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PDAs and CFLs
NPDAs

® A NPDA (Nondeterministic PushDown Automata) is a 7-tuple
M=(Q,z,I,d6,s, L, F)where
0 Qis a finite set (the states)
0 X is a finite set (the input alphabet)
0 I is a finite set (the stack alphabet)
0dc(Qx(ZU({e})xT)x (QxTI™)is the transition relation
0 s € Qis the start state
0 1 eI is the initial stack symbol
0 F < Qis the final or accept states
® ((p,a,A),(q,B,B,...B,)) € 6 means that

whenever the machine is in state p reading input symbol a on the input
tape and A on the top of the stack, it pops A off the stack, push B,B,...B,
onto the stack (B, first and B, last), move its read head right one cell past
the one storing a and enter state q.

((p,&,A),(q,B4B,...B,)) € 6 means similar to ((p,a,A),(q,BB,...B,))

€ O except that it need not scan and consume any input symbol.
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PDAs and CFLs
Configurations

® Collection of information used to record the snapshot of an
executing NPDA

® an element of Q x Z* x I'™.

® Configuration C = (g, x, w) means
[ the machine is at state q,
0 the rest unread input string is X,
[ the stack content is w.

® Example: the configuration (p, baaabba, ABAC_1) might
describe the situation:

ababbaaabb a
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PDAs and CFLs
Start configuration and the next configuration relations

® Given a NPDA M and an input string x, the configuration (s,
X, 1) is called the start configuration of NPDA on x.

® CF,, =, Q xZ* xIT* is the set of all possible configurations
for a NPDA M.

® One-step computation of a NPDA:

0 Let the next configuration relation -->,, on CF,, be the set
of pairs :

0 {(p,ay, AB) -->n (a, ¥y, YB) | ((P,a,A), (q, 7)) €. } U

1 { (p’ Y, Aﬂ) =M (qa Y, Y B) I ( (p,a,A), (q! Y )) €0 }

0 -->, describes how the machine can move from one
configuration to another in one step. (i.e., C -->, D iff D
can be reached from C by executing one instruction)

0 Note: NPDA is nondeterministic in the sense that for each
C there may exist multiple D’s s.t. C -->, D.
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PDAs and CFLs
Multi-step computations and acceptance

® Given a next configuration relation -->;:
Define --->",, and --->*,, as usual, i.e.,
0 C-->%, D iff C=D.
0 C-> iff 3E C-->", E and E-->, D.
0cC->*,D iff 3n>0C -->", D.
0 i.e., --->%, is the ref. and trans. closure of --> ;.

® Acceptance: When will we say that an input string x is
accepted by an NPDA M?

[ two possible answers:

0 1. by final states: M accepts x ( by final state) iff
1 (s,x, L) -->*y (p,&, a) for some final state p € F.
0 2. by empty stack: M accepts x by empty stack iff

1 (s,x, L) -->*,, (p,&, €) for any state p.

[0 Remark: both kinds of acceptance have the same expressive power.
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PDAs and CFLs
Lanquaqge accepted by a NPDAs

M= (Q,xT,5,s,,F): a NPDA.
The languages accepted by M is defined as follows:
0 1. accepted by final state:
0 L{M)={x|M accepts x by final state}
[ 2. accepted by empty stack:
0 L,(M)={x|M accepts x by empty stack}.
[ 3. Note: Depending on the context, we may sometimes
use L; and sometimes use L, as the official definition of
the language accepted by a NPDA. l.e., if there is no

worry of confusion, we use L(M) instead of L_(M) or L{(M)
to denote the language accepted by M.

0 4. In general L (M) = L{(M).
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PDAs and CFLs
Some example NPDAs

Ex 23.1 : Define a NPDA M, which accepts the set of balanced
strings of parentheses [ ] by empty stack.

0 M, requires only one state q and behaves as follows:
0 repeat { 1.if inputis ‘[ : push ‘[ onto the stack ;
0 2.ifinputis ‘] and top is ‘[’ : pop
0 3.ifinputis ‘c’andtopis L : pop. }
Formal definition: Q={q}, Z={[1}, T ={[, L},
start state = g, initial stack symbol = 1.

5={ ((a,[, L), (a, [L)), ((@LD,(a D), /11,12
(@10 (a,¢)), /2
((9,e, 1), (q,¢)) } /I3
Transition Diagram representation of the program o :

((p,aA), (q,B,4...B,))e & => ‘ a,A/B,...B, ‘

This machine is not deterministic. Why ?
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PDAs and CFLs
Example : Execution sequences of M1

® Letinputx =[[[]11[11[]- Then below is a successful
computation of M, on x:

(] (a, TTIL1111111, 1) :the start configuration

transition (1) -->y(a, [[]11[1]1[] [1)
transition (1) -->y(qa, [J1[11[} [[1)
(1) -->u(a, L i)
(2) -->y (q, 1110) (1)

(1) -->m(q, (1101, [1)
(2) ">M (qa ] ] [ ]! [ [J—)
(2) ">M (qa ] [ ]! [J—)
(1) ">M (qa []! J—)
(2) -->y (9, I, [1)
(2) -->y (9, , 1)
(3) -->p (g, , ) :accept configuration

accepts by empty stack
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PDAs and CFLs
Failure computation of M1 on x

® Note besides the above successful computation, there are
other computations that fail.

Ex: (9, [[[11[111[1], 1) : the start configuration

">*M (9, [ 1, 1)
> (a, [1, ) transition (3)

a dead state in which the input is not empty and we
cannot move further ==> failure!!

Note: For a NPDA to accept a string x, we need only one
successful computation (i.e., 3 D = (_, &, €) with empty input
and stack s.t. (s,x,Ll)-->*, D. )

® Theorem 1: String x € {[,]}* is balanced iff it is accepted by
M, by empty stack.
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PDAs and CFLs
® Definitions:

1. A string x is said to be pre-balanced if L(y) > R(y) for all
prefixes y of x.

2. A configuration (q, z, a) is said to be blocked if the pda M
cannot use up input z, i.e., there is no state r and stack 3
such that (q, z, a) =2* (r, &, B).

® Facts:

0 1. If initial configuration (s, z, 1) is blocked then z is not
accepted by M.

0 2.1f(q, z, a) is blocked then (q, zw, o) is blocked for all w
e X*.
Pf: 1. If (s, z, 1) is blocked, then there is no state p, stack B such that (s, z, 1)
-->* (p, €, B), and hence z Is not accepted.

2. Assume (q, zw, a) is not blocked, then there must exists intermediate
cfg (p, w, a') such that (q, zw, o ) 2* (p, w, a') 2* (1, &, B). But (q, zw, o)
2% (p, w, a') implies (q,z,a) 2* (p, €, a") and (q, z, o) is not blocked.
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PDAs and CFLs

® Lemma 1: For all strings z,x,
0 if z is prebalanced then (q, zx,L1)-->* (q,X, a.Ll ) iff o = [L&)-R@) ;
0 if zis not prebalanced, (q, z, 1) is blocked.
Pf: By induction on z.
basic case: z = ¢. Then (q, zx,L) = (q, x,.L) 2" (q,x, ol ) iff o = ¢ = [H&R@)
inductive case: z=ya, whereais '[' or']'.
case 1: z=y[. Ifyis prebalanced, then so is z.
By ind. hyp., (q,y[x, L) -->* (q, [x, [F¥)-R¥) L), hence
(d, zx, 1) = (q,y[x, 1) -->* (q, [x, [FV)RYL)
-->(q, X, [[LWRVL ) =(q, x, [H&R@ 1 ).
and if (q, zx, 1) 2* (q,x, al), there must exists a’ such that
(9, zx, 1) =(q, y[x, 1) =2* (q,[x, ¢’ L), 2* (9,x, al). But, by ind.hyp., o’ =
[L¥) =Ry, hence the only allowable instruction is 1.1(push [), hence a = [@’
= [L2) -R@)
If y is not prebalanced, then, by ind. hyp., (9, y, 1) is blocked and hence
(a, y[, 1) is blocked as well.
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PDAs and CFLs

case 2: z=y]. here are 3 cases to consider.
case 21: y is not prebalanced. Then z neither prebalanced.
By ind. hyp. (q, y, 1) is blocked, hence (q, y], 1) is blocked
case 22:y is prebalanced and L(y) = R(y). Then z is not prebalanced.
By ind. hyp., (q, y],L)-->* (q,], al ) iff o = [L@R@ = ¢
But then (q,],L ) is blocked. Hence (q, z,1) is blocked.
case23: vy is prebalanced and L(y) > R(y). Then z is prebalanced as well.
By Ind.hyp., (q, y],1)-->* (q,], al ) iff a = [H2RZ) matches [*. Hence
(a,y1x,L1)-->* (q,]x, [F"-RY) L) ---ind. hyp
--> (g, X, [LW)-R¥)-1] ) --- (instruction 2)
= (q, X, [L(2)-R@z) ] )
On the other hand, if (q,y]x,1)-->* (q,x, oL ).
Then there must exist a cfg (q, ]x, a’L) such that
(a,y1x,L)-->* (q, ]x, ’L) -->*(q,X, oL )., where, by ind.hyp., o’ = [L) R),
l.e, (q,ylx,L1)-->* (q, ]x, [-¥) RVL) -->* (q,x, ol ).
But then the only instruction executable in the last part is (2).
Hence o = [L¥) -R)-1 = [L2)R(@),
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PDAs and CFLs

Pf [of theorem 1] : Let x be any string.

If x is balanced, then it is prebalanced and L(x) — R(x) = 0.

Hence, by lemma 1,
(d, xe,1)-->* (q, &, [°L) -->; (q, &, ).

As a result, x is accepted.

If x is not balanced, then either
(1) it is not prebalanced( 3 a prefix y of x, L(y) < R(y)) or
(2) x is prebalanced (Vprefix y of x, L(y) > R(y))

For the former case, by lemma 1, (q, x,1) is blocked and
X is not accepted.

For the latter case, by lemma 1, (q,x,1) -->* (q, &,a.L) iff o = [L*)-
R(x)>0 contains one or more |[.

But then (q, ¢,a0.1) is a dead configuration (which cannot move
further) and is not accepted! Hence x is not accepted!
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PDAs and CFLs
Another example

® The set {ww | w € {a,b}*} is known to be not Context-free but
its complement

L, = {a,b}*-{ww|w e {a,b}*} is.
Exercise: Desigh a NPDA P2 to accept L, by empty stack.

Hint: x € L, iff
(1) |x|is odd or
(2) x =yazybz’ or ybzyaz’ for some y,z,2’ € {a,b}*
with |z|=|Z’|, which also means
X = yay’ubu’ or yby’uau’ for some y,y’,u,u’ € {a,b}*
with ly|=]y’| and |u|=|u’].
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PDAs and CFLs
P2 behaves as follows: Nondeterministicallly guess input has

odd or even length // (g,1)=2>(q0, 1);(¢,1)=2>(92,1); (¢,1)=>(q6,1)
case odd length :
q0 : on any inputc,gotoq1 //(c,L)-> (g1, 1), cis ‘a’ or ‘b’
q1: on any input ¢c,gotoq0;//(c, 1) -=> (q0, 1)
on (g, 1) pop L (and accept).// (¢, 1) 2> (g1, ¢)

case even length:

Il q2~q5 : handle case: input = xayubv with |x|=|y| and |u]|=]v]
g2: (c,s) 2 (92, o s);(a, s) 2 (q3, s) // push o until ‘a’

g3: (c,0)=2>(q3,¢); (c,1l) = (g4, L)/l pop o foreach c until L
q4: (c,s) 2> (q4, 0s); (b, s) 2 (g5, s) /Ipush o foreach c until ‘b’
g5: (c,0) 2>(g5, €) ; // pop o foreach c unitl L

(e, 1) = (95, €) I/ pop 1 and accept
I g6 ~ g9 :handle case: input = xbyuav with |x|=|y| and |u|=]v|

... (left as an exercise
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PDAs and CFLs
More Examlpes

® Find PDA for each of the following languages:
0 L1={we{0,1}*|the length of w is odd and its middle symbol is 0.}
L2={we{0,1}* | w contains as many Os as 1s.}
L3 ={we{0,1}* | w contains more 1s than 0s.}
L4 = {a"b™ck | K = m + 2n}.
LS = {we{a,b,c}” | #a(w) + #b(w) = #c(w) }.
w /| #a(w) is the number of a’s occurring in w.

0 L6 ={we{a,b}* | #a(w) <2 x #b(w) } .
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PDAs and CFLs
Equivalent expressive power of both types of acceptance

e M=(Q,xI,9,s,,F):aPDA
Let u, t : two new states ¢ Q and
¢ : a new stack symbol ¢ T.
® Define a new PDA M’ = (Q’,2,I",0°,s’, ¢, F’) where
0Q=QU{u,t}, I"'=TU{e}, s’=u, F ={t}and
06 =0U {(u,e, ¢)-->(s,Le) } //[push L and call M
[ U{(f,e,A)->(t,A)|feFand A eI’} /* returnto M’
1 after reaching final states */
1 U{(t, &,A)--> (t,e) | A € IT” } /] pop until EmptyStack
® Diagram form relating M and M’: see next slide.
Theorem: L(M) =L _(M’)
pf: M accepts x=> (s, x, L) -->"y, (q,&,y) forsomeqeF
=> (U, X, ¢ ) =M (S, X, Le ) =>w (q! €, 'Y‘) =0 (t! €,7Y ‘)
-->*v (t,e, €) => M’ accepts x by empty stack.
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PDAs and CFLs
From final state to emptystack:

. push L and call M
T : return to t of M’ once reaching final states of M
. pop all stack symbols until emptystack
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PDAs and CFLs
From FinalState to EmptyStack

Conversely, M’ accepts x by empty stack
=> (u! X, ¢ ) ">M’ (S, X, 1e ) ">*M’ (q! Y;Y ‘) -=> (t’ Y Y‘) -->*
(t,e,e) forsomeqgeF

—Vy =¢ since M’ cannot consume any input symbol after it
enters state t. => M accepts x by final state.

® Define next new PDA M’ =(Q’,2,1",6”,s’, ¢, F’) where
0Q'=QU{u,t}, I'=TU{e}, s’=u, F ={t}and
08"=6U {(us, ¢)-->(s,Le) } //push Land call M
[0 U{(p,c,¢)->(te)|peQ }/* returnto M’ and accept
1 if EmptyStack */
I

® Diagram form relating M and M”’: See slide 15.
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PDAs and CFLs
From EmptyStack to FinalState

® Theorem: L (M) =L{(M”).

pf: M accepts x=> (s, x, L) -->", (q, ¢, €)
=>(u, X, ¢ ) =->y» (S, X, L&) -->". (q, €, € ¢) =>4 (t, €, €)
=> M’ accepts x by final state (and empty stack).

Conversely, M’ accepts x by final state (and empty stack)
=> (u! X, ¢ ) =M (S, X, Le ) ">*M” (q! Y, ‘) -=>m (t! & &€ ) for
some state g in Q

=>y =¢ [and STACK= ¢] since M” does not consume any input
symbol at the last transition ((q, s, ¢ ), (t, €))

=> M accepts x by empty stack.
QED
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PDAs and CFLs

* : push L and call M
7. if emptystack (i.e.see ¢ on stack),

then pop ¢ and return to state t of M”
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PDAs and CFLs
Equivalence of PDAs and CFGs

® Every CFL can be accepted by a PDA (with only one state).
® G=(N, 2 ,P,S): aCFG.

[0 wlog assume all productions of G are of the form:

0 A->cB;B,B,;...B, (kx0) and c € X U {g}.

[ note: 1. A -> ¢ satisfies such constraint; 2. can require k< 2.
® Definea PDAM=({q}, 2, N, 5, q, S, {}) from G where

0 g is the only state (hence also the start state),

0 X, the set of terminal symbols of G, is the input alphabet of
M,

0 N, the set of nonterminals of G, is the stack alphabet of M,
0 S, the start nonterminal of G, is the initial stack symbol of M

0 {} is the set of final states. (hence M accepts by empty
stack!!)

0 8={ ((g,c,A), (g, B,B,...B,)) |A->cB,B,B,...B, € P}
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PDAs and CFLs

Example
©eG:1.S->[BS (9, [, S) ~-> (g, B S)
2.5 ->[B (a,[, S)-->(a, B)
3.S-> [SB ==>56:(q,[, S) -->(q, S B)
4.S->[SBS (9, [, S) -> (g, S B S)
5.B->] (a, ], B) --> (q, &)

® L(G) = the set of nonempty balanced parentheses.
® leftmost derivation v.s. computation sequence

(see next table)
St->* [[[11[1]1 <==>(q, [[[I[], S) -->*w(q;, &, )
St-->"g [[[1BSB  <==> (q, [[[1][1], S) -->"w (q, ][]] , BSB)
At->ng z y  <==>(q, zYy,A) ->"y(Qy , 7 )
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PDAs and CFLs

sentential form of left-most

configuration of the pda

rule applied derivation accepting x

S (g, [[[1]1T[1]S)
3 [SB (a, [ ({11 [1].SB)
4 [[SBS B (a, [[ [11[]1],SBSB)
2 [[ [BBSB (a, [[I 11 [1],BBSB )
S [[[ IBSB (a, [[[] 1111,BSB )
S [[[] ISB (A, [[[]] [1],SB )
2 [[[]1]1[BB (. [[[T]1 11,BB )
5 [[[]11I[1lB (., [[[T11] .B)
5 [[I[1101]1 (@, , [[[11[]] )
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PDAs and CFLs
leftmost derivation v.s. computation sequence

Lemma 1: Forany z,y € 2*,y e N*and A € N,
A I_“>nG ZYy iff (q! zy, A) ">nM (q! V' Y)

Ex: S>3 [[[BBSB <==>(q, [[[1][]], S) -->°\ (q, 1][1], BBSB)
pf: By ind. on n.
Basis:n=0. AL-->0, zy iff z=gandy=A
iff (d, zy, A) -->% (a,y,y)
Ind. case: 1. (only-if part)
Suppose A L-->"1. zy and B -> ¢ was the last rule applied.
l.e., AL-->". uBa '-->;uc Ba=zy withz=uc and y=_fa.

Hence (q,ucy, A)-->",(q, cy, Ba) // by ind. hyp.
-->un (4, ¥, Ba) /I since ((qg,c,B),(q, B)) € 6
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PDAs and CFLs
leftmost derivation v.s. computation sequence (cont’d)

2. (If'part) Suppose (q, Zy, A) ">n+1M (q! Y, Y) and
((q,c,B),(q, B)) € 6 was the last transition executed. l.e.,

(q’ zy, A) = (qa ucy, A) ">nM ( q, Cy, Ba) ">M (q, Y, B(X.) =(q!y, Y)
where z = uc and y=pBa for some u, a. But then

A L-->n . uBo Il by ind. hyp.,
L.-> ucBa=zy /lsincebydef.B->cpBeP
Hence Alt-->"1.zy QED

Theorem 2: L(G) = L(M).

pf: x € L(G) iff S --->*; x
iff (9, x, S) -->%y (q, &, €)
iff x e L(M). QED
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PDAs and CFLs
Simulating PDAs by CFGs

Claim: Every language accepted by a PDA can be generated by
a CFG.

® Proved in two steps:

[ 1. Special case : Every PDA with only one state has an
equivalent CFG

0 2. general case: Every PDA has an equivalent CFG.

® Corollary: Every PDA can be minimized to an equivalent PDA
with only one state.

pf: M : a PDA with more than one state.
1. apply step 2 to find an equivalent CFG G

2. apply theorem 2 on G, we find an equivalent PDA with
only one state.
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PDAs and CFLs
PDA with only one state has an equivalent CFG.

® M= ({s}, >, I,9,s, 1, {}):aPDA with only one state.
Definea CFG G = (T, Z, P, 1) where
P={A->cB]|((q,c,A),(q,B)) € 6}

Note: M ==> G is just the inverse of the transformation :
G ==> M defined at slide 22.

Theorem: L(G) = L(M).
Pf: Same as the proof of Lemma 1 and Theorem 2.
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PDAs and CFLs
Simulating general PDAs by CFGs

® How to simulate arbitrary PDA by CFG ?
0 idea: encode all state/stack information in nonterminals !!

Wilog, assume M =(Q, %, T, 3, s, L, {t}) be a PDA with only one
final state and M can empty its stack before it enters its final
state. (The general pda M’’ at slide 21 satisfies such
constraint.)

LetNcQxI'*"x Q.

Elements of N such as (p, ABC, q) are written as <pABCg>.
Define aCFG G = (N, %, <s1t>, P ) based on M, where
P={<pAr>->c<qB,;B,...B r>

/
| (\p% qq, B1|32...B,4)) €8, k>0, ceXU{e}, reQ}

U /I Rules for nonterminals <q B, B, ...B, r>
{ <pAar> 2> <pAqg><qar>, <pp> -2 ¢ | p,q,r €eQ and a.e I'*}
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PDAs and CFLs

For a computation process :

(P, Wy, AtA;...A, B) 27w (1, Y, B)
there must exists x,x,...x,, = w and states q,,q,,..., q,, such that
(P, Wy, AA;...AnB)
2>*u (A4, X5... XY, A,...A,B)
2>*u (A X3...X.Y, As...A B) 2% ...

9*M (qn-1’ XnY; AnB) 9*M (qn= I, y!B)
We want the grammar derivation - ; to simulate such
computation:

<pAA,...A r>
2% X4 <q4A,...A r>
2% XX, <q2A A r> D

2% X4 Xp... X4 <O,,4A, > 9* X4X5... X, <G> = X4X,...X,, ifq, =T
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PDAs and CFLs
Rules for <p A, A, ...A >

case1: n=0: (p, wy, A/A,...A_ B) 2%y (r, Y, B) .

I'e! (ps WYy, B) 9*M (r! Y, B) ’
which must be permitted if w=¢ and p =r.

we thus have rule <pp> - ¢ for all state p.

case 2: n>1:(p, wy, AJA,...A, B) 2%y (r, Y, B) . Then there
must exists uv = w, and state q such that

(p, u, Aja) >*M(q, &, o) and

(P, Wy, AjA,...A, B) 2™y (9, vy, A,...AnB) 2%, (r,y, B)
We thus have the assumption:

<pAqg>—2>*uand <q A,...A r> 2> v.
and the rules <pA.A,...A r> 2> <pAg><qAA,...A r>

for all states p,q.r.
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PDAs and CFLs
Rules for <p A, A, ...A >

case 3:n=1: (p! wy, A B) 9*M (rs Y, B) "
This is possible only if

(P, Wy, A B) 2y (9, VY, YB) 2" w (1, Y, B)-,
where w = cv and ((p,c,A), (q, r)) is an instruction.

We thus need rule <pAr> - c<qyr> for all states r,
and the assumption: <qyr> 2>*v,

to guarantee the derivation:

<pAr> - c<qyr> 2>*cv=w.
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PDAs and CFLs

machine view: (p, c, A) = (q, B,B,...B,)
rule views : <pAr> - ¢c<q B,B,...B,r> foreachr eQ
<pABCr> - <pAg><qBCr> for each q €Q

C X4X3.. <pep> > ¢ <peg> = no rule if p %q
C X4X5...
P A o B4 q;
P ' 2 d, By a,
t1| L
t Bt Qg
— Ok-1 | Bk Qk=L2
We want to use derivation <poaq> 2*w 2 clt
to simulate the computation: t
(P, Wy, o) >*y (a, ¥, £B) Y

So, if (p,c,A) 2 (q, B) we have rules :
<pAr>-> c<qpr>forall statesr.
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PDAs and CFLs
Simulating PDAs by CFG (cont’d)

® Note: Besides storing sate information on the nonterminals,
G simulate M by guessing nondeterministically what states
M will enter at certain future points in the computation,
saving its guesses on the sentential form, and then verifying
later that those guesses are correct.

Lemma 25.1: if <pB,B.,...B,g> is a nonterminal, then
(p!x!B1BZ"'Bk) ">*M (qsgag) iff
<pB,B,...B,g> 2>*; x. (%)

Notes: 1. when k=0 (*) is reduced to <pg> 2>*; x, where
<pqg> = ¢ if p=q and <pg> is undefined if p = q.
2. In particular, (p,x,B) -->*, (q,¢,e) iff <pBg> 2>*; x.
Pf: by ind. on n. Basis: k= 0.
LHS holds iff( x=¢, k=0,and p=q) iff RHS holds.
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Simulating PDAs by CFGs (cont’d)

Inductive case:

(=>:) Suppose (p,x,B,B,...B,) -->"  (q,5,¢) and
((p,c,B),(r,C,C,...C.)) is the first instr. executed. l.e.,

(p,x,B,B,...B,) --=>, (r,y, C,C,...C_B,...B,)

2>*v (S; Z, B,...By)

-=>*11 (9,€,€), where x = cy = cdz.
By ind. hyp.,
<rC,C,...C_s>->*d since (r,d C,C,...C, ) -->* (s,¢e,6) and
<sB,...B,g> —2>*z

Hence <pB,B,...B,g> - <pB,r><rB,B,...B,g>
-2 c<rC,C,...C_s><rB,B,...B,g> >* cdz =x
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Simulating PDAs by CFGs (cont’d)

(<=:) <pB,B,...B,g>">7; x.

Suppose <pB,B,...B,q> -2 <p B, q,> <q,B,...B,g>
L>s¢<r,C,C, ...C_ q,><q,B,...B,g>

“De" ey (=x)

where <pB,q,> 2 ¢ <r, C,C,...C_ q,> € P --(*) .

But then since, by (*), [(p, ¢, B1), (ry, C,C,...C,.)] = (**) is an instr
of M,

(p,x,B,4...By) =->y (re; ¥, C4C,...CB,...B,) ---By (*¥)
-->* (g1, z, B,...B,) --byIH
-->" . (9,8,€). --,by ind. hyp. QED
Theorem 25.2 L(G) = L(M).
Pf: x € L(G) iff <slt>-2>*x
iff (s,x,1) -->*, (t,e,e¢) ----Lemma 25.1
iff x e L(M). QED
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Example

® L ={xe {[,1}* | x is a balanced string of [ and ]], i.e., #](x) = 2
#[(x) and all “]]*s must occur in pairs }

® Ex:[II[[I1]leL but[]J[]]]€L.
® L can be accepted by the PDA
M=(Q, 3T, p, L{t} ), where
Q={p,qt}Z={L]}, T ={A, B, 1},
and o is given as follows:
[ (p! [a J—) --> (p! AJ—)!
0 (p,[.A) --> (p,AA),
[ (p! ], A) -=> (q! B)a

[ (q! ], B) -=> (pu 8)5
[ (p,ﬁ, J—) --> (t,S)
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o can be simulated by the CFG G = (N,Z, <p_Lt>, P) where

N={<XDY>|X)Y e{p,gt}and D € { A,B,1}* },
and P is derived from the following pseudo rules :
(p, [, L) —->(p, ALl): <pl?> > [ <pAL?>
(p,[LA) --> (p,AA) : <p A ?>->[ <pAA?>
(P, ], A)->(q,B), : <pA7?>->] <qB?>

Each of the above produces 3rules (?=porqort).
(9,], B) > (p,¢), : <qB?>>] <pe?>

This produces only 1 rule : <qBp> 2 ]
( ? = p, but could not be g or t why ?)
QB ?”>2>]1<pe?> => <qBp>-> ] <pep> 2 |

(p,e, L) --> (t,e) : <pLl?> > <te?>

This results in one rule : <pLt> > ¢

I:ll:ll:ll:l:ll:ll:ll:ll:ll:ll:ll:lg
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0<pl?>=2>[ <pAL?> =D resultsin3rules:?=p, gort.
0 <plp>=>[ <pAlp> ---(1)
0 <plg>->[ <pAlg> ---(2)
0 <plt> >[ <pAlt> ---(3)
0 (1)~(3) each again need to be expanded into 3 rules.
0 <pAlp> =2 <pA?><? 1 p>where ?is porqort.
W<pALp> 2> <pAp><p 1 p>
W<pALlp> =2 <pAg><qg .l p>
W<pAlp> 2 <pAt><t 1 p>
0 <pAlg> =2 <pA?><? 1 g>where ?is porqort.
W <pALlg> > <pAp><p Lg>
W <pALlg> 2> <pAg><qlg>
W <pAlg> 2 <pAt><t 1l g>
0 <pALt> - <pA?><? L t>where?isporqgort.
...
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0 Similarly <pA?> > [ <pAA?> results in 9 rules:
0 Where ?, =p,q, ort.
0 <p Ap>2[ <pA?,><?,1p> (1)

W <p Ap>->[ <pAp><plp>

W <p Ap>->[ <pAg><qlp>

W <p Ap>-=>[ <pAt><tlp>
0 <pAg>2[ <pA?,><?,1q9> --(2)

...
0 <pAt> 2> [ <pA?,><?2,1t> ---(3)

...
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Problem: How many rules are there in the generated grammar ?

® et m be the max number of symbols pushed in 6.
1 l.,e., m=max{|B| | (p,c,A) 2 (q, B) €d}
0 Then |G| = O( 8] x |Q|™) --- (1)
® Notes:
0 1. |Q =10, m=3=> |G| =1000 [5]
0 2. Each instruction (p,c,A) = (q, B4...B,,) induces the |Q|™ rules
0 {<pAX. > 2> c<qBX,><X;B,X,>...<X_ B X >| X, X,,...X €Q}
3. If m = 2 or use intermediate symbols/rules: Then
0 |G| = O( |9]x|Q|xm x |Q]). Instr (p,c,A)=>(q,B,...B,,) induces rules

0 { <pAX,> 2> c<qB,B,B,...B_ X, >,
0 <qB,B,B;...B X,> 2 <qB,X,><X,B,B;...B,X,,>,
0 <X;B,B;...B X.> 2> <X,B,X,><X,B,...B X_>, ...

[ <Xm-ZBm-1 Bme> 9 <Xm-ZBm-ZXm-1><Xm-1 Bme>
0 | X4,X,,...X,, €Q} // mx|Q] nonterminals <X ,B,,,B;...B X, >,
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