Part II Chapter 5

The Pumping Lemma and Closure properties for Context-free Languages

The pumping Lemma for CFLs

- Issue: Is there any language not representable by CFGs ?
- Ans: yes! Ex: $\{a^nb^nc^n|n>0\}$. But how to show it?
- For regular languages:
 - we use the pumping lemma that utilizes the "finite-state" property of finite automata to show the non-regularity of a language.
- For CFLs:
 - □ can we have analogous result for CFLs ?
 - ==> Yes! But this time uses the property of parse tree instead of the machine (i.e., PDAs) recognizing them.

Minimum height of parse trees for an input string

- Definition: Given a (parse) tree T,
- h(T) = def the height of T, is defined to be the distance of the longest path from the root to its leaves.
 - □ Ex: a single node tree has height 0,
 - \Box h(T₁) = m and h(T₂) = n ==> h((root T₁ T₂)) = max(m,n) +1.
- Lemma 5.1:

G: a CFG in Chomsky Normal Form;

D = A -->*_G ω a derivation whose parse tree T_D has height n, where A \in N and $\omega \in \Sigma^*$. Then

$$|\omega| \le 2^{n-1}$$
. [i.e, height = n (or \le n) => width $\le 2^{n-1}$.]

Note: since G is in cnf, every node of T_D has at most two children, hence T_D is a binary tree.

Pf: By ind. on the height n.

Shallow trees cannot have many leaves

• Basis: n = 1 (not 0 since $A \neq \omega$)

Then D : A -->_G a (or S -->_G ϵ). ==> h(T_D) = 1 and |a| \leq 2 ¹⁻¹ .

Inductive case: n = k + 1 > 1. Then $\exists B, C, D_1, D_2$ s.t.

D: A -->_G BC -->*_G ω and D₁: B -->*_G ω ₁, D₂: C-->*_G ω ₂ s.t.

 $\omega = \omega_1 \omega_2$ and $T_D = (A T_{D1} T_{D2})$ and $max(h(T_{D1}), h(T_{D2})) = k$.

By ind. hyp., $|\omega_1| \le 2^{h(T_{D1})-1} \le 2^{k-1}$ and $|\omega_2| \le 2^{h(T_{D2})-1} \le 2^{k-1}$

Hence $\omega = |\omega_1| + |\omega_2| \le (2^{k-1} + 2^{k-1}) = 2^{n-1}$. QED

Lemma 5.2: G: a CFG in cnf;

S -->*_G w in Σ *: a derivation with parse tree T.

If $|w| \ge 2^n ==> h(T) \ge n + 1$.

Pf: Assume $h(T) \le n$

 $==> |w| \le 2^{n-1} < 2^n$ --- by lemma 5.1

==> a contradiction !! QED

The pumping lemma for CFLs

- Theorem: 5.3: L: a CFL. Then ∃ k > 0 s.t. for all member z of L of length ≥ k, there must exist a decomposition of z into uvwxy (i.e., z = uvwxy) s.t.
 - (1). $|vwx| \leq k$,
 - (2). |v| + |x| > 0 and
 - (3). $uv^iwx^iy \in L$ for any $i \ge 0$.
- Formal rephrase of Theorem 5.3: (L ∈ CFL) =>

$$\exists k>0 \ \forall z\in L \ (|z|\geq k=>$$

$$\exists u \exists v \exists w \exists x \exists y ((z = uvxyz) \land (1) \land (2) \land (3)))$$

Contrapositive form of the pumping lamma

- Contrapositive form of Theorem 5.3:
 - \square (Recall that $\sim q \Rightarrow \sim p$ is the contrapositive of $p \Rightarrow q$)
 - ☐ Let $Q =_{def} \exists k > 0 \forall z \in L (|z| \ge k = >$

$$\exists u \exists v \exists w \exists x \exists y ((z = uvxyz) \land (1) \land (2) \land (3)))).$$

Then $\sim Q = \forall k > 0 \exists z \in L (|z| \ge k \land$

$$\forall u \forall v \forall w \forall x \forall y ((z = uvxyz)/(1)/(2)) => \sim (3))$$

= $\forall k > 0 \exists z \in L (|z| \ge k /)$

$$\forall u \forall v \forall w \forall x \forall y ((z = uvxyz)/(1)/(2)) =>$$

∃i≥0 uv¹wx¹y ∉ L))

$$= \forall k > 0 \exists z \in L (|z| \ge k \land$$

$$\forall uvwxy=z ((1)/(2) => \exists i \geq 0 uv^iwx^iy \notin L)$$
).

i.e., for all k > 0 there exists a member z of L with length ≥ k s.t.

for any decomposition of z into uvwxy s.t. (1) /\ (2) hold, then there must exist $i \ge 0$ s.t. $uv^iwx^iy \notin L$.

Transparency No. P2C5-6

Game-theoretical form of the pumping lamma:

~ Q: Game-theoretical argument: (to show ~Q true)

 $\forall k>0$ 1. D picks any k>0

 $\exists z \in L |z| \ge k \land$ 2. Y pick a $z \in L$ with length $\ge k$

 \forall uvwxy=z (1)/\(2) => 3. D decompose z into uvwxy with $|vwx| \le k \land |v| + |x| > 0$

 $\exists i \ (i \ge 0 \land uv^iwx^iy \notin L)$. 4. Y pick a number $i \ge 0$

5. Y win iff (uviwxiy ∉ L or D fails to pick k or decompose z at step1&3)

Notes:

- 0. If Y has a strategy according to which he always win the game, then ~Q is true, otherwise ~Q is false.
- 1. To show that "∃x P" is true, it is Your responsibility to give a witness c s.t. P is indeed true for that individual c. if Your opponent, who always tries to win you, cannot show that P(c) is false then You wins.
- 2. On the contrary, to show that "∀x P" is true, for any value c given by your opponent, who always tries to win you and hence would never give you value that is true for P provided he knows some value is false for P, You must show that P(c) is true.

The set of prime numbers is not context-free

Ex5.1:PRIME = $_{def}$ { $a^k \mid k$ is a prime number } is not context-free.

Pf: The following is a winning strategy for Y:

- 1. Suppose D picks k > 0 // for any k picked by D
- 2. Y picks $z = a^p$ where p is any prime number >k+2 (note p>3) (obviously $z \in PRIME$ and $|z| \ge k$).
- 3. Suppose D decompose z into $a^{u}\underline{a^{v}a^{w}a^{x}}$ with $v + x > 0 \land v + w + x \le k$

4. Y pick
$$i = u + w + y // = p-(v+x) > k+2 -k = 2$$

- Now $a^u a^{vi} a^w a^{xi} a^y = a^{u+w+y} a^{(v+x)i} = a^i a^{(v+x)i} = a^{(v+x+1)i}$. Since i>2 and $v+x+1 \ge 2$, $a^{(v+x+1)i} \notin PRIME$.
- ==> Y win. Since Y always win the game no matter what k is chosen and how z is decomposed at step 1&3, by the game-theoretical argument, PRIME is not context-free. QED

Additional example

Ex 5.2: Let $A = \{a^nb^nc^n \mid n > 0\}$ is not context-free.

Pf: Consider the following strategy of Y in the game:

- 1. D picks k > 0
- 2. Y pick $z = a^k b^k c^k$ // obviously $z \in A$ and $|z| \ge k$
- 3. Suppose D decompose z into uvwxy with $|vx| > 0 \land |vwx| \le k$
- 4. Y pick i = 0 ==> who wins?

case1: $vwx = a^{J}$ (or b^{J} or c^{J}) where J = |vwx|

==> in α = uv⁰wx⁰y, #a(α) < #b(α) = #c(α) ==> uv⁰wx⁰y \notin A

The other two cases (b^J or c^J)are similar.

case2: $vwx = a^lb^J$ (or b^lc^J) with I + J = |vwx|.

==> uv⁰wx⁰y decreases only occurrences of (a or b) or (b or c) but not c (or a) ==> uv²wx²y ∉ A

In all cases uv²wx²y ∉ A So Y always win and A ∉ CFL. QED

Proof of the pumping lemma

pf: Let G = (N,S,P,S) be any CFG in cnf s.t. L = L(G).

Suppose |N| = n and let $k = 2^n$.

Now for any $z \in L(G)$ if $|z| \ge k$, by Lem 5.2, \exists a parse tree T for z with $h(T) = m \ge n+1$. Now let

$$P = X_0 X_1 \dots X_m$$

be any longest path from the root of T to a leaf of T.

Hence 1. X_0 = S is the start symbol

- 2. X_0 , X_1 ,.... X_{m-1} are nonterminal symbols and
- 3. X_m is a terminal symbol.

Since $X_0 X_1 \dots X_{m-1}$ has m > n nodes, by the pigeon-hole principle, there must exist $i \neq j$ s.t. $X_i = X_i$

Now let I < m-1 be the largest number s.t. X_{I+1} ,.... X_{m-1} consist of distinct symbols and $X_I = X_J$ for some I<J< m.

Let
$$X_1 = X_2 = A$$
.

Proof of the pumping lemma (cont'd)

Let T_i be the subtree of T with root X_i and

 T_J the subtree of T with root X_J

Let yield(T_J) = w (hence $X_J \rightarrow^+_G w$ or $A \rightarrow^+_G w$ --- (1)

Since T_J is a subtree of $T_{I,j}$

 $X_1 \rightarrow^+_G v X_J x$ for some v,x in Σ^* . hence $A \rightarrow^+_G vAx$ --- (2) Also note that since G is in cnf form it is impossible that $v = x = \varepsilon$. (o/w $X_1 \rightarrow^+ X_1$ implies existence of unit rule or ε -rule.

Since T_1 is a subtree of T,

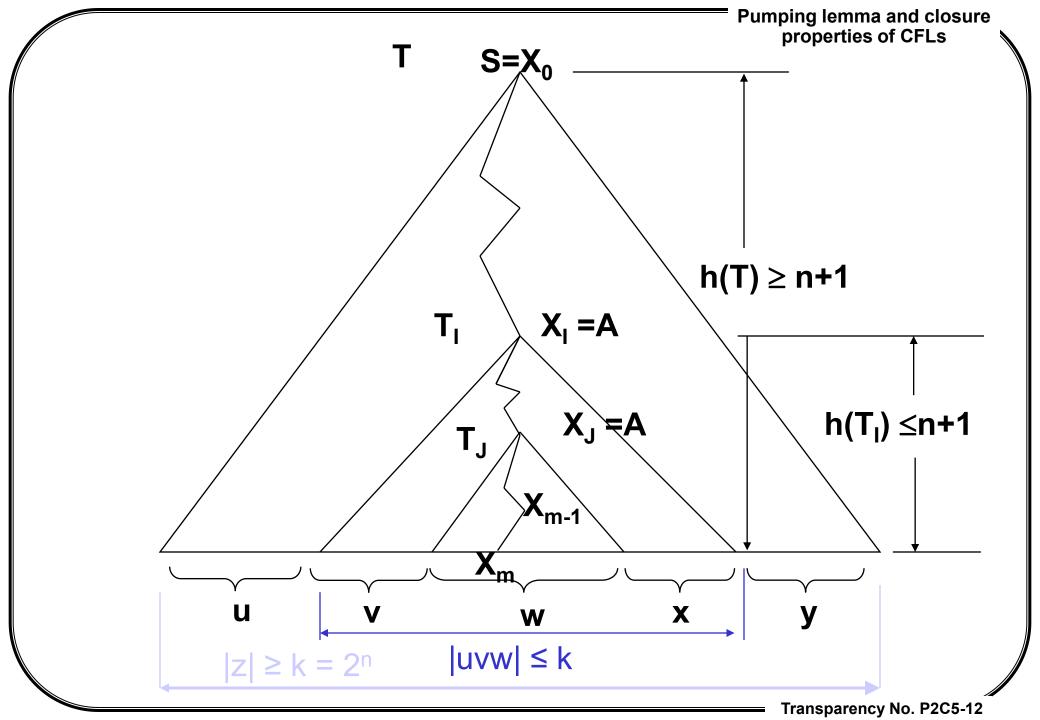
$$S=X_0 \longrightarrow_G u X_I y = u A y for some u,y in Σ^* .$$

-->*_G u
$$v^i$$
 w x^i y ---- apply (1).

Hence $u v^i w x^i y \in L$ for any $i \ge 0$.

Also note that since $X_1 ext{....} X_m$ is the longest path in subtree T_1 and has length $\leq n+1$, $h(T_1) = \text{length of its longest path} \leq n+1$.

=> (by lem 5.1)
$$|vwx| = |yield(T_i)| \le 2^{h(T_i)-1} = 2^n = k$$
. QED



Example:

Ex5.3: B = $\{a^ib^ja^ib^j \mid i,j > 0\}$ is not context free.

Pf: Assume B is context-free.

Then by the pumping lemma, $\exists k > 0 \text{ s.t. } \forall z \in B \text{ of length } \geq k$,

 $\exists uvxyz = z s.t. |vwx| \le k \land |vx| > 0 \land uv^iwx^iy \in B \text{ for any } i \ge 0.$

Now for any given k > 0, let $z = a^k b^k a^k b^k$ ---(**).

Let z = uvwxy be any decomposition with $|vwx| \le k \wedge |vx| > 0$.

case1: vwx = a^J (or b^J), $1 \le J \le k$

$$==> a^{J} < v^{2}wx^{2} < a^{2J} ==> u v^{2}wx^{2} y \notin B$$

case2: vwx = $a^{J} b^{I}$ (or $b^{I} a^{J}$), $1 \le I + J \le k$, I > 0, J > 0

==> For the string uv^2wx^2y , in all cases (1&2 &3, see next slide) only the first a^kb^k or the last a^kb^k or the middle b^ka^k of z =

 $a^kb^ka^kb^k$ is increased ==> $u v^2wx^2 y \notin B$

This shows that the statement (**) is not true for B.

Hence by the pumping lemma, B is not context free. QED

Pumping lemma and closure properties of CFLs

aa...aa bb...bb aa...aa bb...bb

vwx (1)

vwx (2)

Closure properties of CFLs

Theorem 5.2: CFLs are closed under union, concatenation and Kleene's star operation.

Pf: Let L₁ = L(G₁), L₂ = L(G₂) : two CFLs generated by CFG G₁ and G₂, respectively, where G₁ = (N₁, Σ_1 , S₁, P₁) and G₂ = (N₂, Σ_2 , S₂, P₂).

- ==> Then
- 1. $L_1 U L_2 = L(G')$ where $G' = (N_1 U N_2, \Sigma_1 U \Sigma_2, S', P')$ has rules:
 - $\Box P' = P_1 \cup P_2 \cup \{S' --> S_1; S' --> S_2\}$
- 2. L₁ L₂ =L(G") where G" =(N₁UN₂, Σ_1 U Σ_2 , S", P") has rules:
 - $\Box P'' = P_1 \cup P_2 \cup \{S'' --> S_1 S_2 \}$
- 3. $L_1^* = L(G''')$ where $G''' = (N_1, \Sigma_1, S''', P''')$ has rules:
 - \Box P'''= P₁ U {S''' -->ε | S₁ S''' }

Non-closure properties of CFLs

- are CFLs closed under complementation ?
 - □ i.e., L is context free => Σ^* L is context free ?
 - ☐ Ans: No.
- The set L₁ = {a,b}* {ww | w ∈ {a,b}*} is context free but its complement {ww | w ∈ {a,b}*} is known to be not Contextfree.
- Exercise: Design a CFG for L₁.

```
Hint: x \in L_1 iff
```

- (1) |x| is odd or
- (2) x = yazybz' or ybzyaz' for some y,z,z' ∈ {a,b}*with |z|=|z'|, which also means

x = yay'ubu' or yby'uau' for some $y,y',u,u' \in \{a,b\}^*$ with |y|=|y'| and |u|=|u'|.

Non-closure properties of CFLs

- are CFLs closed under intersection ?
 - \square i.e., L_1 and L_2 context free => $L_1 \cap L_2$ is context free ?
 - ☐ Ans: No.
- Ex: Let L₁ = {aib+aib+ | i > 0} and

 - \Box L₁ and L₂ are two CFLs.
 - □ But $L_1 \cap L_2 = B = \{ a^i b^j a^i b^j \mid i,j > 0 \}$ is not context free.

 CFL Language is not closed under intersection. But how about CFL and RL?

Exercise: Let L be a CFL and R a Regular Language. Then $L \cap R$ is context free.

Hint: Let M_1 be a PDA accept L by final state and M_2 a FA accepting R, then the product machine M_1XM_2 can be used to accept $L \cap R$ by final state. The definition of the product PDA M_1XM_2 is similar to that of the product of two FAs.