Formal Language and Automata Theory

Part II Chapter 4

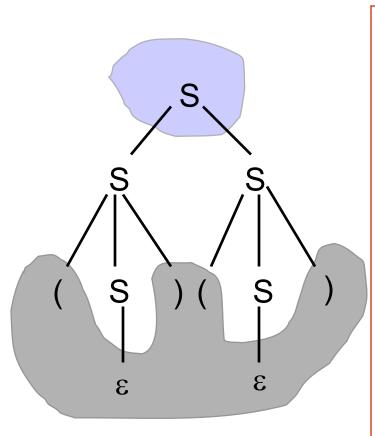
Parse Trees and Parsing

Derivations and Parse trees

- G: S --> ϵ | SS | (S) // L(G) = PAREN
- Now consider the derivations of the string: "()()".
 - \square D₁: S--> SS -->(S) S --> ()S --> ()(S) --> ()()
 - \Box D₂: S-->SS -->(S)(S)-->(S)()-->()()
 - \square D₃: S-->SS -->S(S) --> S() -->(S)() --> ()()
- Notes:
 - \square 1. \square_1 is a leftmost derivation, \square_3 is a rightmost derivation while \square_2 is neither leftmost nor rightmost derivation.
 - \square 2. $D_1 \sim D_3$ are the same in the sense that:
 - The rules used (and the number of times of their applications) are the same.
 - All applications of each rule in all 3 derivations are applied to the same place in the string.
 - ♠ More intuitively, they are equivalent in the sense that by reordering the applications of applied rules, they can be transformed to the same
 derivation.
 Transparency No. P2C4-2

Parse Trees

• $D_1 \sim D_3$ represent different ways of generating the following parse tree for the string "()()".



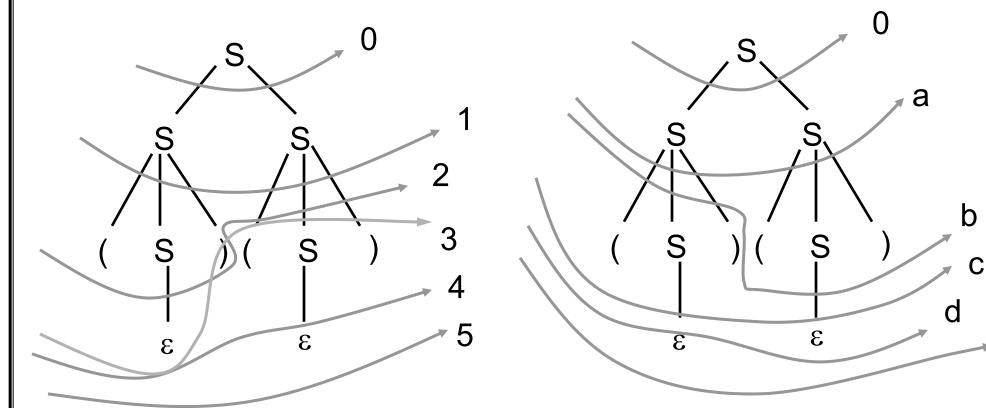
Features of the parse tree:

- 1. The root node is [labeled by] the start symbol: S
- 2. The left to right traversal of all leaves corresponds to the input string: ()().
- 3. If X is an internal node and $Y_1 Y_2 ... Y_K$ are an left-to-right listing of all its children in the tree, then $X --> Y_1 Y_2 ... Y_k$ is a rule of G.
- 4. Every step of derivation corresponds to one-level growth of an internal node

A parse tree for the string "()()".

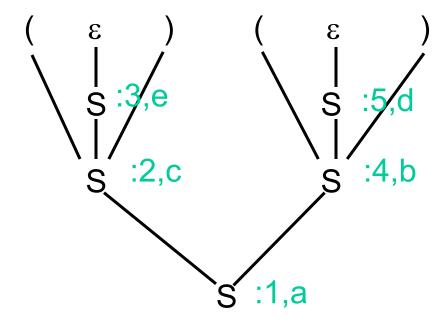
Mapping derivations to parse tree

• How was a parse tree generated from a derivation ?



Top-down view of D_1 : S -->* ()() and D_2 : S -->* ()().

Bottom-up view of the generation of the parse tree



Remarks:

- 1. Every derivation describes completely how a parse tree grows up.
- 2. In practical applications (e.g., compiler), we need to know not only if an input string w ∈L(G), but also the parse tree (corresponding to S →* w)
- 3. A grammar is said to be *ambiguous* if there exists some string which has more than one parse tree.
- 4. In the above example, '()()' has at least three derivations which correspond to the same parse tree and hence does not show that G is ambiguous.
- 5. Non-uniqueness of derivations is a necessary but not sufficient condition for the ambiguity of a grammar.
- 6. A CFL is said to be ambiguous if every CFG generating it is ambiguous.

An ambiguous context free language

- It can be proved that the above language is inherently ambiguous. Namely, all context free grammars for it are ambiguous.

Parse trees and partial parse trees for a CFG

• $G = (N, \Sigma, P, S) : a CFG$

PT(G) = $_{def}$ the set of all parse trees of G, is the set of all trees corresponding to complete derivations (I.e., A -->* w where $w \in \Sigma^*$).

PPT(G) =_{def} the set of all partial parse tree of G is the set of all trees corresponding to all possible derivations (i.e.,

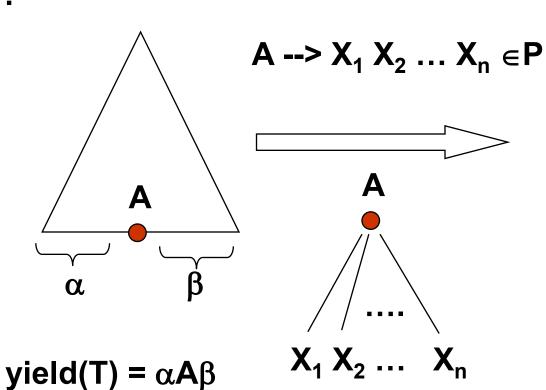
A -->* α , where A \in N and $\alpha \in (NU\Sigma)^*$).

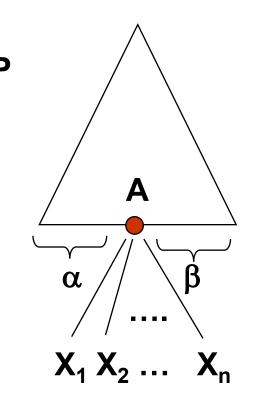
Inductive defintion of PPT(G) and PT(G)

- The set PPT(G) and PT(G) as well as two functions root and yield on PPT(G) are defined inductively as follows:
- 1. Every nonterminal A is a PPT (with root A and yield A)
- 2. If T = (...A...) is a PPT where A is a nonterminal leaf and T has yield $\alpha A\beta$. and A --> $X_1X_2...X_n$ ($n \ge 0$) is a production, then the tree $T' = (....(A X_1 X_2 ...X_n) ...)$ obtained from T by appending $X_1...X_n$ to the leaf A as children of A is a PPT with yield $\alpha X_1...X_n$ β . (See the figure in next slide)
- A PPT is called a partial X-tree if its root is labeled X.
- A PPT is a parse tree (PT) if its yield is a terminal string.

How a new PPT is defined in terms of old one

T:





yield(T') = $\alpha X_1 X_2 ... X_n \beta$.

Relations between parse trees and derivations

Lemma 4.1: If T is a partial X-tree with yield α , then X -->*_G α .

Pf: proved by ind. on the structure(or number of nodes) of T.

Basis: T = X is a single-node PPT. Then α = X. Hence X --> 0 _G α .

Ind: T = (... (A β) ...) can be generated from T' = (.... A ...) with yield μ A ν by appending β to A. Then

$$X \longrightarrow_G^* \mu A \nu$$
 // by ind. hyp. on T' -->_G $\mu \beta \nu$ // by def. A --> β in P QED.

• Let D : X --> α_1 --> α_2 --> ... --> α_n be a derivation.

The partial X-tree generated from D, denoted T_D , which has yield(T_D) = α_n , can be defined inductively on n:

1. n = 0: (i.e., D = X). Then $T_D = X$ is a single-node PPT.

2. n = k+1 > 0: let D =
$$[X --> \alpha_{\underline{1}} --> \dots --> \alpha_{\underline{k}} = \alpha A \beta --> \alpha X_1 \dots X_m \beta]$$

= $[D' --> \alpha X_1 \dots X_m \beta]$

then $T_D = T_{D'}$ with leaf A replaced by the PPT (A $X_1...X_m$)

Relations between parse trees and derivations (cont'd)

Lemma 4.2: D = [X --> α_1 --> α_2 --> ... --> α_n]: a derivation. Then T_D is a partial X-tree with yield α_n .

Pf: Simple induction on n. left as an exercise.

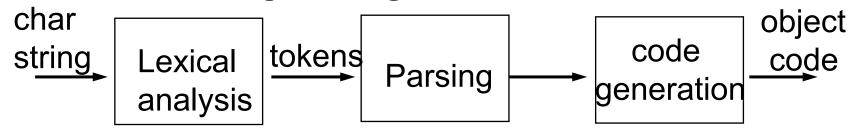
- Leftmost and rightmost derivations:
- G: a CFG. Two relations
 - \Box L-->_G (leftmost derivation),
 - $□ R_{--}>_G$ (rightmost derivation) $⊆ (NUΣ)^+ x (NUΣ)^*$ are defined as follows: For $α,β ∈ (NUΣ)^*$
 - 1. $\alpha \vdash -->_G \beta$ iff $\exists x \in \Sigma^*$, $A \in \mathbb{N}$, $\gamma \in (\mathbb{N} \cup \Sigma)^*$ and $A --> \delta \in \mathbb{P}$ s.t. $\alpha = xA\gamma$ and $\beta = x\delta\gamma$. // $xA\gamma \rightarrow x\delta\gamma$
 - 2. $\alpha \stackrel{\mathsf{R}}{\longrightarrow}_{\mathsf{G}} \beta$ iff $\exists x \in \Sigma^*$, $A \in \mathsf{N}$, $\gamma \in (\mathsf{NU}\Sigma)^*$ and $A \dashrightarrow \delta \in \mathsf{P}$ s.t. $\alpha = \gamma \mathsf{A} \mathsf{x}$ and $\beta = \gamma \delta \mathsf{x}$. $// \gamma \mathsf{A} \mathsf{x} \to \gamma \delta \mathsf{x}$
 - 3. define L ---> $^{*}_{G}$ (resp., R ---> $^{*}_{G}$) as the ref. & trans. closure of

parse tree and leftmost/rightmost derivations

- Ex: S --> SS | (S) | ε. Then
 - $(SSS) \longrightarrow_G ((S) SS)$ leftmost
 - -->_G (SS(S)) rightmost
 - -->_G (S (S) S) neither leftmost nor rightmost
- Theorem 3 : G; a CFG, $A \in N$, $w \in \Sigma^*$. Then the following statements are equivalent:
 - (a) $A -->^*_G w$.
 - (b) ∃ a parse tree with root A and yield w.
 - (c) ∃ a leftmost derivation A L--->* w
 - (d) ∃ a rightmost derivation A R--->*_G w
- pf: (a) <==> (b) // (a) <==> (b) direct from Lemma 4.1 & 4.2.
 - // (c),(d) ==> (a) : by definition
 - (c) (d) // need to prove (b) ==>(c),(d) only.
 - // left as an exercise.

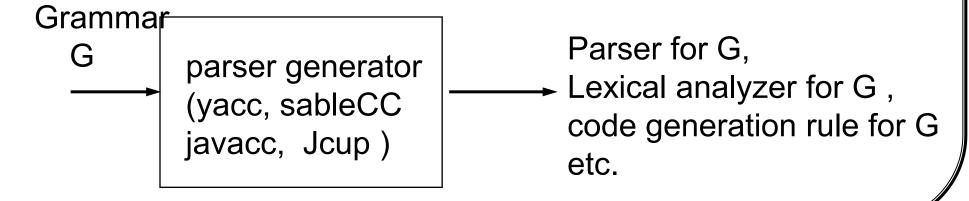
Parsing

- Major application of CFG & PDAs:
 - □ Natural Language Processing(NLP)
 - □ Programming language, Compiler:
 - ☐ Software engineering : text 2 structure



Parser generator :

parse trees or its equivalents

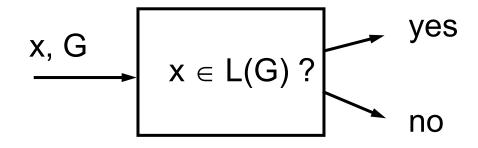


Parsing (cont'd)

 Parsing is the process of generating a parse tree (or its equivalents) corresponding to a given input string w and grammar G.

Note: In formal language we are only concerned with if $w \in L(G)$, but in compiler, we also need to know how w is derived from S (i.e., we need to know the parse tree if it exists).

- A general CFG parser:
 - ☐ a program that can solve the problem:
 - □ x: any input string; G: a CFG



The CYK algorithm

- A general CFG parsing algorithm
 - \Box run in time O($|x|^3$).
 - using dynamic programming (DP) technique.
 - applicable to general CFG
 - but our demo version requires the grammar in Chomsky normal form.
- Example: G =

S --> AB | BA | SS | AC | BD

A --> a B --> b C --> SB D --> SA

Let x = aabbab, n = |x| = 6.

Steps: 1. Draw n+1 vertical bars separating the symbols of x and number them 0 to n:

| a | a | b | b | a | b |

0 1 3 3 4 5 6

The CYK algorithm (cont'd)

For each
$$0 \le i < j \le n$$
, Let

 x_{ij} = the substring of x between bar i and bar j.

$$T(i,j) = \{ X \in N \mid X -->_G x_{ij} \}.$$

 \Box I.e., T(i,j) is the set of nonterminal symbols that can derive the substring x_{ii} .

□ note: x ∈ L(G) iff S ∈ T(0,n).

- The spirit of the algorithm is that the value T(0,n) can be computed by applying DP technique.
- 2. Build a table with C(n,2) entries as shown in next slide:

The CYK chart

• The goal is to fill in the table with cell(i,j) = T(i,j).

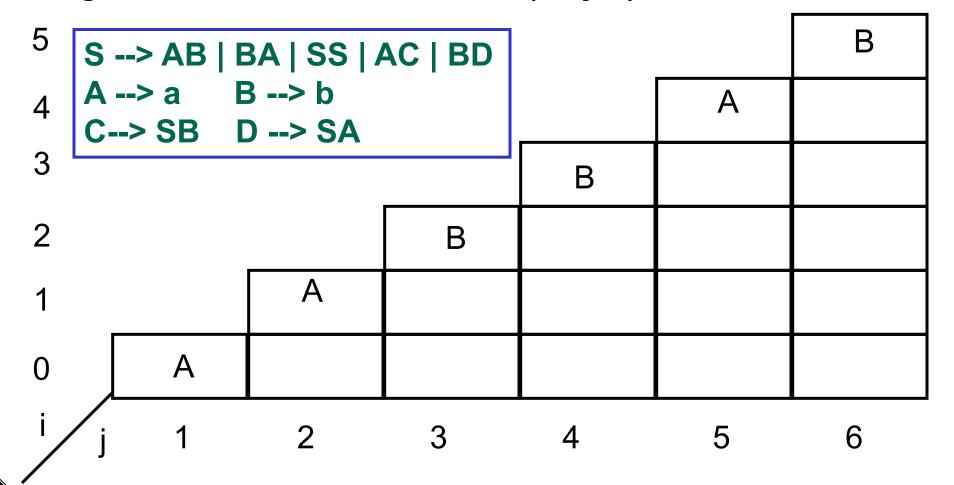
Problem: how to proceed?

==> diagonal entries can be filled in immediately !! (why ?)

	S> AB A> a		AC BD		-	b
4	C> SB	D> SA			a	
3				b		
2			b			
1		а				
0	a					
i		2	3	4	5	6

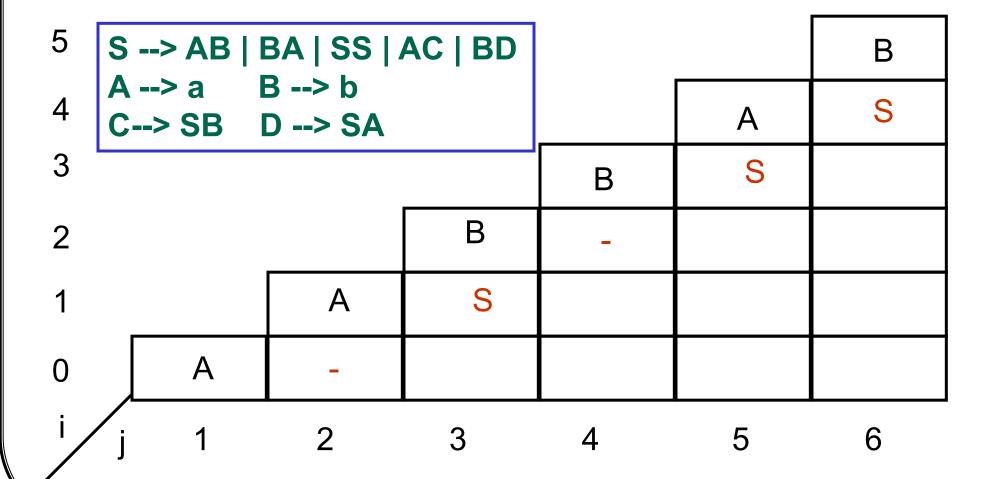
Fill in the CYK chart:

- Why C(4,5) = { A } ? since A --> $a = x_{45}$.
- Once the main diagonal entries were filled in, the next lower diagonal entries can be filled in. (why ?)



how to fill in the CYK chart

- $T(3,5) = S \text{ since } x_{35} = x_{34} x_{45} < -- T(3,4) T(4,5) = B A < -- S$
- In general $T(i,j) = U_{i < k < j} \{ X \mid X \longrightarrow Y Z \mid Y \in T(i,k), Z \in T(k,j) \}$



the demo CYK version generalized

- Let $P_k = \{ X \rightarrow \alpha \mid X \rightarrow \alpha \in P \text{ and } |\alpha| = k \}.$
- Then $T(i,j) = U_{k>0} U_{i=t0 < t1 < t2 < ... < tk < j=t (k+1)} \{ X \mid X -> X_1 X_2 ... X_k \in P_k \text{ and for all } m < k+1 X_m \in T(t_m, t_{m+1}) \}$

5	S> AB E	BA SS A	AC BD			В
4	S> AB E A> a E C> SB	3> b)> SA			А	S
3				В	S	С
2			В	-	-	-
1		Α	S	С	S	С
0	A	-	_	S	D	S ²
i /		2	3	4	5	6

The CYK algorithm

```
// input grammar is in Chomsky normal form
1. for i = 0 to n-1 do { // first do substring of length 1
   T(i,i+1) = \{A \mid A \rightarrow X_{i,i+1} \in P \};
2. for m = 2 to n do
                     // for each length m > 1
    for i = 0 to n - m do{ // for each substring of length m
       T(i, i + m) = {};
       for j = i + 1 to i + m -1 do{ // for each break of the string
         for each rule of the form A --> BC do
         If B \in T(i,j) and C \in T(j,i+m) then
              T(i,i+m) = T(i,i+m) \cup \{A\}
  }}
```