta\right.$ and the rule $A \rightarrow$
ω was applied k times in the derivation).
Now it is easy to show by ind. on k that if $\alpha-\gg{ }^{k+1}{ }_{G^{\prime}} \beta$ then $\alpha-\gg{ }_{G^{\prime}} \beta$ (and hence $\alpha-\gg{ }_{G^{\prime}} \beta$ and $\alpha \rightarrow^{*}{ }_{G} \beta$). Hence $\alpha \rightarrow{ }^{*}{ }_{G^{\prime}} \beta$ implies $\alpha \rightarrow{ }_{G} \beta$ and $\mathrm{L}\left(\mathrm{G}^{\prime}\right) \subseteq \mathrm{L}(\mathrm{G})$.
Theorem 1.5: for any CFG G , there is a CFG G' containing no ε rules s.t. $L\left(G^{\prime}\right)=L(G)-\{\varepsilon\}$.
Pf: Define G" and G' as follows:

1. Let $P^{\prime \prime}=P \cup \Delta$ where $\Delta=\left\{A \rightarrow X_{0} X_{1} \ldots X_{n} \mid A \rightarrow X_{0} A_{1} X_{1} \ldots A_{n} X_{n} \in P\right.$, $n \geq 1$, All A_{i} s are nullable symbols and $\left.X_{i} \in(N U \Sigma)^{*}.\right\}$.
2. Let P ' be the resulting P " with all ε-rules removed.

By lem 1.4, $L(G)=L\left(G^{\prime \prime}\right)$. We now show $L\left(G^{\prime}\right)=L\left(G^{\prime \prime}\right)-\{\varepsilon\}$.

1. Since $P^{\prime} \subseteq P^{\prime \prime}, L\left(G^{\prime}\right) \subseteq L\left(G^{\prime \prime}\right)$. Moreover, since G^{\prime} contains no ε rules, $\varepsilon \notin \mathrm{L}\left(\mathrm{G}^{\prime}\right)$ Hence $\mathrm{L}\left(\mathrm{G}^{\prime}\right) \subseteq \mathrm{L}\left(\mathrm{G}^{\prime \prime}\right)-\{\varepsilon\}$.
2. For the other direction, first define $S-->{ }_{G^{\prime \prime}} \beta$ iff
$S \rightarrow{ }^{*}{ }_{G}^{\prime \prime} \beta$ and all ε-rules $A \rightarrow \varepsilon$ in $P^{\prime \prime}$ are used k times totally in the derivation. Note: if $S-->0{ }_{G^{\prime \prime}} \beta$ then $S \rightarrow{ }_{G^{\prime}} \beta$.
we show by induction on k that
if $S-->{ }^{k+1}{ }_{G}^{\prime \prime} \beta$ and $\beta \neq \varepsilon$ then
$S->_{G^{\prime \prime}} \beta$ for all $k \geq 0$ and hence $S-->{ }_{G^{\prime \prime}} \beta$ and $S \rightarrow_{G^{\prime}} \beta$.
As a result if $S \rightarrow{ }^{*}{ }_{G}{ }^{\prime \prime} \beta \in \Sigma^{+}$then $S \rightarrow^{*}{ }_{G^{\prime}} \beta$. Hence $L\left(G^{\prime \prime}\right)-\{\varepsilon\} \subseteq L\left(G^{\prime}\right)$.
But now if $S->^{k+1} G^{\prime \prime} \beta$ then
$S \rightarrow{ }_{G}^{*}{ }^{\prime \prime} \mu \mathrm{B} v-(\mathrm{B} \rightarrow x \underline{A y})-\rightarrow \mu x A y v \rightarrow \mathrm{w}_{1} \rightarrow \ldots \rightarrow \alpha^{\prime} \underline{A} \beta^{\prime}--(\mathrm{A} \rightarrow \varepsilon)$ $\rightarrow \alpha^{\prime} \beta^{\prime} \rightarrow \ldots \rightarrow \beta$ and then
$S \rightarrow{ }_{G^{\prime \prime}} \mu \mathrm{B} v--(\mathrm{B} \rightarrow \mathrm{xy}) \rightarrow \mu \mathrm{xyv} \rightarrow_{\mathrm{w}}{ }^{\prime} \rightarrow \ldots \rightarrow \alpha^{\prime} \beta^{\prime} \rightarrow \ldots \rightarrow \beta$. hence $S-->{ }_{G}{ }^{\prime \prime} \beta$. QED

Example 1.4:

Linear Grammars and Normal forms

$$
\begin{array}{ll}
\text { Ex 1.4: } \mathrm{G}: & \left.\frac{\mathrm{S} \rightarrow \mathrm{ACA}}{\mathrm{~B} \rightarrow \mathrm{bB} \mid \mathrm{b}} \quad \mathrm{C} \rightarrow \mathrm{cC} \right\rvert\, \varepsilon .
\end{array}
$$

$\Rightarrow N_{G}=\{C, A, S\}$.

Hence $P^{\prime \prime}=P$ U $\quad S \rightarrow$ ACA $|A C| C A|A A| A|C| \varepsilon$

$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{b}$ $C \rightarrow c C|c| \varepsilon\}$
and $P^{\prime}=\{\quad S \rightarrow A C A|A C| C A|A A| A \mid C$
$A \rightarrow a A a \mid$ aa $|B| C$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{b}$
$C \rightarrow c \mathrm{c} \mid \mathrm{c}\}$

Elimination of unit-rules

Def: a rule of the form $A \rightarrow B$ is called a unit rule or a chain rule.
\square Note: if $A \rightarrow B$ then $\alpha A \beta \rightarrow \alpha B \beta$ does not increase the length of the sentential form.

Problem: Is it possible to avoid unit-rules ?
Ex: $A \rightarrow a A|a| B B \rightarrow b B|b| C$

$$
\begin{array}{llrl}
=>A \rightarrow B & \rightarrow b B & A \rightarrow b B \\
& \rightarrow b==>\text { replace } A \rightarrow B \text { by } 3 \text { rules: } & A \rightarrow b \\
& \rightarrow C & A \rightarrow C
\end{array}
$$

Problem: $\mathrm{A} \rightarrow \mathrm{B}$ removed but new unit rule $\mathrm{A} \rightarrow \mathrm{C}$ generated.

Def: G: a CFG who ε-rules. $A \in N(A$ is a nonterminal).
Define $\mathrm{CH}(\mathrm{A})=\left\{B \in \mathrm{~N} \mid \mathrm{A} \rightarrow^{*} \mathrm{~B}\right\}$
\square Note: since G contains no ε-rules. A \rightarrow^{*} B af all rules applied in the derivation are unit-rules.
Problem: how to find $\mathrm{CH}(\mathrm{A})$ for all $\mathrm{A} \in \mathrm{N}$.
Sol: Let $\mathrm{CH}_{\mathrm{k}}(\mathrm{A})=\left\{\mathrm{B} \in \mathrm{N} \mid \exists \mathrm{n} \leq \mathrm{k}, \mathrm{A} \rightarrow^{\mathrm{n}} \mathrm{B}\right\}$ Then

1. $C H_{0}(A)=\{A\} \quad$ since $A \rightarrow^{0} \alpha$ iff $\alpha=A$.
2. $\mathrm{CH}_{\mathrm{k}+1}(\mathrm{~A})=\mathrm{CH}_{\mathrm{K}}(\mathrm{A}) \mathrm{U}\left\{\mathrm{C} \mid \mathrm{B} \rightarrow \mathrm{C} \in \mathrm{P}\right.$ and $\mathrm{B} \in \mathrm{CH}_{\mathrm{K}}(\mathrm{A})$ \}.
3. $\mathrm{CH}(\mathrm{A})=\mathrm{U}_{\mathrm{k} \geq 0} \mathrm{CH}_{\mathrm{k}}(\mathrm{A})$.

Ex: G: $\quad S \rightarrow$ ABA $|A C| C A|A A| A|C \quad A \rightarrow a A a|$ aa $|B| C$ $B \rightarrow b B|b \quad C \rightarrow c| c$

$$
\begin{array}{rlrl}
==> & \mathrm{CH}(\mathrm{~S}) & =? & \mathrm{CH}(\mathrm{~A})=? \\
\mathrm{CH}(\mathrm{~B}) & =? & & \mathrm{CH}(\mathrm{C})=?
\end{array}
$$

Removing Unit-rules

Theorem 2.3: G: a CFG w/o ε-rules. Then there is a CFG H' equivalent to \mathbf{G} but contains no unit-rules.
Pf: H" and H' are constructed as follows:

1. Let $P^{\prime \prime}=P \cup\{A \rightarrow w \mid B \in C H(A)$ and $B \rightarrow w \in P\}$. and
2. let $P^{\prime}=P^{\prime \prime}$ with all unit-rules removed.

By lem $1.4, L\left(H^{\prime \prime}\right)=L(G)$. the proof that $L\left(H^{\prime \prime}\right)=L\left(H^{\prime}\right)$ is similar to Theorem 1.5. left as an exercise (Hint: Unit rules applied in a derivation can always be decreased to zero).
Ex: G: $\quad S \rightarrow$ ACA $|A C| C A|A A| A|C \quad A \rightarrow a A a|$ aa $|B| C$

$$
\mathrm{B} \rightarrow \mathrm{bB}|\mathrm{~b} \quad \mathrm{C} \rightarrow \mathrm{cC}| \mathrm{c}
$$

$==>C H(S)=\{S, A, C, B\}, C H(A)=\{A, B, C\}, C H(B)=\{B\}, C H(C)=\{C\}$.
Hence $P^{\prime \prime}=P \cup\{\ldots ?\}$ and

$$
P^{\prime}=\{?\} .
$$

Wote: if G contains no ε-rules, then so does H^{\prime}.

- Given a CFG G , it would be better to replace G by another G' if G' contains fewer nonterminal symbols and/or production rules.
[Like FAs, where inaccessible states can be removed, some symbols and rules in a CFG can be removed w/t affecting its accepted language.
Def: A nonterminal A in a CFG G is said to be grounding if it can derive terminal strings. (i.e., there is $\mathbf{w} \in \Sigma^{*}$ s.t. $A \rightarrow{ }^{*}$ w.\} O/W we say A is nongrounding.
Note: Nongrounding symbols (and all rules using nonground symbols) can be removed from the grammars. Ex: G: $S \rightarrow$ a|aS|bB $B \rightarrow C|D| a B \mid B C$
==> Only S is grounding and B, C, D are nongrounding
==> B,C,D and related rules can be removed from G.
$==>G$ can be reduced to: $S \rightarrow$ a $\mid a S$

Given a CFG G = (N,S,P,S). the set of grounding symbols can be defined inductively as follows:

1. Init: If there is a rule $A \rightarrow w$ in P s.t. $w \in \Sigma^{*}$, then A is grounding.
2. ind.: If $A \rightarrow w$ is a rule in P s.t. each symbol in w is either a terminal or grounding then A is grounding.

Exercise: According to the above definition, write an algorithm to find all grounding (and nongrounding) symbols for arbitrarily given CFG.
Ex: $S \rightarrow a S|b| c A|B| C|D \quad A \rightarrow a C| c D|D c| b B B$

$$
\mathrm{B} \rightarrow \mathrm{cC}|\mathrm{D}| \mathrm{b} \quad \mathrm{C} \rightarrow \mathrm{cC}|\mathrm{D} \quad \mathrm{D} \rightarrow \mathrm{cD}| \mathrm{dC}
$$

$=>B y$ init: S, B is grounding $=>S, B, A$ is grounding
=> G can be reduced to :

$$
\mathrm{S} \rightarrow \mathrm{aS}|\mathrm{~b}| \mathrm{cA} \mid \mathrm{B} \quad \mathrm{~A} \rightarrow \mathrm{bBB} \quad \mathrm{~B} \rightarrow \mathrm{~b}
$$

Def: a nonterminal symbol A in a CFG G is said to be reachable iff it occurs in some sentential form of G. i.e., there are α, β s.t. $S \rightarrow \quad{ }^{*} \alpha A \beta$. It A is not reachable, it is said to be unreachable.
\square Note: Both nongrounding symbols and unreachable symbol are useless in the sense that they can be removed from the grammars w/o affecting the language accepted.
Problem: How to find reachable symbols in a CFG ?
Sol: The set of all reachable symbols in G is the least subset R of N s.t. 1. the start symbol $S \in R$, and
2. if $A \in R$ and $A \rightarrow \alpha B \beta \in P$, then $B \in R$.
$E x: S \rightarrow A C|B S| B \quad A \rightarrow a A|a F \quad B \rightarrow| C F|b \quad C \rightarrow c| D$ $D \rightarrow a D|B D| C \quad E \rightarrow a A|B S A \quad F \rightarrow b B| b$.
$=>R=\{S, A, B, C, F, D\}$ and E is unreachable.

Elimination of empty and unit productions

- The removal of ε-rules and unit-rules can be done simultaneously.
- $G=(N, S, P, S)$: a CFG. The EU-closure of P, denoted $E U(P)$, is the least set of rules including P s.t.

1. If $A \rightarrow \alpha B \beta$ and $B \rightarrow \varepsilon \in E U(P)$ then $A \rightarrow \alpha \beta \in E U(P)$.
2. If $A \rightarrow B \in E U(P)$ and $B \rightarrow \gamma \in E U(P)$ then $A \rightarrow \gamma \in E U(P)$.
— Quiz: What is the recursive definition of $E U(P)$?

- Notes:
- 1. $E U(P)$ exists and is finite.
\square If $A \rightarrow \alpha_{0} A_{1} \alpha_{1} A_{2} \ldots A_{n} \alpha_{n}$ contains n nonterminals on the RHS $==>$ there are at most $2^{n}-1$ new rules which can be added to $E U(P)$, due to (a) and this rule.
\square If $\mathrm{B} \rightarrow \gamma \in \mathrm{P}$ and $|\mathrm{N}|=\mathrm{n}$ then there are at most $\mathrm{n}-1$ rules can be added to $E U(P)$ due to this rule and (b).
\square 2. It is easy to find $E U(P)$.
- Procedure EU(P)

1. $P^{\prime}=P ; N P=\{ \}$;
2. for each ε-rule $B \rightarrow \varepsilon \in \mathrm{P}^{\prime}$ do for each rule $A \rightarrow \alpha B \beta$ do NP = NP U\{A $\rightarrow \alpha \beta\}$;

Ex 21.5': $\mathrm{P}=\{\mathrm{S} \rightarrow$ [S] |SS| $\varepsilon\}$
$1+3 \Rightarrow S \rightarrow[] \quad---4$.
$2+3=>S S, S \rightarrow S \quad--5$.
$=>E U(P)=P U\{S \rightarrow[], S \rightarrow S\}$
3. for each unit rule $A \rightarrow B \in P^{\prime}$ where $B \neq A$, for each rule $\mathrm{B} \rightarrow \gamma$ do
NP = NP $\cup\{A \rightarrow \gamma\}$;
4. If $N P \subseteq P^{\prime}$ then return (P^{\prime})
else\{P' = P^{\prime} U NP; NP = \{\};
goto 2$\}$
Notation: let $P_{k}^{\prime}=_{\text {def }}$ the value of P^{\prime} after the $k t h$ iteration of statement 2 and 3.

- $\mathbf{G}=(\mathbf{N}, \Sigma, \mathbf{P}, \mathbf{S}), \mathbf{G}^{\prime}=(\mathbf{N}, \Sigma, E U(P), \mathbf{S})$.

Lem 1: for each rule $A \rightarrow \gamma \in E U(P)$, we have $A \rightarrow{ }_{G} \gamma$.
pf: By ind on k where k is the number of iteration of statement
2,3 of the program at which $A \rightarrow \gamma$ is obtained.

1. $k=0$. then $A \rightarrow \gamma \in E U(P)$ iff $A \rightarrow \gamma \in P$. Hence $A \rightarrow{ }_{G}{ }_{G} \gamma$.
2. $K=n+1>0$.
2.1: $\mathbf{A} \rightarrow \gamma$ is obtained from statement 2.
$==>\exists B, \alpha, \beta$ with $\alpha \beta=\gamma$ s.t. $A \rightarrow \alpha B \beta$ and $B \rightarrow \varepsilon \in P^{\prime}{ }_{n}$.
\square Hence $A \rightarrow{ }_{G}{ }_{G} \alpha B \beta \rightarrow{ }_{G} \alpha \beta=\gamma$.
2.2 $\mathrm{A} \rightarrow \gamma$ is obtained from statement 3.
$==>\exists A \rightarrow B$ and $B \rightarrow \gamma \in P^{\prime}{ }_{n}$.
\square Hence $\mathrm{A} \rightarrow{ }^{*}{ }_{G} \mathrm{~B} \rightarrow{ }^{*}{ }_{G} \gamma$.
Corollary: $L(G)=L\left(G^{\prime}\right)$.

- $\mathbf{G}=(\mathbf{N}, \Sigma, \mathrm{P}, \mathrm{S})$: a CFG. Then there exists a CFG G' $=\left(\mathbf{N}^{\prime}, \Sigma, \mathrm{P}^{\prime}, \mathbf{S}^{\prime}\right)$ s.t. (1) $L\left(G^{\prime}\right)=L(G)$ and (2) the start symbol S^{\prime} of G^{\prime} does not occur at the RHS of all rules of P^{\prime}.
$\begin{aligned} & \text { Ex: } \quad \text { G: } S \rightarrow \text { aS | AB |AC } \\ & B \rightarrow b B \mid b S \\ &==G^{\prime}: S^{\prime} \rightarrow \text { aS | AB |AC }\end{aligned}$
$\mathrm{A} \rightarrow \mathrm{aA} \mid \varepsilon$
$\mathrm{C} \rightarrow \mathrm{cC} \mid \varepsilon$.

$S \rightarrow a S\|A B\| A C$	$A \rightarrow a A \mid \varepsilon$
$B \rightarrow b B \mid b S$	$C \rightarrow c C \mid \varepsilon$.

ie., Let $\mathbf{G}^{\prime}=\mathbf{G}$ if S does not occurs at the RHD of rules of G.
o/w: let $N^{\prime}=N \mathrm{U}\left\{S^{\prime}\right\}$ where S^{\prime} is a new nonterminal $\notin N$. and Let $P^{\prime}=P \cup\left\{S^{\prime} \rightarrow \alpha \mid S \rightarrow \alpha \in P\right\}$.
It is easy to see that G' satisfies condition (2). Moreover for any $\alpha \in(N \cup \Sigma)^{*}$, we have $S^{\prime} \rightarrow^{+}{ }_{G}, \alpha$ iff $S \rightarrow{ }_{G}{ }^{\prime} \alpha$. Hence $L(G)=L\left(G^{\prime}\right)$.

- The topic about Greibach normal form will be skipped!
— Content reserved for self study.
- Claim: Every CFG G can be transformed into an equivalent one \mathbf{G}^{\prime} in gnf form (i.e., $L\left(G^{\prime}\right)=L(G)-\{\varepsilon\}$).
Definition: (left-most derivation)
$\square \alpha, \beta \in(N \mathrm{U} \Sigma)^{*}$: two sentential forms
$\square \alpha^{\mathrm{L}->_{G}} \beta==_{\text {def }} \exists x \in \Sigma^{*}, A \in N, \gamma \in(N U \Sigma)^{*}$, rule $A->\delta$ s.t.
—

$$
\alpha=x A \gamma \text { and } \beta=x \delta \gamma
$$

[i.e., $\alpha^{\text {L--> }} \beta$ iff $\alpha-->\beta$ and the left-most nonterminal symbol A of β is replaced by the rhs δ of some rule $A->\delta$.

- Derivations and left-most derivations:
\square Note: ${ }^{L-->_{G} \subseteq-->_{G}}$ but not the converse in general!
(Ex: G:A -> Ba|ABc; B -> a|Ab
(then $a A b B->a A b B a$ and $a A b B->a B a b B$ and 1

- As usual, let ${ }^{\mathrm{L}-\text { - }^{*}}{ }_{\mathrm{G}}$ be the ref. and trans. closure of ${ }^{\mathrm{L}-->_{G} .}$
- Equivalence of derivations and left-most derivations :

Theorem: A : a nonterminal; x : a terminal string. Then

$$
\text { A -->* x iff A L-.->* } x .
$$

pf: (<=:) trivial. Since ${ }^{\text {L--> }} \subseteq$--> implies ${ }^{\text {L--->* }} \subseteq$-->*.
(=>:) left as an exercise.
(It is easier to prove using parse tree.)

- $\mathbf{G}=(\mathbf{N}, \Sigma, \mathrm{P}, \mathbf{S})$: a CFG where each rule has the form:
- A -> a or
- A-> $B_{1} B_{2} \ldots B_{n}(n>1)$. // we can transform every cfg into such from if it has no ε-rule.
- Now for each pair (A, a) with $A \in N$ and $a \in \Sigma$, define the set $\mathbf{R}(\mathbf{A}, \mathrm{a})=_{\text {def }}\left\{\beta \in \mathbf{N}^{*} \mid A^{\text {L}}>^{*} a \beta\right\}$.
Ex: If G1 = \{ S-> AB|AC |SS, C-> SB, A->[, B ->] \}, then
- CSSB \in R(C,[) since
- C L-->SB L L--> SS B L-->SS SB L-.> ACSSB L--> [CSSB
- Claim: The set $R(A, a)$ is regular over \mathbf{N}^{*}. In fact it can be generated by the following left-linear grammar:
- $\mathbf{G}(\mathbf{A}, \mathbf{a})=\left(\mathbf{N}^{\prime}, \Sigma^{\prime}, \mathrm{P}^{\prime}, \mathrm{S}^{\prime}\right)$ where
$\square N^{\prime}=\left\{X^{\prime} \mid X \in N\right\}, \Sigma^{\prime}=N, S^{\prime}=A^{\prime}$ is the new start symbol,
$\square P^{\prime}=\left\{X^{\prime}->Y^{\prime} \omega \mid X->Y \omega \in\right\} \cup\left\{X^{\prime}->\varepsilon \mid X->a \in P\right\}$
- Ex: For G1, the CFG G1(C, [) has
[nonterminals: $\mathbf{S}^{\prime}, \mathbf{A}^{\prime}, B^{\prime}, C^{\prime}$,
I terminals: S,A,B,C,
[start symbol: C'
[rules $P^{\prime}=\left\{S^{\prime}->A^{\prime} B\left|A A^{\prime} C\right| S ' S, C^{\prime}->S^{\prime} B, A^{\prime}->\varepsilon \quad\right\}$
[cf: $\quad P=\{S->A B|A C| S S, C->S B, A->[, B->]\}$
- Note: Since $G(A, a)$ is regular, there is a strongly right linear grammar equivalent to it. Let $G^{\prime}(A, a)$ be one of such grammar. Note every rule in $G^{\prime}(A, a)$ has the form $X^{\prime}->B Y^{\prime}$ or $\left.X^{\prime}->\varepsilon\right\}$
- let $S_{(A, a)}$ be the start symbol of the grammar $G^{\prime}(A, a)$.
- let $G_{1}=G U U_{A \in N, a \in \Sigma} G^{\prime}(A, a)$ with terminal set Σ,
\square and nonterminal set: $N \mathrm{U}$ nonterminals of all $\mathrm{G}^{\prime}(\mathrm{A}, \mathrm{a})$.
\square 1. Rules in G_{1} have the forms: $X->b, X->B \omega$ or $X->e$
\square 2. $L(G)=L\left(G_{1}\right)$ since no new nonterminals can be derived from S, the start symbol of G and G_{1}.
- From G1, we have:
$\square \mathbf{R}(\mathrm{S},[)=$? $\quad \mathrm{R}(\mathrm{C},[)=? \quad \mathrm{R}(\mathrm{A},[)=? \quad \mathrm{R}(\mathrm{B},[)=$?
\square All four grammar $\mathbf{G}(S,[), G(A,[), G(A,[)$ and $G(B,[)$ have the same rules:
] \{ S' -> A'B | A'C | S'S, C' -> S'B, A' -> ε \}, but
\square with different start symbols: $S^{\prime}, C^{\prime}, A^{\prime}$ and B^{\prime}.
\square The FAs corresponding to All $G(A, a)$ have the same transitions and common initial state (A^{\prime}).
\square They differs only on the final state.
- Exercises:

1. Find the common grammar rules corresponding to G(S,]), $\mathbf{G}(C],), \mathbf{G}(A]$,$) and \mathbf{G}(B]$,
2. Draw All FAs corresponding to $R(S],), R(C],), R(A]$,$) and$ $R(B]$,$) , respectively.$
3. Find regular expressions equivalent to the above four sets.

FAs corresponding to various $\mathrm{G}(\mathrm{A}, \mathrm{]}) \mathrm{s}$.
Linear Grammars and Normal forms

common rules: \mathbf{S}^{\prime}-> $\mathbf{A}^{\prime} \mathbf{B}\left|\mathrm{A}^{\prime} \mathbf{C}\right| \mathbf{S}^{\prime} \mathbf{S}, \mathbf{C}^{\prime}->\mathbf{S}^{\prime} \mathbf{B}, \mathbf{B}^{\prime}->\varepsilon$
— $G^{\prime}\left(S,[)=\left\{S_{(S,[)}->B X|C X \quad X->S X| \varepsilon\right\}\right.$
$\square G^{\prime}\left(C,[)=\left\{S_{(C,[)}->B Y|C Y \quad Y->S Y| B Z, Z->\varepsilon\right\}\right.$
$\square G^{\prime}\left(A,[)=\left\{S_{(A,[)}>\varepsilon\right\}\right.$
$\left.\left.\square G^{\prime}\left(B,[)=G^{\prime}(S],\right)=G^{\prime}(C],\right)=G^{\prime}(A],\right)=\{ \}$
$\left.\square G^{\prime}(B],\right)=\left\{S_{(B,])}->\varepsilon\right\}$

- Let $G_{2}=G_{1}$ with every rule of the form:

$$
X->B \omega
$$

replaced by the productions $X->\mathrm{b}_{(\mathrm{B}, \mathrm{b})} \omega$ for all b in Σ.

- Note: every production of $\mathbf{G} 2$ has the form:

$$
X->b \text { or } X->\varepsilon \text { or } X->b S_{(B, b)} \omega
$$

Let $G_{3}=$ the resulting CFG by applying ε rule-elimination to G_{2}.
Now it is easy to see that $L(G)=L\left(G_{1}\right)=?=L\left(G_{2}\right)=L\left(G_{3}\right)$. and G3 is in gnf.

From G_{1} to G_{2}

Linear Grammars and Normal forms

By def. $\mathrm{G1}_{1}=\mathbf{G 1} \mathbf{U} \mathrm{U}_{\mathrm{X} \text { in } \mathrm{N}, \mathrm{a} \text { in } \Sigma} \mathbf{G 1}(\mathrm{X}, \mathrm{a})$
$=G 1 U\left\{S_{(S,[)}->B X|C X \quad X->S X| \varepsilon\right\} U$
\square

$$
\left\{S_{(C,[)} \rightarrow B Y|C Y \quad Y \rightarrow S Y| B Z, Z \rightarrow \varepsilon\right\} U
$$

$\square \quad\left\{\mathrm{S}_{(\mathrm{A},[)} \rightarrow \boldsymbol{>} \in\right\}$
$\square \quad\left\{\mathrm{S}_{(\mathrm{B}, \mathrm{l})}->\varepsilon\right\}$
[Note: $\mathrm{L}\left(\mathbf{G 1} \mathbf{1}_{1}\right)=\mathrm{L}(\mathrm{G} 1)$ why ?
and $\mathbf{G 1}_{2}=\left\{\mathbf{S}->\left[\mathbf{S}_{(\mathrm{A},[)} \mathbf{B} \mid\right] \mathrm{S}_{(\mathrm{A}, \mathrm{j})} B|\quad| / \mathrm{S} \rightarrow \mathbf{A B}\right.$
$\left[\mathbf{S}_{(\mathrm{A},[)} \mathbf{C} \|\right] \mathrm{S}_{(\mathrm{A},])} \mathrm{C}| | \mid \mathrm{S}->\mathrm{AC}$
$\left[\mathbf{S}_{(\mathbf{S},[)} \mathbf{S} \mid\right] \mathrm{S}_{(\mathrm{S},])} \mathrm{S} \quad$ // $\mathbf{S}->\mathbf{S S}$,
C-> [$\left.\mathbf{S}_{(\mathrm{S},[\mathrm{l})} \mathbf{B} \mid\right] \mathrm{S}_{(\mathrm{S},])} \mathrm{B} \quad$ |/ $\mathbf{C - >} \mathbf{S B}$,
$\mathrm{A}->[, \quad \mathrm{B}->]$ \} $\mathbf{U} \ldots$
$l^{*} \quad\left\{S_{(S,[)}->B X \mid C X \quad X \rightarrow S X \varepsilon\right\} U$

* $\quad\left\{S_{(C,[)} \rightarrow B Y|C Y \quad Y \rightarrow S Y| B Z, Z->\varepsilon\right\} U$
$* \quad\left\{S_{(A, V)}->\varepsilon\right\} \cup \quad\left\{S_{(B,])}->\varepsilon\right\}$

From G_{2} to G_{3}

- By applying ε-rule elimination to $\mathbf{G 1} 1_{2}$, we can get $\mathbf{G 1} 1_{3}$:
- First determine all nullable symbols: $\mathrm{X}, \mathrm{Z}, \mathbf{S}_{(\mathrm{A}, \mathrm{l})}, \mathbf{S}_{(\mathrm{B}, \mathrm{l})}$

$$
\begin{aligned}
& \mathbf{G 1}_{2}=\left\{\mathbf { S } \rightarrow \quad \left[\mathbf{S}_{(\mathrm{A}, \mathrm{l})} \mathbf{B} \| \quad\left[\mathbf{S}_{(\mathrm{A}, \mathrm{l})} \mathbf{C} \quad \mid \quad\left[\mathbf{S}_{(\mathrm{S}, \mathrm{l})} \mathbf{S}\right.\right.\right.\right. \\
& \text { C-> }\left[S_{(S, I)} B\right. \\
& \text { A-> [, B ->] \} U }
\end{aligned}
$$

$$
\begin{aligned}
& X \quad \rightarrow\left[S_{(S, C)} X \mid \varepsilon \quad\right\} U \\
& \left\{S_{(C, D)} \gg S_{(B,])} Y \mid\left[S_{(C, l)} Y \quad / / B Y \mid C Y\right.\right. \\
& \mathbf{Y} \quad \rightarrow\left[\mathbf{S}_{(\mathrm{S}, \mathrm{l})} \mathrm{Y} \mid\right] \mathrm{S}_{(\mathrm{B},])} \mathbf{Z} \quad / / \mathrm{SY} \mid \mathrm{BZ}, \\
& Z \rightarrow \varepsilon\} \quad\left\{S_{(A, I)}>\varepsilon, \quad S_{(\mathrm{B}, \mathrm{l})}>\varepsilon\right\}
\end{aligned}
$$

Hence G1 $_{3}=$?

$$
\begin{aligned}
& \mathbf{G 1}_{3}=\left\{\mathbf { S \rightarrow } \quad \left[\mathrm{B} \mid \quad\left[\mathrm{C} \quad \mid \quad\left[\mathbf{S}_{(\mathrm{S}, \mathrm{I})} \mathbf{S}\right.\right.\right.\right. \\
& \text { C-> [} S_{(S, l)} B \\
& \text { A-> [, B ->] } \\
& \left.\left.\mathbf{S}_{(\mathbf{S}, \mathrm{I})} \rightarrow \mathbf{~}\right] \mathbf{X} \mid\right] \mid\left[\mathbf{S}_{(\mathrm{C}, \mathrm{I})} \mathbf{X} \mid\left[\mathbf{S}_{(\mathrm{C}, \mathrm{I})} \quad / / \mathrm{BX} \mid \mathrm{CX}\right.\right. \\
& X \quad \rightarrow\left[S_{(S, l)} X \mid\left[S_{(S, l)} X \quad\right\} U\right. \\
& \mathbf{S}_{(\mathrm{C}, \mathrm{I})} \rightarrow \mathbf{~} \boldsymbol{Y} \mid\left[\mathbf{S}_{(\mathrm{C}, \mathrm{I})} \mathbf{Y}\right. \\
& \left.\mathrm{Y} \quad->\mathrm{J}_{(\mathrm{B}, \mathrm{j})} \mathrm{Y} \mid \mathrm{l}\right\} \quad \mathrm{I} \mathrm{SY} \mid \mathrm{BZ},
\end{aligned}
$$

Lemma 21.7: For any nonterminal X and x in Σ^{*},

$$
X^{\text {L-->** }}{ }_{G 1} \times \text { iff } X^{\text {L--->* }}{ }_{G 2} x .
$$

Pf: by induction on n s.t. $X>{ }^{\mathrm{G}}{ }_{\mathrm{G} 1} \mathrm{x}$.
Case 1: $\mathrm{n}=1$. then the rule applied must be of the form:

$$
\text { X -> b or X -> } \varepsilon \text {. }
$$

But these rules are the same in both grammars.

Equivalence of G_{1} and \underline{G}_{2}

- Inductive case: $\mathrm{n}>1$.
$X^{L}->_{G 1} B \omega^{L}->_{G 1}^{*}$ by $=x \quad$ iff
$X^{L_{--}>_{G 1}} B \omega^{L^{L}->^{*}}{ }_{G 1} b B_{1} B_{2} \ldots B_{k} \omega^{L_{--->^{*}}}{ }_{G 1} b z_{1} \ldots z_{k} z=x$, where
$\square b B_{1} B_{2} \ldots B_{k} \omega$ is the first sentential form in the sequence in which b appears and $B_{1} B_{2} \ldots B_{k}$ belongs to $R(B, b)$,
iff (by definition of $R(B, b)$ and $G(B, b)$)
 where the subderivation $S_{(B, b)} L^{L_{k 1}>^{*}} B_{1} B_{2} \ldots B_{k}$ is a derivation in $\mathbf{G}(\mathrm{B}, \mathrm{b}) \subseteq \mathbf{G 1} \cap \mathbf{G 2}$.
iff $X^{L^{L}->^{*}}{ }_{G 2} b S_{(B, b)} \omega{ }^{L_{-->^{*}}{ }_{G 2} b B_{1} B_{2} \ldots B_{k} \omega^{L^{\prime}->^{*}}{ }_{G 1} b z_{1} \ldots z_{k} z=x}$ But by ind. hyp., $B_{j} \mathrm{~L}_{->^{*}}{ }_{G 2} z_{j}(0<j<k+1)$ and $\omega^{L_{-->^{*}}}{ }_{G 2} y$. Hence $X^{L_{--->*}^{*}}{ }_{G 2} X$.

