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NPDAs 

 A NPDA (Nondeterministic PushDown Automata) is a 7-tuple 

  M = (Q,S,G, d ,s,  , F) where 

 Q is a finite set (the states) 

 S  is a finite set (the input alphabet) 

 G is a finite set (the stack alphabet) 

 d  (Q x (S U {e})x G) x (Q x G*) is the transition relation 

 s  Q is the start state 

   G  is the initial stack symbol 

 F  Q is the final or accept states 

 ((p,a,A),(q,B1B2…Bk))  d means that 

 whenever the machine is in state p reading input symbol a on the input 
tape and A on the top of the stack, it pops A off the stack, push B1B2…Bk 
onto the stack (Bk first and B1 last), move its read head right one cell past 
the one storing a and enter state q. 

((p,e,A),(q,B1B2…Bk))  d means similar to ((p,a,A),(q,B1B2…Bk)) 
 d except that it need not scan and consume any input symbol.  
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Configurations 

 Collection of information used to record the snapshot of an 

executing NPDA 

 an element of Q x S* x G*. 

  Configuration C = (q, x, w) means 

 the machine is at state q, 

 the rest unread input string is x, 

 the stack content is w. 

 Example: the configuration (p, baaabba, ABAC) might 

describe the situation: 

 A 

B 

A 

C 

 

a  b  a  b  b  a  a  a  b  b   a 

p 
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 Start configuration and the next configuration relations 

 Given a NPDA M and an input string x, the configuration  (s, 

x,  ) is called the start configuration of NPDA on x. 

 CFM =def Q x S* x G* is the set of all possible configurations 

for a NPDA M. 

 One-step computation of a NPDA: 

 Let the next configuration relation -->M on CFM
  be the set 

of pairs :  

   { (p, ay, Ab) -->M (q, y , g b) | ( (p,a,A), (q, g ))  d.  } U 

   { (p, y,  Ab)  -->M (q, y, g b)  | ( (p,e,A), (q, g ))  d   } 

 -->M  describes how the machine can move from one 

configuration to another in one step. (i.e., C -->M D iff D 

can be reached from C by executing one instruction) 

 Note: NPDA is nondeterministic in the sense that for each 

C there may exist multiple D’s s.t. C -->M D.   
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Multi-step computations and acceptance 

 Given a next configuration relation -->M: 

   Define --->n
M and --->*M as usual, i.e., 

 C -->0
M D  iff  C = D. 

 C -->n+1
M iff  $ E C-->n 

M E and E-->M D. 

 C -->*M D  iff   $ n  0 C -->n
M D. 

 i.e., --->*M is the ref. and trans. closure of --> M . 

 Acceptance: When will we say that an input string x is 

accepted by an NPDA M? 

 two possible answers: 

 1. by final states: M accepts x ( by final state) iff 

      (s,x,  ) -->*M (p,e, a) for some final state p  F. 

 2. by empty stack: M accepts x by empty stack iff 

      (s,x, ) -->*M (p,e, e) for any state p. 

 Remark: both kinds of acceptance have the same expressive power. 
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Language accepted by a NPDAs 

M = (Q,S,G,d,s,,F) : a NPDA. 

The languages accepted by M is defined as follows: 

 1. accepted by final state: 

   Lf(M) = {x | M accepts x by final state} 

 2. accepted by empty stack:  

   Le(M) = {x | M accepts x by empty stack}. 

 3. Note: Depending on the context, we may sometimes 

use Lf and sometimes use Le as the official definition of 

the language accepted by a NPDA.  I.e., if there is no 

worry of confusion, we use L(M) instead of Le(M) or Lf(M) 

to denote the language accepted by M. 

 4. In general Le(M)  Lf(M). 
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Some example NPDAs 

Ex 23.1 : Define a NPDA M1 which accepts the set of balanced 

strings of parentheses [ ] by empty stack. 

 M1 requires only one state q  and behaves as follows: 

 repeat  {  1. if input is ‘[‘  :  push ‘[‘ onto the stack ; 

   2. if input is ‘]’ and top is ‘[’ : pop 

   3. if input is ‘e’ and top is   :  pop.  }  

Formal definition:  Q = {q}, S = {[,]}, G = {[,  },  

               start state = q,  initial stack symbol = . 

             d = {  ( (q,[, ), (q, [) ),   ( (q,[, [), (q, [[) ),   // 1.1, 1.2 

    ( (q,], [),  (q, e) ),       // 2  

                       ( (q,e, ), (q, e) )  }   // 3 

Transition Diagram representation of the program d :  

  ((p,a A) , (q,B1…Bn)) d  =>   

  This machine is not deterministic. Why ?                

 

p q 
a,A /B1…Bn 
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Example : Execution sequences of M1 

 Let input x  = [ [ [ ] ] [ ] ] [ ].  Then below is a successful 
computation of M1 on x: 

              (q, [ [ [ ] ] [ ] ] [ ],        )   : the start configuration 

 transition (1)  -->M (q,    [ [ ] ] [ ] ] [ ],      [ )  

 transition (1)  -->M (q,       [ ] ] [ ] ] [ ],    [ [ ) 

               (1)  -->M (q,         ] ] [ ] ] [ ],  [ [ [ )  

                  (2)  -->M (q,           ] [ ] ] [ ],    [ [ )  

         (1)  -->M (q,             [ ] ] [ ],       [)      

                  (2)  -->M (q,               ] ] [ ],    [ [ )      

         (2)  -->M (q,                 ] [ ],      [ )      

         (1)  -->M (q,                    [ ],       )      

         (2)  -->M (q,                      ],     [ )      

         (2)  -->M (q,                       ,       )      

         (3)  -->M (q,                       ,        )  :accept configuration 

                  accepts by empty stack 
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Failure computation of M1 on x 

 Note besides the above successful computation, there are 

other computations that fail. 

Ex:  (q, [ [ [ ] ] [ ] ] [ ],        )   : the start configuration 

       -->*M (q, [ ],       )  

       -->M (q,   [ ],         )     transition (3)  

       a dead state in which the input is not empty and we 

             cannot move further ==> failure!! 

Note: For a NPDA to accept a string x, we need only one 
successful computation (i.e., $ D = (_, e, e) with empty input 
and stack s.t.  (s,x,) -->*M D.  ) 

 

 Theorem 1:  String x  {[,]}* is balanced iff it is accepted by 

M1 by empty stack. 
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 Definitions: 

1. A string x is said to be pre-balanced if L(y)  R(y) for all 

prefixes y of x. 

2. A configuration (q, z, a) is said to be blocked if the pda M 

cannot use up input z, i.e., there is no state r and stack b 

such that (q, z, a) * (r, e, b). 

 Facts: 

 1. If initial configuration (s, z, ) is blocked then z is not  

accepted by M. 

 2. If (q, z, a) is blocked then (q, zw, a) is blocked for all w 

 S*.  

Pf: 1. If (s, z, ) is blocked, then there is no state p, stack b such that (s, z, ) 

-->* (p, e , b), and hence z Is not accepted. 

      2. Assume (q, zw, a)  is not blocked, then there must exists intermediate 

cfg (p, w, a') such that (q, zw, a ) * (p, w, a') * (r, e, b). But (q, zw, a ) 

* (p, w, a')  implies (q, z, a ) * (p, e , a'')  and (q, z, a) is not blocked. 
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 Lemma 1: For all strings z,x,  

 if z is prebalanced then (q, zx,)-->* (q,x, a ) iff a = [L(z)-R(z) ;  

 if z is not prebalanced, (q, z, ) is blocked. 

Pf: By induction on z. 

  basic case: z = e. Then (q, zx,) = (q, x,) * (q,x, a ) iff a = e =  [L(z)-R(z) . 

  inductive case: z = ya, where a is '[' or ']'. 

   case 1:  z = y[.    If y is prebalanced, then so is z.  

     By ind. hyp., (q,y[x, ) -->* (q, [x, [L(y)-R(y) ), hence 

     (q, zx, ) = (q,y[x, ) -->* (q, [x, [L(y)-R(y) )  

                                        -->(q, x, [[L(y)-R(y) ) =(q, x, [L(z)-R(z)  ). 

     and if (q, zx, ) * (q,x, a), there must exists a’ such that 

       (q, zx, ) = (q, y[x, ) * (q,[x, a’), * (q,x, a).  But, by ind.hyp., a’ = 

[L(y) – R(y, hence the only allowable instruction is 1.1(push [), hence a = [a’ 

= [L(z) – R(z) . 

    If y is not prebalanced, then, by ind. hyp., (q, y, )  is blocked and hence 

(q, y[, ) is blocked as well. 
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case 2:  z = y].  here are 3 cases to consider . 

  case 21: y is not prebalanced. Then z neither prebalanced.  

    By ind. hyp. (q, y, ) is blocked, hence (q, y], ) is blocked 

  case 22: y is prebalanced and L(y) = R(y). Then z is not prebalanced. 

     By ind. hyp., (q, y],)-->* (q,], a ) iff a = [L(z)-R(z) = e . 

 But then (q,], ) is blocked. Hence (q, z,)  is blocked. 

  case23: y is prebalanced and L(y) > R(y). Then z is prebalanced as well.  

    By Ind.hyp.,  (q, y],)-->* (q,], a ) iff a = [L(z)-R(z) matches [+ .  Hence 

    (q,y]x,)-->* (q,]x, [L(y)-R(y)  )   --- ind. hyp 

                   -->  (q, x, [L(y)-R(y)-1 ) --- (instruction 2) 

                   =   (q, x, [L(z)-R(z) )  

    On the other hand, if  (q,y]x,)-->* (q,x, a ) . 

    Then there must exist a cfg (q, ]x, a’) such that 

     (q,y]x,)-->* (q, ]x, a’ )   -->* (q,x, a )., where, by ind.hyp., a’ = [L(y) –R(y). 

     I.e, (q,y]x,)-->* (q, ]x, [L(y) –R(y) ) -->* (q,x, a ).  

    But then the only instruction executable in the last part is (2). 

     Hence a = [L(y) –R(y)-1 = [L(z)-R(z). 
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Pf [of theorem 1] : Let x be any string. 

 If x is balanced, then it is prebalanced and L(x) – R(x) = 0.  

 Hence, by lemma 1,   

   (q, xe,)-->* (q, e, [0 ) -->3 (q, e, e).   

 As a result, x is accepted. 

 If x is not balanced, then either  

   (1) it is not prebalanced( $ a prefix y of x, L(y) < R(y)) or  

   (2) x is prebalanced (prefix y of x, L(y) > R(y)) 

 For the former case, by lemma 1, (q, x,) is blocked and  

   x is not accepted.  

 For the latter case, by lemma 1, (q,x,) -->* (q, e,a) iff a = [L(x)-

R(x) > 0  contains one or more [. 

  But then (q, e,a)  is a dead configuration (which cannot move 

further) and is not accepted! Hence x is not accepted! 
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Another example 

 The set {ww | w  {a,b}*} is known to be not Context-free but 

its complement  

    L1  =  {a,b}* - {ww | w   {a,b}*}     is. 

 

Exercise: Design a NPDA P2 to accept L1 by empty stack. 

 

Hint:  x   L1 iff 

   (1)   |x| is odd or 

   (2)   x = yazybz’ or ybzyaz’ for some y,z,z’  {a,b}*  

                 with |z|=|z’|, which also means 

           x = yay’ubu’ or yby’uau’ for some y,y’,u,u’  {a,b}*  

               with |y|=|y’| and |u|=|u’|. 
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P2 behaves as follows:  Nondeterministicallly guess input has 

odd or even length // (e,)(q0, );(e,)(q2,); (e,)(q6,) 

case odd length : 

q0 : on any input c, goto q1    // (c, )  (q1, ), c is ‘a’ or ‘b’ 

q1: on any input  c, go to q0 ; // (c, )  (q0, ) 

       on ( e, )  pop    (and accept). // (e , )  (q1, e ) 

case even length: 

 // q2~q5 : handle case: input = xayubv with |x|=|y| and |u|=|v| 

 q2:  (c, s)   (q2, o s);(a, s)  (q3, s)  // push o until ‘a’ 

 q3:  (c, o)  (q3, e) ;   (c, )   (q4, ) // pop o foreach c until  

 q4:  (c, s)  (q4, o s) ; (b, s)  (q5, s) //push o foreach c until ‘b’ 

 q5:  (c,o)  (g5, e) ; // pop o foreach c unitl  

         (e, )   (q5, e) // pop  and accept                                   

  // q6 ~ q9 :handle case: input = xbyuav with |x|=|y| and |u|=|v| 

    … (left as an exercise) 
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More Examlpes 

 Find PDA for each of the following languages: 

 L1={w{0,1}*|the length of w is odd and its middle symbol is 0.} 

 L2={w{0,1}*  | w contains as many 0s as 1s.} 

 L3 ={w{0,1}* | w contains more 1s than 0s.} 

 L4 = {anbmck | k = m + 2n}. 

 L5 = {w{a,b,c}*  | #a(w) + #b(w)   #c(w) }. 

 //  #a(w) is the number of a’s occurring in w. 

 L6 = {w{a,b}* | #a(w)  2 x #b(w) } . 
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Equivalent expressive power of both types of acceptance 

 M = (Q,S,G,d,s,,F) : a PDA  

   Let u, t : two new states  Q and  

             : a new stack symbol  G. 

 Define a new PDA M’ = (Q’,S,G’,d’,s’, , F’)  where 

 Q’ = Q U {u, t},   G’ = G U { },   s’ = u,    F’ = {t} and 

 d’ = d U  { (u,e,  ) --> (s, )  }  // push  and call M 

       U { (f, e, A) -> (t,A) | f  F and A  G’ } /*  return to M’ 

                                                    after reaching final states  */ 

       U {(t, e,A) --> (t,e) | A  G’ } // pop until EmptyStack 

 Diagram form relating M and M’: see next slide. 

Theorem: Lf(M) = Le(M’) 

pf: M accepts x => (s, x,  )  -->n
M   (q, e , g) for some q  F 

      => (u, x,  ) -->M’ (s, x,  ) -->n
M’ (q, e , g) -->M’ (t, e , g )   

           -->*M’ (t,e, e )   => M’ accepts x by empty stack. 
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From final state to emptystack: 

M 

s f u t 

(e, , ) 
(e,A,A) 

 

for all As 

(e,A, e) for all As 

M’ 

: push  and call M 

 : return to t of M’ once reaching final states of M 

: pop all stack symbols until emptystack 
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From FinalState to EmptyStack 

Conversely, M’ accepts x by empty stack  

=>  (u, x,  ) -->M’ (s, x,  ) -->*M’ (q,  y, g ) --> (t, y, g)  -->*  

    (t, e , e )  for some q  F  

 y = e  since M’ cannot consume any input symbol after it 

enters state t. => M accepts x by final state. 

 

 Define next new PDA M’’ = (Q’,S,G’,d’’,s’, , F’)  where 

 Q’ = Q U { u, t},   G’ = G U {},   s’ = u,    F’ = {t} and 

 d’’ = d U  { (u,e,  ) --> (s, )  }  // push  and call M 

       U { (p,e,) -> (t, e) | p  Q  } /*  return to M’’ and accept 

                                    if EmptyStack */ 

        

 Diagram form relating M and M’’:  See slide 15. 
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From EmptyStack to FinalState 

 Theorem: Le(M) = Lf(M’’). 

pf: M accepts x => (s, x,  )  -->n
M   (q, e , e)  

      => (u, x,  ) -->M’’ (s, x,  ) -->n
M’’ (q, e , e ) -->M’’ (t, e , e)   

      => M’’ accepts x by final state (and empty stack). 

 

Conversely, M’’ accepts x by final state (and empty stack)  

=>  (u, x,  ) -->M’’ (s, x,  ) -->*M’’ (q,  y, ) -->M’’ (t, e, e )  for 

        some state q in Q  

=> y = e  [and STACK= e] since M’’ does not consume any input 

symbol at the last  transition ((q, e ,  ), (t, e))  

=> M accepts x by empty stack. 

QED 
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From emptystack to final state (and emptystack) 

 

M 

s f u t 

(e, , ) 
(e,, e) 

 

 

M’’ 

(e,, e) 

  : push  and call M 
: if  emptystack (i.e.see  on stack) ,  

     then pop  and return to state t of M’’ 
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Equivalence of PDAs and CFGs  

 Every CFL can be accepted by a PDA (with only one state). 

 G = (N, S ,P,S) : a CFG. 

 wlog assume all productions of G are of the form: 

  A -> c B1B2B3…Bk ( k0) and c  S U {e}. 

 note: 1. A -> e satisfies such constraint; 2. can require k 2. 

 Define a PDA M = ({q}, S, N, d, q, S, {}) from G where 

 q is the only state (hence also the start state), 

 S, the set of terminal symbols of G, is the input alphabet of 
M, 

 N, the set of nonterminals of G, is the stack alphabet of M, 

 S, the start nonterminal of G, is the initial stack symbol of M, 

 {} is the set of final states. (hence M accepts by empty 
stack!!) 

  d = {  ((q,c,A), (q, B1B2…Bk))  | A -> c B1B2B3…Bk  P } 
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Example 

 G :  1. S -> [ B S   (q, [, S) --> (q, B S) 

     2. S  -> [ B   (q, [, S) --> (q,    B ) 

   3. S->   [ S B          ==> d :  (q, [, S) --> (q, S B) 

  4. S -> [ S B S    (q, [, S) --> (q, S B S) 

  5. B -> ]     (q, ], B) --> (q, e) 

 

 

 L(G) = the set of nonempty balanced parentheses. 

 leftmost derivation v.s. computation sequence  

    (see next table) 

S L-->*G  [ [ [ ] ] [ ] ]   <==> (q, [[[]][]], S)  -->*M (q, e, e) 

S L-->n
G  [[[] BSB      <==>  (q, [[[] ][]], S)  -->n

M (q, ][]] , BSB) 

A L-->n
G    z     g         <==>  (q,    z  y  , A)  -->n

M (q, y    ,   g    ) 
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rule applied 
sentential form of left-most 

derivation 

configuration of the pda 

accepting x 

S (q,               [ [ [ ] ]  [ ] ], S  ) 

3 [  S  B (q, [            [[ [ ] ]  [ ] ], SB  ) 

4 [  [ S B S  B  (q, [ [            [ ] ]  [ ] ], SBSB ) 

2 [  [   [ B  B S B (q,  [ [ [          ] ]  [ ] ], BBSB  ) 

5 [  [  [   ] B S B (q, [ [ [ ]            ]  [ ] ], BSB  ) 

5 [  [  [  ]   ] S B (q, [ [ [ ] ]               [ ] ], SB  ) 

2 [  [  [  ]  ]  [  B  B (q, [ [ [ ] ]  [             ] ], BB  ) 

5 [  [  [  ]  ]  [ ] B (q, , [ [ [ ] ] [ ]               ], B  ) 

5 [  [  [ [  ]  ]  [  ]  ]    (q, , [ [ [ ] ] [ ] ]                   , ) 
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leftmost derivation v.s. computation sequence 

Lemma 1: For any z,y  S*, g  N* and A  N, 

              A L-->n
G  z g    iff  (q, zy, A)  -->n

M (q, y , g) 

 

Ex: S L-->3
G [ [ [ BBSB   <==> (q, [[[ ]][]] , S) -->3

M (q, ]][]], BBSB) 

pf: By ind. on n. 

 Basis: n = 0.  A L-->0
G  z g    iff    z = e and g = A 

                                               iff   (q, zy, A) -->0
M (q,y,g) 

 Ind. case: 1. (only-if part) 

  Suppose A L-->n+1
G  z g  and B -> cb was the last rule applied. 

 I.e.,    A L-->n
G  uBa  L-->G uc ba = z g  with z = uc and g = ba. 

 

   Hence  (q, u cy, A ) -->n
M (q, cy, Ba)   // by ind. hyp. 

                                    -->M (q, y, ba)   // since ((q,c,B),(q, b))  d 
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leftmost derivation v.s. computation sequence (cont’d) 

2.  (if-part)  Suppose     (q, zy, A) -->n+1
M (q, y, g) and  

    ((q,c,B),(q, b))  d  was the last transition executed.  I.e., 

 

  (q, zy, A) = (q, ucy, A) -->n
M ( q, cy, Ba) -->M (q, y, ba ) =(q,y, g). 

              where z = uc and g = ba  for some u, a.  But then 

   A L-->n
G uBa             // by ind. hyp., 

       L-->   uc ba = z g   // since by def. B -> c b  P   

 Hence A L-->n+1
G z g   QED  

 

Theorem 2: L(G) = L(M). 

pf:  x  L(G) iff S L-->*G x  

   iff  (q, x, S) -->*M  (q, e, e)  

   iff  x  L(M).    QED 
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Simulating PDAs by CFGs 

Claim: Every language accepted by a PDA can be generated by 
a CFG. 

  Proved in two steps: 

 1. Special case : Every PDA with only one state has an 
equivalent CFG 

 2. general case: Every PDA has an equivalent CFG. 

 

 Corollary: Every PDA can be minimized to an equivalent PDA 
with only one state. 

pf: M : a PDA with more than one state. 

    1. apply step 2 to find an equivalent CFG G 

    2. apply theorem 2 on G , we find an equivalent PDA with  
only one state.  
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PDA with only one state has an equivalent CFG. 

 M = ({s}, S, G, d, s, , {}) : a PDA with only one state. 

  Define a CFG G = (G, S, P, ) where  

                  P = { A -> cb | ((q, c, A), (q, b))   d } 

 

Note:  M ==> G is just the inverse of the transformation : 

                      G ==> M defined at slide 22.  

 

Theorem: L(G) = L(M). 

 Pf: Same as the proof of Lemma 1 and Theorem 2. 
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Simulating general PDAs by CFGs 

 How to simulate arbitrary PDA by CFG ? 

 idea: encode all state/stack information in nonterminals !! 

Wlog, assume M = (Q, S, G, d, s, , {t}) be a PDA with only one 

final state and M can empty its stack before it enters its final 

state. (The general pda M’’ at slide 21 satisfies such 

constraint.) 

 Let N  Q x G* x Q .   

 Elements of N such as (p, ABC, q) are written as <pABCq>. 

 Define a CFG G = (N, S, <st>, P ) based on M, where  

 P = { <pAr>  c <q B1 B2 …Bk r> 

 

           |  ((p,c,A), (q, B1B2…Bk))  d, k  0,  c  S U {e},  r Q  } 

  U  // Rules for nonterminals <q B1 B2 …Bk r>  

  { <pAar>  <pAq><qar>, <pp>  e | p,q,r Q and a G*}  
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For a computation process : 

 (p, wy, A1A2…An b) *M  (r, y, b) ,  

there must exists x1x2…xn = w and states q1,q2,…, qn such that  

           (p, wy, A1A2…Anb)  

  *M  (q1, x2…xny, A2…Anb) 

  *M  (q2, x3…xny, A3…Anb) * … 

  *M  (qn-1,  xny, Anb) *M  (qn= r,  y,b). 

We want the grammar derivation G to simulate such 

computation: 

      <pA1A2…Anr>  

* x1 <q1A2…Anr> 

* x1x2 <q2A2…Anr> *  … 

* x1x2…xn-1  <qn-1Anr>   * x1x2…xn <qnr> = x1x2…xn  if qn = r  
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Rules for  <p A1 A2 …An r>  

case 1: n = 0 : (p, wy, A1A2…An b) *M  (r, y, b) . 

     I.e,  (p, wy, b) *M  (r, y, b) ,  

which must be permitted if  w = e  and p = r. 

   we thus have rule <pp>  e   for all state p. 

 

case 2: n > 1 : (p, wy, A1A2…An b) *M  (r, y, b) . Then there 

must exists uv = w, and state q such that  

        (p, u, A1a) *M (q, e, a) and  

        (p, wy, A1A2…An b) *M  (q, vy, A2…Anb) *M  (r, y, b)  

 We thus have the assumption: 

        <pAq> * u and <q A2…Anr>  v. 

 and the rules <pA1A2…An r>  <pAq><qA1A2…Anr> 

       for all states p,q,r.  
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Rules for  <p A1 A2 …An r>  

case 3: n = 1 : (p, wy, A b) *M  (r, y, b) . 

This is possible only if   

  (p, wy, A b) M  (q, vy, gb) * M (r, y, b).,  

 where w = cv and ((p,c,A), (q, r)) is an instruction. 

  

 We thus need rule <pAr>  c<qgr> for all states r,  

 and   the  assumption:  <qgr> * v,  

 to guarantee the derivation: 

  <pAr>  c<qgr> * cv = w . 
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machine view: (p, c, A)  (q, B1B2...Bk) 

rule views : <pAr>  c<q B1B2...Bk r>    for each r Q  

                   <pABCr>  <pAq><qBCr> for each q Q                     

                   <pep>  e    <peq>   no rule if p q   

A 

C 

 

p 

c x1x2...  

t 

 t1 

t2 
t2 

t1 

p 

Bk-1 

Bk 

C 

 

q 

c x1x2... 

B1 

B2 

t 

t1 

t1 

t2 

qk=t2 qk-1 

qk-1 

q1 

q1 q2 

q2 .... 

q 

We want to use derivation <paq> * w  

to simulate the computation:   

         (p, wy, ab) *M (q, y, eb) 

So, if (p,c,A) M (q, b) we have rules : 

<p A r>  c <q b r> for all states r. 
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Simulating PDAs by CFG (cont’d) 

 Note: Besides storing sate information on the  nonterminals, 

G simulate M by guessing nondeterministically what states 

M will enter at certain future points in the computation, 

saving its guesses on the sentential form, and then verifying 

later that those guesses are correct. 

Lemma 25.1: if <pB1B2…Bkq> is a nonterminal, then 

           (p,x,B1B2…Bk) -->
*
M (q,e,e)    iff 

           <pB1B2…Bkq> *G x.                (*) 

 

Notes: 1. when k = 0  (*) is reduced to <pq> *G x,   where  

                <pq> = e if p=q and <pq> is undefined if  p  q. 

          2. In particular, (p,x,B) -->*M (q,e,e)  iff <pBq> *G x. 

Pf: by ind. on n.   Basis: k = 0.   

    LHS holds iff ( x = e, k = 0, and p = q )   iff  RHS holds. 
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Simulating PDAs by CFGs (cont’d) 

Inductive case: 

(=>:) Suppose (p,x,B1B2…Bk) -->
* M (q,e,e)  and 

((p,c,B1),(r,C1C2…Cm)) is the first instr. executed. I.e., 

 

    (p,x,B1B2…Bk) -->M (r, y, C1C2…CmB2…Bk)  

 
*

M  (s, z, B2…Bk)  

 -->*M (q,e,e),         where x =  cy = cdz. 

By ind. hyp., 

 <rC1C2…Cms> * d         since (r, d C1C2…Cm) -->* (s,e,e)  and 

 <sB1…Bkq>     * z  

 

Hence  <pB1B2…Bkq>   <pB1r><rB1B2…Bkq> 

    c <rC1C2…Cms> <rB1B2…Bkq> * cdz = x  
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Simulating PDAs by CFGs (cont’d) 

(<=:)  <pB1B2…Bkq> L*
G x. 

Suppose <pB1B2…Bkq>   <p B1 q1> <q1B2…Bkq> 
 L
G c <r0 C1C2 ...Cm q1> <q1 B2…Bkq> 

 L
G

n  cy   ( = x  ) 

where <pB1q1>  c <r0 C1C2…Cm q1>  P --(*) . 

But then since, by (*),  [(p, c, B1) , (r0, C1C2…Cm)] – (**) is an instr 

of M, 

(p,x,B1…Bk) -->M (r0, y, C1C2…CmB2…Bn)   --- By (**) 

                     -->* (q1, z, B2…Bn)  -- by IH 

                     -->n M (q,e,e).  -- ,by ind. hyp.  QED 

Theorem 25.2 L(G) = L(M). 

Pf: x  L(G)  iff  <st> * x  

    iff  (s,x,)  -->*M  (t,e,e)    ---- Lemma 25.1 

    iff  x   L(M).  QED 
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Example 

 L = {x {[,]}* | x is a balanced string of [ and ]], i.e., #](x) = 2 

#[(x) and all “]]“s must occur in pairs }  

 Ex: [ ]] [ [ ]] ]] ∈ L  but [ ] [ ] ]] ∉ L. 

 L can be accepted by the PDA 

M = (Q, S, G, d, p, ,{t} ), where 

  Q = {p,q,t}, S = {[,]}, G = {A, B, }, 

  and d is given as follows: 

 (p, [, ) --> (p, A),   

 (p,[,A) -->  (p,AA),   

 (p, ], A) --> (q, B),  

 (q, ], B) --> (p, e),   

 (p,e, ) -->  (t,e) 

 

t q 

p 

],B/e 

e,/e 

[,A/AA 

[,/A  

],A/B 
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 M can be simulated by the CFG G = (N,S, <pt>, P) where 

 N = { <X D Y> | X,Y {p,q,t } and D  { A,B,}*  }, 

 and P is derived from the following pseudo rules : 

 (p, [, ) --> (p, A) :   <p?>    [  <pA?> 

 (p,[,A) -->  (p,AA)   :  <p A ?>  [  <pAA?> 

 (p, ], A) --> (q, B),  :   <p A ?>  ]  <qB?> 

    Each of the above produces 3 rules ( ? = p or q or t ). 

 (q, ], B) --> (p, e),  :    <q B ?>  ]  <p e ?> 

   This produces only 1 rule : <qBp>  ]   

          ( ? = p, but could not be q or t why ?) 

      <q B ?>  ] <p e ?>  =>   <qBp>   ]  <pep>  0  ]  

 (p,e, ) -->  (t,e)  : <p?>  <t e ?>   

     This results in one rule : <pt>  e  
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 <p  ?>  [  <pA?>  results in 3 rules : ? = p, q or t. 

   <p  p>  [  <pAp>  ---(1) 

   <p  q>  [  <pAq>  ---(2) 

   <p  t>   [  <pAt>   ---(3) 

 (1)~(3) each again need to be expanded into 3 rules. 

   <pAp>   <pA?><?  p> where ? is p or q or t. 

<pAp>   <pAp><p  p>  

<pAp>   <pAq><q  p> 

<pAp>   <pAt><t  p>  

   <pAq>   <pA?><?  q> where ? is p or q or t. 

 <pAq>   <pAp><p  q>  

 <pAq>   <pAq><q  q>  

 <pAq>   <pAt><t  q> 

   <pA t>   <pA?><?  t> where ? is p or q or t. 

 … 
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 Similarly <pA?>  [  <pAA?> results in 9 rules: 

  Where ?2 = p,q, or t. 

    <p A p> [  <pA?2> <?2p>  ---(1) 

 <p A p>  [  <pAp> <pp> 

 <p A p>  [  <pAq> <qp> 

 <p A p>  [  <pAt> <tp> 

    <p A q> [  <pA?2> <?2q>  ---(2) 

 … 

    <p A t>   [  <pA?2> <?2t>   ---(3) 

 … 
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Problem: How many rules are there in the generated grammar ? 

 Let m be the max number of symbols pushed in d. 

      i.e.,  m = max { |b| | (p,c,A)  (q, b) d } 

 Then |G| = O( |d| x |Q|m )  --- (1) 

 Notes: 

 1.  |Q| = 10, m = 3 => |G| = 1000 |d| 

 2.  Each instruction (p,c,A)  (q, B1…Bm) induces the |Q|m rules 

 {<pAXm>  c<qB1X1><X1B2X2>…<Xm-1BmXm> | X1,X2,…Xm Q } 

3. If m = 2 or use intermediate symbols/rules: Then 

 |G| = O( |d|x|Q|xm x |Q|). Instr (p,c,A)(q,B1…Bm) induces rules 

 {                  <pAXm>  c <qB1B2B3…BmXm>,  

   <qB1B2B3…BmXm>  <qB1X1> <X1B2B3…BmXm>, 

    <X1B2B3…BmXm>     <X1B2X2><X2B3…BmXm>,  … 

  <Xm-2Bm-1BmXm>       <Xm-2Bm-2Xm-1><Xm-1BmXm>  

   | X1,X2,…Xm Q }  // mx|Q| nonterminals <XJBJ+1B3…BmXm>,  

 


