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Linear Grammar 

G = (N,S,S,P) : a CFG 

 A,B: nonterminals 

 a: terminal symbol 

 y  S*, x  S*. 

 

 Notes:  

 1. All types of linear grammars are CFGs. 

 2. All types of linear grammars generate the same class of 
languages ( i.e., regular languages) 

Theorem: For any language L: the following statements are 
equivalent: 

 0. L is regular  

 1. L = L(G1) for some RG G1   2. L=L(G2) for some SRG G2 

 3. L=L(G3) from some LG G3  4. L=L(G4) for some SLG G4 

Grammar Type Production form 

right linear A  yB  or  A  x 

Strongly right linear A  aB | B |  

Left linear A By  or  A  x 

Strongly left linear A  Ba | B |  
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Equivalence of linear languages and regular sets 

 Pf: (2) => (1) and (4)=>(3) : trivial since SRG (SLG) are special 
kinds of RG (LG). 

 (1)=>(2) :1. replace each rule of the form: 

         A  a1 a2 …an B  (n > 1) 

    by the following rules  

       A  a1 B1,  B1  a2 B2, …, Bn-2  an-1 Bn-1, Bn-1  an B 

     where B1,B2,…,Bn-1 are new nonterminal symbols. 

     2. Replace each rule of the form: 

   A  a1 a2 …an  (n  1 )  

    by the following rules  

       A  a1B1  ,  B1  a2B2, …, Bn-1  anBn,  Bn   

    3. Let G’ be the resulting grammar. Then L(G) = L(G’). 

  (3)=>(4) : Similar to (1) =>(2).   

A  B a1 a2 …an  (n > 1) ==> A  Bnan,  Bn  Bn-1an-1, ..., B2  Ba1  

A  a1 a2 …an  (n  1) ==> A  Bnan,  Bn  Bn-1an-1, ..., B2  B1a1 , B1 
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Example: 

 The right linear grammar : 

 S  abab S and S  abc 

 can be converted into a SRG as follows: 

  S   ababS   =>   

              S  a [babS] 

     [babS]  b [abS] 

       [abS]  a [bS] 

        [bS] b S 

 S  abc  => 

        S  a [bc] 

    [bc]  b [c] 

      [c]  c [] 

        []   
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RGs and FAs 

 pf: (0) =>(2), (0)=>(4) 

 Let M = (Q,S,d,S,F)  : A NFA allowing empty transitions. 

 Define a SRG G2 and a SLG G4 as follows: 

   G2 = (N2, S ,S2,P2)   G4 = (N4, S ,S4,P4) where 

 1. N2 = Q U {S2},  N4 = Q U {S4}, where S2 and S4 are 

new symbols and 

 P2 = {S2  A | A  S }  U { A  aB | B  d(A,a) }  

      U{A    | A  F }.  // to go to a final state from A, 

use ‘a’ to reach B and then from B go to a final state. 

 P4 = {S4   A | A  F } U { B  Aa | B  d(A,a) }  

     U {A    | A  S }. // to reach B from a start state, 

reach A from a start state and then consume a. 
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 Lem 01: If S2
+

G2a S*,then a = xB where xS*and BQ  

 Lemma 1: S2 
+

G2 xB iff B  D(S,x).  

 --- can be proved by ind. on derivation length(=>) and  x (<=).  

Hence x  L(G2)  

 iff  S2 * 
G2 x                     iff  S2 

+
G2 xB G2 x for a B  F.   

 iff  B  D(S,x) and B  F  iff  x  L(M) 

 Lem 02:If S4
+

G4 aS*,then a=Bx where x S* and BQ.  

 Lemma 2:  S4 
 + 

G4 Bx iff F  D(B,x)    . 

Hence S4 *G4 x  

   iff S4 *G4 Bx G4 x for some start state B  

   iff B  S and F  D(B,x)       iff x  L(M) 

Theorem: L(M) = L(G2) = L(G4). 
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From FA to LGs: An example 

 Let M = ({A,B,C,D}, {a,b}, d, {A,B},{B,D}) where 

  d is given as follows: 

      > A  <-- a --> C 

      ^                 ^ 
    b  b 

    V  V 

    >(B) <-- a-->  (D) 

==> G2 = ?       G4 = ? 

  E –a –> F is translated to : 

 1. (G2) E aF :                             E      // if E is a final state 

 To reach a final state from E, go to F first by consuming an  ‘a’ and 

then try to reach a final state from F.  

 2. (G4) F  Ea :                            E    // if E is a start state 

 How to reach F from a start state? go to E first and then by 

consuming a, you can reach F. 
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Motivation: Derivation and path walk  

 SＡ aB  abC abaD  aba.   

     => { A aB, B bC, C aD, D   … } 

 

 

 

 

 

 

 

 

 

Conclusion: The forward walk of a path from a start state to a 

final state is the same as the derivation of a SRG grammar. 
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Derivation and backward path walk  

 SD  Ca  Bba Aaba  aba.   

     => { D Ca, C Bb, B Aa, A   … } 

 

 

 

 

 

 

 

 

 

Conclusion: The backward walk of a path from a start state to a 

final state is the same as the derivation of a SLG grammar. 
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From FA to LGs: an example 

 Let M = ({A,B,C,D}, {a,b}, d, {A,B},{B,D}) where 

  d is given as follows: 

      > A  <-- a --> C 

      ^                 ^ 
    b  b 

    V  V 

    >(B) <-- a-->  (D) 

==> G2 = ?            G4 = ? 

 sol: S2  A | B                 sol: S4 B | D  

      A  aC | bB           B  Ab | Da |    

      B  aD | bA |                                D  Cb | Ba 

      C  aA | bD           C  Aa | Db  

      D  aB | bC |            A  Bb | Ca  |  
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From Linear Grammars to FAs 

 G = (N,S,S,P) : a SRG 

  Define M = (N,S,d,{S},F) where 

 F = {A | A    P} and 

 d = {(A,a,B) | A  aB  P, 

                       a  S U {} } 

Theorem: L(M) = L(G). 

 G = (N,S,S,P) : a SLG 

Define M’ = (N,S,d,S’,{S}) where 

 S’ = {A | A    P} and 

 d = {(A,a,B) | B  Aa  P, 

                       a  S U {}    } 

Theorem: L(M’) = L(G). 

Example: 

G : S  aB | bA 

      B  aB | 

      A  bA | 

=> M = ? 

   

Example: 

 

 G: S  Ba | Ab 

      A  Ba | 

      B  Ab | 

==> M’ = ? 
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Other types of  transformations 

 FA  LG = {SLG, SRG }    (ok!) 

 FA  Regular Expression (ok!) 

 SLGs  SRGs  (?) 

 SLG  FA  SRG 

 LG  Regular Expression  (?) 

 LG  FA  Regular Expression 

 Ex: Translate the SRG G: SaA | bB, A aS | , B  bA | bS | 

 into an equivalent SLG. 

sol: The FA corresponding to G is M = (Q, {a,b}, d, S, {A,B}), where Q= 

{S,A,B} and d = { (S, a, A), (S,b,B), (A, a,S), (B,b,A),(B,b,S)} 

So the SLG for M (and G as well) is 

    S'  A | B, --- final states become start symbol; S' is the new start symbol 

    S  ,        --- start state becomes empty rule 

    A  Sa, B  Sb, SAa, A  Bb, S  Bb. // do you find the rule from SRG 

to SLG ? 
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Exercises 

 Convert the following SRG into an equivalent SLG ? 

 S  aS | bA | aB |    

 A  aB | bA | aS |  

 B  bA | aS 

 

 Convert the following SLG into an equivalent SRG ? 

 S  Ca | Ab | Ba    

 A  Ba | Cb |  

 B  Ab | Sa 

 C  Aa | Bb |  

 

 

Rules: 

                 A  aB   B Aa 

                 A  B     B  A   

empty rule: A  e   S’  A    

start symbol:       S  S  e 

Rules: 

                 A  Ba   B  aA 

                 A  B     B  A     

empty rule: A  e    S’  A    

start symbol:       S  S  e 
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Chomsky normal form and Greibach normal form 

 G = (N,S,P,S) : a CFG 

 G is said to be in Chomsky Normal Form (CNF) iff all  rules in 

P have the form: 

 A  a   or  A  BC  

 where a  S and A, B,C  N. Note: B and C may equal to A. 

 G is said to be in Greibach Normal Form (GNF) iff all  rules in 

P have the form: 

 A  a B1B2…Bk  

 where k  0, a  S and Bi  N for all 1  i  k .  

 Note: when k = 0 => the rule reduces to A  a. 

Ex: Let G1:   S  AB | AC |SS,   C  SB,    A  [,   B  ]        

G2:   S  [B | [SB | [BS | SBS,    B  ] 

 ==> G1 is in CNF but not in GNF 

        G2 is in GNF but not in CNF. 
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Remarks about CNF and GNF 

1. L(G1) = L(G2) = PAREN - {}. 

2. No CFG in CNF or GNF can produce the null string . (Why ?) 

Observation: Every rule in CNF or GNF has the form A  a 

          with |A| = 1  |a| since  can not appear on the RHS. 

  So  

 Lemma: G: a CFG in CNF or GNF. Then  a  b only if |a|  |b|. 

Hence if S * x  S* ==> |x|  |S| = 1 => x !=  . 

3. Apart from (2), CNF and GNF are as general as CFGs. 

 

Theorem 21.2: For any CFG G, $ a CFG G’ in CNF and a CFG G’’ 

in GNF s.t. L(G’) = L(G’’) = L(G) - {}. 
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Generality of CNF 

 -rule:  A  . 

 unit (chain) production: A  B. 

 Lemma: G: a CFG without unit and -rules. Then $ a CFG  G’ 
in CNF form s.t. L(G) = L(G’). 

Ex21.4: G: S  aSb | ab has no unit nor -rules. 

==> 1. For terminal symbol a and b, create two new nonterminal 
symbol A and B and two new rules: 

    A  a,     B  b. 

 2. Replace every a and b in G by A and B respectively. 

  => S  ASB | AB,   A  a,   B  b. 

 3. S  ASB is not in CNF yet ==> split it into smaller parts: 

     (Say, let AS = AS) ==> S  ASB and AS  AS. 

 4. The resulting grammar : 

    S  ASB | AB, A  a, B  b, AS  AS is in CNF. 
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generality of CNF 

Ex21.5: G: S  [S]S | SS |  [  ]  ==> 

 A  [,   B  ], S  ASBS | SS | AB 

 ==> replace S  ASBS by  S ASBS  ASB ASB, 

 ==>replace ASB  ASB by ASB  ASB and AS  AS. 

 ==> G’: A [,  B ],  

              S  ASBS |SS |AB,  

             ASB  ASB, AS  AS. 

 (2) another possibility: 

  S  ASBS becomes  S  ASBS  , AS  AS, BS  BS. 

 

Problem: How to get rid of  and unit productions: 
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Elimination of e-rules (cont’d) 

 It is possible that S * w  w’ with |w’| < |w| because of the 

-rules. 

Ex1:  G: S  SaB | aB       B  bB | . 

 => S  SaB  SaBaB  aBaBaB  aaBaB  aaaB  aaa. 

  L(G) = (aB)+ = (ab*)+   

 

Another equivalent CFG w/o -rules: 

Ex2:  G’: S  SaB | Sa  | aB | a  B  bB | b. 

  S * S (a + aB)*  (a+aB)+             B * b*B  b+. 

 => L(G’) = L(S) = (a + ab+)+ = (ab*)+  

Problem: Is it always possible to create an equivalent CFG w/o 

-rules ? 

Ans: yes! but  with proviso. 
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Elimination of -rules (cont’d) 

Def: 1. a nonterminal A in a CFG G is called nullable if it can 

derive the empty string. i.e., A  * . 

  2. A grammar is called noncontracting if the application of a 

rule cannot decrease the length of sentential forms. 

     (i.e.,for all w,w’  (SUN)*,  if w  w’ then |w’|  |w|. ) 

 

Lemma 1: G is noncontracting iff G has no -rule. 

pf: G has -rule A      =>     1 = |A| > || = 0.  

     G contracting => $a,b  (NUS)*  and A   with aAb  ab. 

     => G contains an -rule.  
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Simultaneous derivation: 

Def: G: a CFG. ==>G : a binary relation on (N U S)* defined as 

follows: for all a,b  (NUS)*, a ==> b iff 

   there are x0,x1,..,xn  S*, rules A1  g1, …, An  gn ( n  > 0 ) s.t.  

          a = x0 A1  x1    A2    x2…   An    xn and   

          b = x0  g1  x1     g2      x2…   gn     xn   

  

==>n and  ==>* are defined similarly like n and *. 

Define  ==>(n)   =def   ( U k  n ==>k ). 

Lemma: 

 1. if a ==> b  then a * b. Hence a ==>* b implies a * b. 

 2. If b is a terminal string, then a n b implies a ==>(n) b. 

 3. {x  S* | S ==>* x  } = L(G) = {x   S* | S * x  }. 
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Find nullable symbols in a grammar 

Problem: How to find all nullable nonterminals in a CFG ? 

Note: If A is nullable then there are numbers n s.t. A ==> (n) . 

Now let Nk = { A  N | A ==>(k)  }. 

 1. NG (the set of all nullable nonterminals of G) = U k  0 NK. 

 2. N1    =        {A | A    P}.     

 3. Nk+1 =  Nk U {A | A  X1X2…Xn  P ( n >= 0) and All Xis  Nk }. 

 Ex: G : S  ACA  A  aAa | B | C 

    B  bB | b  C  cC | . 

=>  N1 = ?            {C} 

      N2 = N1 U ?      

      N3 = N2 U ? 

      NG = ? 

 Exercises: 1. Write an algorithm to find NG. 

       2. Given a CFG G, how to determine if   L(G) ? 

 



Linear Grammars 
and Normal forms 

  Transparency No. P2C2-22 

Adding rules into grammar w/t changing language 

Lem 1.4: G = (N,S,P,S) : a CFG s.t. A * w. Then the CFG G’ = 

(N,S, PU{ A  w}, S) is equivalent to G. 

pf: L(G)  L(G’) : trivial since G  G’ . 

     L(G’)  L(G): First define a ->>k
G’ b  iff  ( a *G’ b and the rule A  

w was applied  k times in the derivation ).   

 Now it is easy to show by ind. on k that  

 if a ->>k+1
G’ b then a ->>k

G’b (and hence a ->>0
G’ b and a *G b ).  

 Hence  a *G’ b implies a *G b and L(G’)  L(G).  

Theorem 1.5: for any CFG G , there is a CFG G’ containing no -

rules s.t.  L(G’) = L(G) - {}. 

Pf: Define G’’ and G’ as follows: 

 1. Let P’’ = P U D where D = {AX0X1…Xn | A  X0A1X1…AnXnP, 

     n 1, All Ais are nullable symbols and Xi  (ＮUS)*. }.  

  2. Let P’ be  the resulting P’’ with all -rules removed.  
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Elimination of  e-rules (con’t) 

By lem 1.4, L(G) = L(G’’). We now show L(G’) = L(G’’) - {}. 

1. Since P’  P’’, L(G’)  L(G’’).  Moreover, since G’ contains no -
rules,   L(G’) Hence L(G’)  L(G’’) - {}. 

2. For the other direction, first define S -->k
G’’ b  iff  

    S *G’’ b and all -rules A   in P’’ are used k times totally in the 
derivation. Note: if  S -->0

G’’ b then S *
G’ b . 

we show by induction on k that 

  if S -->k+1
G’’ b and b   then 

     S -->k
G” b for all k 0 and hence S -->0

G’’ b and  S *G’ b.   

 As a result if S*G’’ bS+ then S*G' b. Hence L(G’’)-{}  L(G’) . 

  But now  if S -->k+1
G’’ b  then 

   S *G’’ mBn --(B  xAy )- mxAyn w1 …  a’Ab’ --(A  ) 

       a’b’  …  b and then 

   S *G’’ mBn --(B  xy )  mxyn w’1 …  a’b’  …  b . 

   hence S -->k
G’’ b .  QED 
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Example 1.4: 

Ex 1.4: G:  S  ACA  A  aAa | B | C 

   B  bB | b  C  cC | . 

=> NG = {C, A, S}. 

 

 Hence P’’ =  P U {  S  ACA |AC|CA|AA|A|C| 

      A  aAa | aa | B | C |   

    B  bB | b 

      C  cC | c |   } 

 

and P’ = {   S  ACA |AC|CA|AA|A|C 

    A  aAa | aa | B | C 

   B  bB | b 

    C  cC | c   } 
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Elimination of unit-rules 

Def: a rule of the form A  B is called a unit rule or a chain rule. 

 Note: if A  B then aAb  aBb does not increase  the 

length of the sentential form. 

 

Problem: Is it possible to avoid unit-rules ? 

Ex:  A  aA | a | B   B  bB | b  | C 

 

=> A  B   bB       A  bB 

     b  ==> replace A  B by 3 rules: A  b 

      C      A  C 

 

Problem: A  B removed but new unit rule A  C generated. 
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Find potential unit-rules. 

 Def: G: a CFG w/o -rules. A  N (A is a nonterminal).    

        Define CH(A) = {B  N | A * B }  

 Note: since G contains no -rules. A * B iff all rules applied 

in the derivation are unit-rules. 

Problem: how to find CH(A) for all A  N. 

Sol:  Let CHK(A) = {B  N |  $n  k, A n B } Then 

 1. CH0 (A) = {A}      since A 0  a iff a = A. 

 2. CHk+1(A) = CHK(A) U {C | B  C  P and B  CHK(A) }. 

 3. CH(A) = U k  0 CHk(A). 

Ex: G:   S  ACA |AC|CA|AA|A|C     A  aAa | aa | B | C 

   B  bB | b            C  cC | c    

==> CH(S) =  ?        CH(A) = ? 

    CH(B) = ?  CH(C) = ? 

S 

A B 

C 
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Removing Unit-rules 

Theorem 2.3: G: a CFG w/o -rules. Then there is a CFG H’ 

equivalent to G but contains no unit-rules. 

Pf: H’’ and H’ are constructed as follows: 

 1. Let P’’ = P U { A  w | B  CH(A) and B  w  P }. and 

 2.  let P’ = P’’ with all unit-rules removed. 

 By lem 1.4, L(H’’) = L(G). the proof that L(H’’) = L(H’) is similar to 

Theorem 1.5. left as an exercise (Hint: Unit rules applied in a 

derivation can always be decreased to zero). 

Ex: G:   S  ACA |AC|CA|AA|A|C     A  aAa | aa | B | C 

   B  bB | b            C  cC | c    

==>CH(S)={S,A,C,B}, CH(A) = {A,B,C}, CH(B) ={B}, CH(C) = {C}. 

Hence P’’ = P U { …. ? } and 

            P’ =  { ? }. 

Note: if G contains no -rules, then so does H’. 
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Contracting Grammars  

 Given a CFG G , it would be better to replace G by another G’ 
if G’ contains fewer nonterminal symbols and/or production 
rules.  

 Like FAs, where inaccessible states can be removed, 
some symbols and rules in a CFG can be removed w/t 
affecting its accepted language. 

Def:  A nonterminal A in a CFG G is said to be grounding if it 
can derive terminal strings. (i.e., there is w  S* s.t. A* w.} 
O/W  we say A is nongrounding. 

Note: Nongrounding symbols (and all rules using nonground 
symbols ) can be removed from the grammars. 

Ex: G:  S  a | aS | bB      B  C | D | aB | BC 

 ==> Only S is grounding and  B,C, D are nongrounding 

==> B,C,D and related rules can  be removed from G. 

 ==> G can be reduced to:   S  a | aS 
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Finding nongrounding symbols 

Given a CFG G = (N,S,P,S). the set of grounding symbols can be 

defined inductively as follows: 

1. Init: If there is a rule Aw in P s.t. w  S*, then A is grounding. 

2. ind.: If A  w is a rule in P s.t. each symbol in w is either a 

terminal or grounding then A is grounding.   

 

Exercise: According to the above definition, write an algorithm to find 

all grounding (and nongrounding) symbols for arbitrarily given 

CFG. 

Ex: S  aS | b |cA | B | C | D              A  aC | cD | Dc | bBB 

       B  cC | D |b               C  cC | D      D  cD | dC 

=> By init: S, B is grounding => S,B,A is grounding 

=> G can be reduced to : 

   S  aS | b |cA | B        A  bBB       B  b             
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Unreachable symbols 

Def: a nonterminal symbol A in a CFG G is said to be reachable 

iff it occurs in some sentential form of G. i.e., there are a,b s.t. 

S  * aAb. It A is not reachable, it is said to be unreachable. 

 Note: Both nongrounding symbols and unreachable symbol 

are useless in the sense that they can be removed from the 

grammars w/o affecting the language accepted. 

Problem: How to find reachable symbols in a CFG ? 

Sol: The set of all reachable symbols in G is the least subset  R 

of N s.t. 1. the start symbol S  R, and 

                   2. if A  R and A  aBb  P, then B  R. 

Ex: S  AC |BS | B    A  aA|aF     B  |CF | b    C  cC | D 

       D  aD | BD | C       E  aA |BSA   F  bB |b. 

=> R = {S, A,B,C,F,D} and E is unreachable. 
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Elimination of empty and unit productions 

 The removal of -rules and unit-rules can be done simultaneously. 

 G = (N,S,P,S) : a CFG. The EU-closure of P, denoted EU(P), is 

the least set of rules including P s.t.  

1. If A  aBb and B    EU(P) then A  ab  EU(P). 

2. If A  B  EU(P) and B  g  EU(P)  then A  g  EU(P). 

 Quiz: What is the recursive definition of EU(P) ? 

 Notes:  

 1. EU(P) exists and is finite. 

  If A  a0A1a1A2…Anan contains n nonterminals on the RHS 

==> there are at most 2n-1 new rules which can be added to 

EU(P), due to (a) and this rule.  

 If B  g  P and |N| = n then there are at most n-1 rules can 

be added to EU(P) due to this rule and (b). 

 2. It is easy to find EU(P). 
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EU-closure of production rules 

  Procedure EU(P) 

1. P’ = P;  NP = {}; 

2. for each -rule B    P’  do 

      for each rule A  aBb do 

        NP = NP U {A  ab };  

3. for each unit rule A  B  P’  where B  A, 

       for each rule B  g do 

      NP = NP U {A  g}; 

4. If NP  P’ then return (P’) 

   else{P’ = P’ U NP;  NP = {}; 

           goto 2} 

Notation: let P’k =def the value of P’ after the kth iteration of 

 statement 2 and 3. 

Ex 21.5’: P={ S  [S]  | SS |  } 

1+3 => S []        --- 4. 

2+3 => S  S, S  S  --- 5.   

 

=> EU(P) = P U { S  [], S  S } 
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Equivalence of P and EU(P) (skipped!). 

 G = (N,S,P,S),  G’ = (N,S,EU(P), S). 

Lem 1:  for each rule A  g  EU(P), we have   A *G g. 

pf: By ind on k where k is the number of iteration of statement 

2,3 of  the program at which A  g is obtained. 

 1. k = 0. then A  g  EU(P)  iff A  g  P. Hence A *G g. 

 2. K = n+1 > 0. 

   2.1: A  g is obtained from statement 2. 

     ==> $ B, a, b with ab = g s.t. A aBb and B    P’n. 

     Hence A *G aBb *Gab = g.  

   2.2 A  g is obtained from statement 3.  

    ==> $ A B and B  g  P’n. 

     Hence A *G B *G g.  

Corollary:  L(G) = L(G’). 
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S can never occur at RHS (skipped!!) 

 G = (N,S,P,S) : a CFG. Then there exists a CFG G’ = (N’,S,P’,S’) 
s.t. (1) L(G’) = L(G) and (2) the start symbol S’ of G’ does not 
occur at the RHS of all rules of P’. 

Ex:   G: S  aS | AB |AC       A  aA |   

               B  bB | bS       C  cC | . 

==> G’:   S’  aS | AB |AC   

         S  aS | AB |AC      A  aA |   

               B  bB | bS       C  cC | . 

ie., Let G’ = G if S does not occurs at the RHD of rules of G.  

 o/w: let N’ = N U {S’} where S’ is a new nonterminal  N. 

  and Let P’ = P U {S’  a | S  a  P }. 

 It is easy to see that G’ satisfies condition (2). Moreover 

 for any a(N US)*, we have S’ +
G’ a  iff  S +

Ga. 

 Hence L(G) = L(G’). 
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Generality of Greibach normal form ( skipped! ) 

 The topic about Greibach normal form will be skipped! 

 Content reserved for self study. 

 Claim: Every CFG G can be transformed into an equivalent 

one G’ in gnf form (i.e., L(G’) = L(G) - {  } ). 

Definition: (left-most derivation) 

  a,b  (N U S)* : two sentential forms 

  a L-->G b  =def  $ x  S*, A  N, g  (NUS)*, rule A -> d s.t. 

                        a = x A g and b = x d g.   

 i.e., a L--> b iff a --> b and the left-most nonterminal 

symbol A of b is replaced by the rhs d of some rule A-> d. 

 Derivations and left-most derivations: 

  Note: L-->G  -->G but not the converse in general ! 

  Ex:  G : A -> Ba | ABc;  B -> a | Ab 

    then  aAb B --> aAb Ba and aAbB --> a Ba bB and 

              aAbB L--> a Ba bB but not aAb B L--> aAb Ba  
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Left-most derivations 

 As usual, let L-->*
G be the ref. and trans. closure of L-->G. 

 

 Equivalence of derivations and left-most derivations : 

Theorem: A: a nonterminal; x: a terminal string. Then 

                 A -->* x iff A L-->* x. 

pf: (<=:)  trivial. Since L-->   --> implies L-->*   -->* . 

      (=>:)  left as an exercise.  

               (It is easier to prove using parse tree.) 
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Transform CFG to gnf  

 G= (N,S,P,S) : a CFG where each rule has the form:  

 A -> a or  

 A -> B1 B2 …Bn ( n > 1).  // we can transform every cfg into 

such from if it has no -rule. 

 Now for each pair (A, a) with A  N and a  S, define the set 

    R(A,a) =def { b  N* | A L->* a b  }. 

Ex: If G1 = { S-> AB | AC | SS, C-> SB, A->[,  B -> ] }, then 

   CSSB  R(C,[)  since  

   C L-->SB L--> SS B L-->SS SB L--> ACSSB L--> [CSSB 

 Claim: The set R(A,a) is regular over N*. In fact it can be 

generated by the following left-linear grammar: 

   G(A,a) = (N’, S’,P’,S’) where 

 N’ = {X’ | X  N}, S’ = N, S’ = A’ is the new start symbol, 

 P’ = { X’ -> Y’w | X -> Yw  P } U { X’ ->   | X -> a  P } 
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 Ex: For G1, the CFG G1(C, [ ) has 

 nonterminals: S’, A’,B’,C’, 

 terminals:   S,A,B,C, 

 start symbol: C’ 

 rules P’ = { S’-> A’B | A’C | S’S,  C’-> S’B,  A’->               } 

 cf:     P  = { S -> AB  | AC  | SS,   C-> SB,     A->[,  B -> ]   } 

 Note: Since G(A,a) is regular, there is a strongly right linear 
grammar equivalent to it. Let G’(A,a) be one of such grammar. 
Note every rule in G’(A,a) has the form X’ -> BY’ or X’ -> } 

 let S(A,a) be the start symbol of the grammar G’(A,a). 

 let G1 = G U  U A N, a S  G’(A,a) with  terminal set S, 

  and nonterminal set: N U nonterminals of all G’(A,a). 

 1. Rules in G1 have the forms: X -> b, X->Bw or  X -> e 

 2. L(G) = L(G1)  since no new nonterminals can be derived 
from S, the start symbol of G and G1. 
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Example: 
 From G1, we have: 

 R(S, [) =  ?     R(C,[) = ?        R(A,[) = ?       R(B,[) = ? 

 All four grammar G(S,[), G(A,[), G(A, [) and G(B,[) have the 
same rules: 

    { S’ -> A’B | A’C | S’S,   C’ -> S’B,   A’ ->   }, but 

 with different start symbols: S’, C’, A’ and B’. 

 The FAs corresponding to All G(A,a) have the same 
transitions and common initial state (A’). 

 They differs only on the final state. 

 Exercises: 

1.  Find the common grammar rules corresponding to 

          G(S,]), G(C, ]), G(A,]) and G(B, ]) 

      2. Draw All FAs corresponding  to R(S,]), R(C,]), R(A,]) and 

          R(B,]), respectively. 

      3. Find regular expressions equivalent to the above four 

          sets.  
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S 

S’ A’ 

B’ C’ 

B,C 

B 

S’ A’ 

B’ C’ 

B,C 
S 

B 

S’ A’ 

B’ C’ 

B,C 
S 

B 

S’ A’ 

B’ C’ 

B,C 
S 

B 

R(S,[) = (B+C)S* R(C,[) = (B+C)S* B 

R(A,[) = {} R(B,[) = {}. 

FAs corresponding to various G(A,[)s. 
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FAs corresponding to various G(A,])s. 

common rules: S’ -> A’B | A’C | S’S,   C’ -> S’B,   B’ ->   

S 

S’ A’ 

B’ C’ 

B,C 

B 

S’ A’ 

B’ C’ 

B,C 
S 

B 

S’ A’ 

B’ C’ 

B,C 
S 

B 

S’ A’ 

B’ C’ 

B,C 
S 

B 

R(S,]) = {} R(C,]) = {} 

R(A,]) = {} R(B,]) = {}. 
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Strongly right linear grammar corresponding to G(A,a)s 

 G’(S,[) = { S(S,[) -> BX | CX   X -> SX |   } 

 G’(C,[) = { S(C,[) -> BY | CY   Y -> SY | BZ, Z ->   } 

 G’(A,[) =  { S(A,[) ->   } 

 G’(B,[) = G’(S,]) = G’(C,]) = G’(A,]) = {} 

 G’(B,]) = { S(B,]) ->  } 

 Let G2 = G1 with every rule of the form: 

         X -> Bw   

    replaced by the productions X -> b S(B,b)w  for all b in S. 

 Note: every production of G2 has the form: 

         X -> b  or X ->   or  X -> b S(B,b) w. 

Let G3 = the resulting CFG by applying  rule-elimination to G2. 

Now it is easy to see that L(G) = L(G1)  =?=  L(G2) = L(G3).  

   and G3 is in gnf. 
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From G1 to G2 

By def. G11 = G1 U UX in N, a in S G1(X, a) 

       =   G1 U { S(S,[) -> BX | CX   X -> SX |   } U 

             { S(C,[) -> BY | CY   Y -> SY | BZ, Z ->   } U 

             { S(A,[) ->   } U 

             { S(B,]) ->  } 

 Note:  L(G11)  = L(G1) why ? 

and  G12  = { S -> [ S(A,[) B  |  ] S(A,]) B  |      //  S -> AB  

                     [ S(A,[) C  |  ] S(A,]) C  |     //  S-> AC 

                             [ S(S,[) S  |   ] S(S,]) S         //  S-> SS,   

                      C-> [ S(S,[) B  |   ] S(S,]) B         //  C-> SB,   

                      A->[,      B -> ]   }  U  …. 

 /*       { S(S,[) -> BX | CX   X -> SX    } U 

     *       { S(C,[) -> BY | CY   Y -> SY | BZ, Z ->   } U 

*/      { S(A,[) ->   }   U    { S(B,]) ->  }  
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From G2 to G3 

 By applying -rule elimination to G12, we can get G13: 

 First determine all nullable symbols: X, Z, S(A,[) , S(B,])  

 

G12  = { S ->    [ S(A,[) B   |      [ S(A,[) C       |     [ S(S,[) S      

             C->    [ S(S,[) B       

             A->    [,                 B ->   ]      } U 

           { S(S,[) -> ] S(B,]) X   |     [ S(C,[) X             // BX| CX    

             X      -> [ S(S,[) X   |                                  } U 

     { S(C,[) -> ] S(B,]) Y | [ S(C,[) Y            // BY | CY  

       Y      -> [ S(S,[) Y | ] S(B,]) Z            // SY | BZ,  

       Z ->   } U       { S(A,[) ->   ,     S(B,]) ->  }  

Hence G13 = ? 
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G13 

G13  = { S ->    [  B   |      [  C       |     [ S(S,[) S      

             C->    [ S(S,[) B       

             A->    [,                 B ->   ]       

            S(S,[) ->  ]  X   |   ] |   [ S(C,[) X  | [  S(C,[)          // BX| CX    

             X      -> [ S(S,[) X   | [ S(S,[) X                             } U 

      S(C,[) ->  ] Y | [S(C,[) Y    

       Y      -> ]S(B,]) Y |   ]   }           //SY | BZ,  

Lemma 21.7:  For any nonterminal X and x in S*, 

                         X L-->*G1 x iff X L-->*G2  x. 

Pf: by induction on n s.t. X ->n
G1 x. 

 Case 1: n = 1. then the rule applied must be of the form: 

                      X -> b or X -> . 

              But these rules are the same in both grammars. 
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Equivalence of G1 and G2 

 Inductive case: n > 1. 

     X L-->G1 Bw L-->*G1 by = x   iff  

     X L-->G1 Bw  L-->*G1  bB1B2…Bk w L-->*G1 bz1…zk z = x, where  

 bB1B2…Bk w is the first sentential form in the sequence in which b 

appears and B1B2…Bk belongs to R(B,b),  

 iff  (by definition of R(B,b) and G(B,b) ) 

     X L-->G2 b S(B,b) w  L-->*G1  b B1B2…Bk w L-->*G1 bz1…zk z, 

where   the subderivation   S(B,b)  
L-->*G1  B1B2…Bk is a 

derivation in   G(B,b)  G1  G2. 

 iff X L-->*G2 b S(B,b) w  L-->*G2 b B1B2…Bk w L-->*G1 bz1…zk z = x  

 But  by ind. hyp., Bj 
L-->*G2 zj  ( 0 < j < k+1) and w L-->*G2 y. 

  Hence  X L-->*G2   x. 

      

 


