
 Transparency No. P2C3-1

Formal Language
and Automata Theory

Chapter 3

Pushdown Automata and

Context-Free Languages

PDAs and CFLs

 Transparency No. P2C3-2

NPDAs

 A NPDA (Nondeterministic PushDown Automata) is a 7-tuple

 M = (Q,S,G, d ,s, , F) where

 Q is a finite set (the states)

 S is a finite set (the input alphabet)

 G is a finite set (the stack alphabet)

 d (Q x (S U {e})x G) x (Q x G*) is the transition relation

 s Q is the start state

 G is the initial stack symbol

 F Q is the final or accept states

 ((p,a,A),(q,B1B2…Bk)) d means that

 whenever the machine is in state p reading input symbol a on the input
tape and A on the top of the stack, it pops A off the stack, push B1B2…Bk
onto the stack (Bk first and B1 last), move its read head right one cell past
the one storing a and enter state q.

((p,e,A),(q,B1B2…Bk)) d means similar to ((p,a,A),(q,B1B2…Bk))
 d except that it need not scan and consume any input symbol.

PDAs and CFLs

 Transparency No. P2C3-3

Configurations

 Collection of information used to record the snapshot of an

executing NPDA

 an element of Q x S* x G*.

 Configuration C = (q, x, w) means

 the machine is at state q,

 the rest unread input string is x,

 the stack content is w.

 Example: the configuration (p, baaabba, ABAC) might

describe the situation:

 A

B

A

C

a b a b b a a a b b a

p

PDAs and CFLs

 Transparency No. P2C3-4

 Start configuration and the next configuration relations

 Given a NPDA M and an input string x, the configuration (s,

x,) is called the start configuration of NPDA on x.

 CFM =def Q x S* x G* is the set of all possible configurations

for a NPDA M.

 One-step computation of a NPDA:

 Let the next configuration relation -->M on CFM
 be the set

of pairs :

 { (p, ay, Ab) -->M (q, y , g b) | ((p,a,A), (q, g)) d. } U

 { (p, y, Ab) -->M (q, y, g b) | ((p,e,A), (q, g)) d }

 -->M describes how the machine can move from one

configuration to another in one step. (i.e., C -->M D iff D

can be reached from C by executing one instruction)

 Note: NPDA is nondeterministic in the sense that for each

C there may exist multiple D’s s.t. C -->M D.

PDAs and CFLs

 Transparency No. P2C3-5

Multi-step computations and acceptance

 Given a next configuration relation -->M:

 Define --->n
M and --->*M as usual, i.e.,

 C -->0
M D iff C = D.

 C -->n+1
M iff $ E C-->n

M E and E-->M D.

 C -->*M D iff $ n 0 C -->n
M D.

 i.e., --->*M is the ref. and trans. closure of --> M .

 Acceptance: When will we say that an input string x is

accepted by an NPDA M?

 two possible answers:

 1. by final states: M accepts x (by final state) iff

 (s,x,) -->*M (p,e, a) for some final state p F.

 2. by empty stack: M accepts x by empty stack iff

 (s,x,) -->*M (p,e, e) for any state p.

 Remark: both kinds of acceptance have the same expressive power.

PDAs and CFLs

 Transparency No. P2C3-6

Language accepted by a NPDAs

M = (Q,S,G,d,s,,F) : a NPDA.

The languages accepted by M is defined as follows:

 1. accepted by final state:

 Lf(M) = {x | M accepts x by final state}

 2. accepted by empty stack:

 Le(M) = {x | M accepts x by empty stack}.

 3. Note: Depending on the context, we may sometimes

use Lf and sometimes use Le as the official definition of

the language accepted by a NPDA. I.e., if there is no

worry of confusion, we use L(M) instead of Le(M) or Lf(M)

to denote the language accepted by M.

 4. In general Le(M) Lf(M).

PDAs and CFLs

 Transparency No. P2C3-7

Some example NPDAs

Ex 23.1 : Define a NPDA M1 which accepts the set of balanced

strings of parentheses [] by empty stack.

 M1 requires only one state q and behaves as follows:

 repeat { 1. if input is ‘[‘ : push ‘[‘ onto the stack ;

 2. if input is ‘]’ and top is ‘[’ : pop

 3. if input is ‘e’ and top is : pop. }

Formal definition: Q = {q}, S = {[,]}, G = {[, },

 start state = q, initial stack symbol = .

 d = { ((q,[,), (q, [)), ((q,[, [), (q, [[)), // 1.1, 1.2

 ((q,], [), (q, e)), // 2

 ((q,e,), (q, e)) } // 3

Transition Diagram representation of the program d :

 ((p,a A) , (q,B1…Bn)) d =>

 This machine is not deterministic. Why ?

p q
a,A /B1…Bn

PDAs and CFLs

 Transparency No. P2C3-8

Example : Execution sequences of M1

 Let input x = [[[]] []] []. Then below is a successful
computation of M1 on x:

 (q, [[[]] []] [],) : the start configuration

 transition (1) -->M (q, [[]] []] [], [)

 transition (1) -->M (q, []] []] [], [[)

 (1) -->M (q,]] []] [], [[[)

 (2) -->M (q,] []] [], [[)

 (1) -->M (q, []] [], [)

 (2) -->M (q,]] [], [[)

 (2) -->M (q,] [], [)

 (1) -->M (q, [],)

 (2) -->M (q,], [)

 (2) -->M (q, ,)

 (3) -->M (q, ,) :accept configuration

 accepts by empty stack

PDAs and CFLs

 Transparency No. P2C3-9

Failure computation of M1 on x

 Note besides the above successful computation, there are

other computations that fail.

Ex: (q, [[[]] []] [],) : the start configuration

 -->*M (q, [],)

 -->M (q, [],) transition (3)

 a dead state in which the input is not empty and we

 cannot move further ==> failure!!

Note: For a NPDA to accept a string x, we need only one
successful computation (i.e., $ D = (_, e, e) with empty input
and stack s.t. (s,x,) -->*M D.)

 Theorem 1: String x {[,]}* is balanced iff it is accepted by

M1 by empty stack.

PDAs and CFLs

 Transparency No. P2C3-10

 Definitions:

1. A string x is said to be pre-balanced if L(y) R(y) for all

prefixes y of x.

2. A configuration (q, z, a) is said to be blocked if the pda M

cannot use up input z, i.e., there is no state r and stack b

such that (q, z, a) * (r, e, b).

 Facts:

 1. If initial configuration (s, z,) is blocked then z is not

accepted by M.

 2. If (q, z, a) is blocked then (q, zw, a) is blocked for all w

 S*.

Pf: 1. If (s, z,) is blocked, then there is no state p, stack b such that (s, z,)

-->* (p, e , b), and hence z Is not accepted.

 2. Assume (q, zw, a) is not blocked, then there must exists intermediate

cfg (p, w, a') such that (q, zw, a) * (p, w, a') * (r, e, b). But (q, zw, a)

* (p, w, a') implies (q, z, a) * (p, e , a'') and (q, z, a) is not blocked.

PDAs and CFLs

 Transparency No. P2C3-11

 Lemma 1: For all strings z,x,

 if z is prebalanced then (q, zx,)-->* (q,x, a) iff a = [L(z)-R(z) ;

 if z is not prebalanced, (q, z,) is blocked.

Pf: By induction on z.

 basic case: z = e. Then (q, zx,) = (q, x,) * (q,x, a) iff a = e = [L(z)-R(z) .

 inductive case: z = ya, where a is '[' or ']'.

 case 1: z = y[. If y is prebalanced, then so is z.

 By ind. hyp., (q,y[x,) -->* (q, [x, [L(y)-R(y)), hence

 (q, zx,) = (q,y[x,) -->* (q, [x, [L(y)-R(y))

 -->(q, x, [[L(y)-R(y)) =(q, x, [L(z)-R(z)).

 and if (q, zx,) * (q,x, a), there must exists a’ such that

 (q, zx,) = (q, y[x,) * (q,[x, a’), * (q,x, a). But, by ind.hyp., a’ =

[L(y) – R(y, hence the only allowable instruction is 1.1(push [), hence a = [a’

= [L(z) – R(z) .

 If y is not prebalanced, then, by ind. hyp., (q, y,) is blocked and hence

(q, y[,) is blocked as well.

PDAs and CFLs

 Transparency No. P2C3-12

case 2: z = y]. here are 3 cases to consider .

 case 21: y is not prebalanced. Then z neither prebalanced.

 By ind. hyp. (q, y,) is blocked, hence (q, y],) is blocked

 case 22: y is prebalanced and L(y) = R(y). Then z is not prebalanced.

 By ind. hyp., (q, y],)-->* (q,], a) iff a = [L(z)-R(z) = e .

 But then (q,],) is blocked. Hence (q, z,) is blocked.

 case23: y is prebalanced and L(y) > R(y). Then z is prebalanced as well.

 By Ind.hyp., (q, y],)-->* (q,], a) iff a = [L(z)-R(z) matches [+ . Hence

 (q,y]x,)-->* (q,]x, [L(y)-R(y)) --- ind. hyp

 --> (q, x, [L(y)-R(y)-1) --- (instruction 2)

 = (q, x, [L(z)-R(z))

 On the other hand, if (q,y]x,)-->* (q,x, a) .

 Then there must exist a cfg (q,]x, a’) such that

 (q,y]x,)-->* (q,]x, a’) -->* (q,x, a)., where, by ind.hyp., a’ = [L(y) –R(y).

 I.e, (q,y]x,)-->* (q,]x, [L(y) –R(y)) -->* (q,x, a).

 But then the only instruction executable in the last part is (2).

 Hence a = [L(y) –R(y)-1 = [L(z)-R(z).

PDAs and CFLs

 Transparency No. P2C3-13

Pf [of theorem 1] : Let x be any string.

 If x is balanced, then it is prebalanced and L(x) – R(x) = 0.

 Hence, by lemma 1,

 (q, xe,)-->* (q, e, [0) -->3 (q, e, e).

 As a result, x is accepted.

 If x is not balanced, then either

 (1) it is not prebalanced($ a prefix y of x, L(y) < R(y)) or

 (2) x is prebalanced (prefix y of x, L(y) > R(y))

 For the former case, by lemma 1, (q, x,) is blocked and

 x is not accepted.

 For the latter case, by lemma 1, (q,x,) -->* (q, e,a) iff a = [L(x)-

R(x) > 0 contains one or more [.

 But then (q, e,a) is a dead configuration (which cannot move

further) and is not accepted! Hence x is not accepted!

PDAs and CFLs

 Transparency No. P2C3-14

Another example

 The set {ww | w {a,b}*} is known to be not Context-free but

its complement

 L1 = {a,b}* - {ww | w {a,b}*} is.

Exercise: Design a NPDA P2 to accept L1 by empty stack.

Hint: x L1 iff

 (1) |x| is odd or

 (2) x = yazybz’ or ybzyaz’ for some y,z,z’ {a,b}*

 with |z|=|z’|, which also means

 x = yay’ubu’ or yby’uau’ for some y,y’,u,u’ {a,b}*

 with |y|=|y’| and |u|=|u’|.

PDAs and CFLs

 Transparency No. P2C3-15

P2 behaves as follows: Nondeterministicallly guess input has

odd or even length // (e,)(q0,);(e,)(q2,); (e,)(q6,)

case odd length :

q0 : on any input c, goto q1 // (c,) (q1,), c is ‘a’ or ‘b’

q1: on any input c, go to q0 ; // (c,) (q0,)

 on (e,) pop (and accept). // (e ,) (q1, e)

case even length:

 // q2~q5 : handle case: input = xayubv with |x|=|y| and |u|=|v|

 q2: (c, s) (q2, o s);(a, s) (q3, s) // push o until ‘a’

 q3: (c, o) (q3, e) ; (c,) (q4,) // pop o foreach c until

 q4: (c, s) (q4, o s) ; (b, s) (q5, s) //push o foreach c until ‘b’

 q5: (c,o) (g5, e) ; // pop o foreach c unitl

 (e,) (q5, e) // pop and accept

 // q6 ~ q9 :handle case: input = xbyuav with |x|=|y| and |u|=|v|

 … (left as an exercise)

PDAs and CFLs

 Transparency No. P2C3-16

More Examlpes

 Find PDA for each of the following languages:

 L1={w{0,1}*|the length of w is odd and its middle symbol is 0.}

 L2={w{0,1}* | w contains as many 0s as 1s.}

 L3 ={w{0,1}* | w contains more 1s than 0s.}

 L4 = {anbmck | k = m + 2n}.

 L5 = {w{a,b,c}* | #a(w) + #b(w) #c(w) }.

 // #a(w) is the number of a’s occurring in w.

 L6 = {w{a,b}* | #a(w) 2 x #b(w) } .

PDAs and CFLs

 Transparency No. P2C3-17

Equivalent expressive power of both types of acceptance

 M = (Q,S,G,d,s,,F) : a PDA

 Let u, t : two new states Q and

 : a new stack symbol G.

 Define a new PDA M’ = (Q’,S,G’,d’,s’, , F’) where

 Q’ = Q U {u, t}, G’ = G U { }, s’ = u, F’ = {t} and

 d’ = d U { (u,e,) --> (s,) } // push and call M

 U { (f, e, A) -> (t,A) | f F and A G’ } /* return to M’

 after reaching final states */

 U {(t, e,A) --> (t,e) | A G’ } // pop until EmptyStack

 Diagram form relating M and M’: see next slide.

Theorem: Lf(M) = Le(M’)

pf: M accepts x => (s, x,) -->n
M (q, e , g) for some q F

 => (u, x,) -->M’ (s, x,) -->n
M’ (q, e , g) -->M’ (t, e , g)

 -->*M’ (t,e, e) => M’ accepts x by empty stack.

PDAs and CFLs

 Transparency No. P2C3-18

From final state to emptystack:

M

s f u t

(e, ,)
(e,A,A)

for all As

(e,A, e) for all As

M’

: push and call M

 : return to t of M’ once reaching final states of M

: pop all stack symbols until emptystack

PDAs and CFLs

 Transparency No. P2C3-19

From FinalState to EmptyStack

Conversely, M’ accepts x by empty stack

=> (u, x,) -->M’ (s, x,) -->*M’ (q, y, g) --> (t, y, g) -->*

 (t, e , e) for some q F

 y = e since M’ cannot consume any input symbol after it

enters state t. => M accepts x by final state.

 Define next new PDA M’’ = (Q’,S,G’,d’’,s’, , F’) where

 Q’ = Q U { u, t}, G’ = G U {}, s’ = u, F’ = {t} and

 d’’ = d U { (u,e,) --> (s,) } // push and call M

 U { (p,e,) -> (t, e) | p Q } /* return to M’’ and accept

 if EmptyStack */

 Diagram form relating M and M’’: See slide 15.

PDAs and CFLs

 Transparency No. P2C3-20

From EmptyStack to FinalState

 Theorem: Le(M) = Lf(M’’).

pf: M accepts x => (s, x,) -->n
M (q, e , e)

 => (u, x,) -->M’’ (s, x,) -->n
M’’ (q, e , e) -->M’’ (t, e , e)

 => M’’ accepts x by final state (and empty stack).

Conversely, M’’ accepts x by final state (and empty stack)

=> (u, x,) -->M’’ (s, x,) -->*M’’ (q, y,) -->M’’ (t, e, e) for

 some state q in Q

=> y = e [and STACK= e] since M’’ does not consume any input

symbol at the last transition ((q, e ,), (t, e))

=> M accepts x by empty stack.

QED

PDAs and CFLs

 Transparency No. P2C3-21

From emptystack to final state (and emptystack)

M

s f u t

(e, ,)
(e,, e)

M’’

(e,, e)

 : push and call M
: if emptystack (i.e.see on stack) ,

 then pop and return to state t of M’’

PDAs and CFLs

 Transparency No. P2C3-22

Equivalence of PDAs and CFGs

 Every CFL can be accepted by a PDA (with only one state).

 G = (N, S ,P,S) : a CFG.

 wlog assume all productions of G are of the form:

 A -> c B1B2B3…Bk (k0) and c S U {e}.

 note: 1. A -> e satisfies such constraint; 2. can require k 2.

 Define a PDA M = ({q}, S, N, d, q, S, {}) from G where

 q is the only state (hence also the start state),

 S, the set of terminal symbols of G, is the input alphabet of
M,

 N, the set of nonterminals of G, is the stack alphabet of M,

 S, the start nonterminal of G, is the initial stack symbol of M,

 {} is the set of final states. (hence M accepts by empty
stack!!)

 d = { ((q,c,A), (q, B1B2…Bk)) | A -> c B1B2B3…Bk P }

PDAs and CFLs

 Transparency No. P2C3-23

Example

 G : 1. S -> [B S (q, [, S) --> (q, B S)

 2. S -> [B (q, [, S) --> (q, B)

 3. S-> [S B ==> d : (q, [, S) --> (q, S B)

 4. S -> [S B S (q, [, S) --> (q, S B S)

 5. B ->] (q,], B) --> (q, e)

 L(G) = the set of nonempty balanced parentheses.

 leftmost derivation v.s. computation sequence

 (see next table)

S L-->*G [[[]] []] <==> (q, [[[]][]], S) -->*M (q, e, e)

S L-->n
G [[[] BSB <==> (q, [[[]][]], S) -->n

M (q,][]] , BSB)

A L-->n
G z g <==> (q, z y , A) -->n

M (q, y , g)

PDAs and CFLs

 Transparency No. P2C3-24

rule applied
sentential form of left-most

derivation

configuration of the pda

accepting x

S (q, [[[]] []], S)

3 [S B (q, [[[[]] []], SB)

4 [[S B S B (q, [[[]] []], SBSB)

2 [[[B B S B (q, [[[]] []], BBSB)

5 [[[] B S B (q, [[[]] []], BSB)

5 [[[]] S B (q, [[[]] []], SB)

2 [[[]] [B B (q, [[[]] []], BB)

5 [[[]] [] B (q, , [[[]] []], B)

5 [[[[]] []] (q, , [[[]] []] ,)

PDAs and CFLs

 Transparency No. P2C3-25

leftmost derivation v.s. computation sequence

Lemma 1: For any z,y S*, g N* and A N,

 A L-->n
G z g iff (q, zy, A) -->n

M (q, y , g)

Ex: S L-->3
G [[[BBSB <==> (q, [[[]][]] , S) -->3

M (q,]][]], BBSB)

pf: By ind. on n.

 Basis: n = 0. A L-->0
G z g iff z = e and g = A

 iff (q, zy, A) -->0
M (q,y,g)

 Ind. case: 1. (only-if part)

 Suppose A L-->n+1
G z g and B -> cb was the last rule applied.

 I.e., A L-->n
G uBa L-->G uc ba = z g with z = uc and g = ba.

 Hence (q, u cy, A) -->n
M (q, cy, Ba) // by ind. hyp.

 -->M (q, y, ba) // since ((q,c,B),(q, b)) d

PDAs and CFLs

 Transparency No. P2C3-26

leftmost derivation v.s. computation sequence (cont’d)

2. (if-part) Suppose (q, zy, A) -->n+1
M (q, y, g) and

 ((q,c,B),(q, b)) d was the last transition executed. I.e.,

 (q, zy, A) = (q, ucy, A) -->n
M (q, cy, Ba) -->M (q, y, ba) =(q,y, g).

 where z = uc and g = ba for some u, a. But then

 A L-->n
G uBa // by ind. hyp.,

 L--> uc ba = z g // since by def. B -> c b P

 Hence A L-->n+1
G z g QED

Theorem 2: L(G) = L(M).

pf: x L(G) iff S L-->*G x

 iff (q, x, S) -->*M (q, e, e)

 iff x L(M). QED

PDAs and CFLs

 Transparency No. P2C3-27

Simulating PDAs by CFGs

Claim: Every language accepted by a PDA can be generated by
a CFG.

 Proved in two steps:

 1. Special case : Every PDA with only one state has an
equivalent CFG

 2. general case: Every PDA has an equivalent CFG.

 Corollary: Every PDA can be minimized to an equivalent PDA
with only one state.

pf: M : a PDA with more than one state.

 1. apply step 2 to find an equivalent CFG G

 2. apply theorem 2 on G , we find an equivalent PDA with
only one state.

PDAs and CFLs

 Transparency No. P2C3-28

PDA with only one state has an equivalent CFG.

 M = ({s}, S, G, d, s, , {}) : a PDA with only one state.

 Define a CFG G = (G, S, P,) where

 P = { A -> cb | ((q, c, A), (q, b)) d }

Note: M ==> G is just the inverse of the transformation :

 G ==> M defined at slide 22.

Theorem: L(G) = L(M).

 Pf: Same as the proof of Lemma 1 and Theorem 2.

PDAs and CFLs

 Transparency No. P2C3-29

Simulating general PDAs by CFGs

 How to simulate arbitrary PDA by CFG ?

 idea: encode all state/stack information in nonterminals !!

Wlog, assume M = (Q, S, G, d, s, , {t}) be a PDA with only one

final state and M can empty its stack before it enters its final

state. (The general pda M’’ at slide 21 satisfies such

constraint.)

 Let N Q x G* x Q .

 Elements of N such as (p, ABC, q) are written as <pABCq>.

 Define a CFG G = (N, S, <st>, P) based on M, where

 P = { <pAr> c <q B1 B2 …Bk r>

 | ((p,c,A), (q, B1B2…Bk)) d, k 0, c S U {e}, r Q }

 U // Rules for nonterminals <q B1 B2 …Bk r>

 { <pAar> <pAq><qar>, <pp> e | p,q,r Q and a G*}

PDAs and CFLs

 Transparency No. P2C3-30

For a computation process :

 (p, wy, A1A2…An b) *M (r, y, b) ,

there must exists x1x2…xn = w and states q1,q2,…, qn such that

 (p, wy, A1A2…Anb)

 *M (q1, x2…xny, A2…Anb)

 *M (q2, x3…xny, A3…Anb) * …

 *M (qn-1, xny, Anb) *M (qn= r, y,b).

We want the grammar derivation G to simulate such

computation:

 <pA1A2…Anr>

* x1 <q1A2…Anr>

* x1x2 <q2A2…Anr> * …

* x1x2…xn-1 <qn-1Anr> * x1x2…xn <qnr> = x1x2…xn if qn = r

PDAs and CFLs

 Transparency No. P2C3-31

Rules for <p A1 A2 …An r>

case 1: n = 0 : (p, wy, A1A2…An b) *M (r, y, b) .

 I.e, (p, wy, b) *M (r, y, b) ,

which must be permitted if w = e and p = r.

 we thus have rule <pp> e for all state p.

case 2: n > 1 : (p, wy, A1A2…An b) *M (r, y, b) . Then there

must exists uv = w, and state q such that

 (p, u, A1a) *M (q, e, a) and

 (p, wy, A1A2…An b) *M (q, vy, A2…Anb) *M (r, y, b)

 We thus have the assumption:

 <pAq> * u and <q A2…Anr> v.

 and the rules <pA1A2…An r> <pAq><qA1A2…Anr>

 for all states p,q,r.

PDAs and CFLs

 Transparency No. P2C3-32

Rules for <p A1 A2 …An r>

case 3: n = 1 : (p, wy, A b) *M (r, y, b) .

This is possible only if

 (p, wy, A b) M (q, vy, gb) * M (r, y, b).,

 where w = cv and ((p,c,A), (q, r)) is an instruction.

 We thus need rule <pAr> c<qgr> for all states r,

 and the assumption: <qgr> * v,

 to guarantee the derivation:

 <pAr> c<qgr> * cv = w .

PDAs and CFLs

 Transparency No. P2C3-33

machine view: (p, c, A) (q, B1B2...Bk)

rule views : <pAr> c<q B1B2...Bk r> for each r Q

 <pABCr> <pAq><qBCr> for each q Q

 <pep> e <peq> no rule if p q

A

C

p

c x1x2...

t

 t1

t2
t2

t1

p

Bk-1

Bk

C

q

c x1x2...

B1

B2

t

t1

t1

t2

qk=t2 qk-1

qk-1

q1

q1 q2

q2

q

We want to use derivation <paq> * w

to simulate the computation:

 (p, wy, ab) *M (q, y, eb)

So, if (p,c,A) M (q, b) we have rules :

<p A r> c <q b r> for all states r.

PDAs and CFLs

 Transparency No. P2C3-34

Simulating PDAs by CFG (cont’d)

 Note: Besides storing sate information on the nonterminals,

G simulate M by guessing nondeterministically what states

M will enter at certain future points in the computation,

saving its guesses on the sentential form, and then verifying

later that those guesses are correct.

Lemma 25.1: if <pB1B2…Bkq> is a nonterminal, then

 (p,x,B1B2…Bk) -->
*
M (q,e,e) iff

 <pB1B2…Bkq> *G x. (*)

Notes: 1. when k = 0 (*) is reduced to <pq> *G x, where

 <pq> = e if p=q and <pq> is undefined if p q.

 2. In particular, (p,x,B) -->*M (q,e,e) iff <pBq> *G x.

Pf: by ind. on n. Basis: k = 0.

 LHS holds iff (x = e, k = 0, and p = q) iff RHS holds.

PDAs and CFLs

 Transparency No. P2C3-35

Simulating PDAs by CFGs (cont’d)

Inductive case:

(=>:) Suppose (p,x,B1B2…Bk) -->
* M (q,e,e) and

((p,c,B1),(r,C1C2…Cm)) is the first instr. executed. I.e.,

 (p,x,B1B2…Bk) -->M (r, y, C1C2…CmB2…Bk)

*

M (s, z, B2…Bk)

 -->*M (q,e,e), where x = cy = cdz.

By ind. hyp.,

 <rC1C2…Cms> * d since (r, d C1C2…Cm) -->* (s,e,e) and

 <sB1…Bkq> * z

Hence <pB1B2…Bkq> <pB1r><rB1B2…Bkq>

 c <rC1C2…Cms> <rB1B2…Bkq> * cdz = x

PDAs and CFLs

 Transparency No. P2C3-36

Simulating PDAs by CFGs (cont’d)

(<=:) <pB1B2…Bkq> L*
G x.

Suppose <pB1B2…Bkq> <p B1 q1> <q1B2…Bkq>
 L
G c <r0 C1C2 ...Cm q1> <q1 B2…Bkq>

 L
G

n cy (= x)

where <pB1q1> c <r0 C1C2…Cm q1> P --(*) .

But then since, by (*), [(p, c, B1) , (r0, C1C2…Cm)] – (**) is an instr

of M,

(p,x,B1…Bk) -->M (r0, y, C1C2…CmB2…Bn) --- By (**)

 -->* (q1, z, B2…Bn) -- by IH

 -->n M (q,e,e). -- ,by ind. hyp. QED

Theorem 25.2 L(G) = L(M).

Pf: x L(G) iff <st> * x

 iff (s,x,) -->*M (t,e,e) ---- Lemma 25.1

 iff x L(M). QED

PDAs and CFLs

 Transparency No. P2C3-37

Example

 L = {x {[,]}* | x is a balanced string of [and]], i.e., #](x) = 2

#[(x) and all “]]“s must occur in pairs }

 Ex: []] [[]]]] ∈ L but [] []]] ∉ L.

 L can be accepted by the PDA

M = (Q, S, G, d, p, ,{t}), where

 Q = {p,q,t}, S = {[,]}, G = {A, B, },

 and d is given as follows:

 (p, [,) --> (p, A),

 (p,[,A) --> (p,AA),

 (p,], A) --> (q, B),

 (q,], B) --> (p, e),

 (p,e,) --> (t,e)

t q

p

],B/e

e,/e

[,A/AA

[,/A

],A/B

PDAs and CFLs

 Transparency No. P2C3-38

 M can be simulated by the CFG G = (N,S, <pt>, P) where

 N = { <X D Y> | X,Y {p,q,t } and D { A,B,}* },

 and P is derived from the following pseudo rules :

 (p, [,) --> (p, A) : <p?> [<pA?>

 (p,[,A) --> (p,AA) : <p A ?> [<pAA?>

 (p,], A) --> (q, B), : <p A ?>] <qB?>

 Each of the above produces 3 rules (? = p or q or t).

 (q,], B) --> (p, e), : <q B ?>] <p e ?>

 This produces only 1 rule : <qBp>]

 (? = p, but could not be q or t why ?)

 <q B ?>] <p e ?> => <qBp>] <pep> 0]

 (p,e,) --> (t,e) : <p?> <t e ?>

 This results in one rule : <pt> e

PDAs and CFLs

 Transparency No. P2C3-39

 <p ?> [<pA?> results in 3 rules : ? = p, q or t.

 <p p> [<pAp> ---(1)

 <p q> [<pAq> ---(2)

 <p t> [<pAt> ---(3)

 (1)~(3) each again need to be expanded into 3 rules.

 <pAp> <pA?><? p> where ? is p or q or t.

<pAp> <pAp><p p>

<pAp> <pAq><q p>

<pAp> <pAt><t p>

 <pAq> <pA?><? q> where ? is p or q or t.

 <pAq> <pAp><p q>

 <pAq> <pAq><q q>

 <pAq> <pAt><t q>

 <pA t> <pA?><? t> where ? is p or q or t.

 …

PDAs and CFLs

 Transparency No. P2C3-40

 Similarly <pA?> [<pAA?> results in 9 rules:

 Where ?2 = p,q, or t.

 <p A p> [<pA?2> <?2p> ---(1)

 <p A p> [<pAp> <pp>

 <p A p> [<pAq> <qp>

 <p A p> [<pAt> <tp>

 <p A q> [<pA?2> <?2q> ---(2)

 …

 <p A t> [<pA?2> <?2t> ---(3)

 …

PDAs and CFLs

 Transparency No. P2C3-41

Problem: How many rules are there in the generated grammar ?

 Let m be the max number of symbols pushed in d.

 i.e., m = max { |b| | (p,c,A) (q, b) d }

 Then |G| = O(|d| x |Q|m) --- (1)

 Notes:

 1. |Q| = 10, m = 3 => |G| = 1000 |d|

 2. Each instruction (p,c,A) (q, B1…Bm) induces the |Q|m rules

 {<pAXm> c<qB1X1><X1B2X2>…<Xm-1BmXm> | X1,X2,…Xm Q }

3. If m = 2 or use intermediate symbols/rules: Then

 |G| = O(|d|x|Q|xm x |Q|). Instr (p,c,A)(q,B1…Bm) induces rules

 { <pAXm> c <qB1B2B3…BmXm>,

 <qB1B2B3…BmXm> <qB1X1> <X1B2B3…BmXm>,

 <X1B2B3…BmXm> <X1B2X2><X2B3…BmXm>, …

 <Xm-2Bm-1BmXm> <Xm-2Bm-2Xm-1><Xm-1BmXm>

 | X1,X2,…Xm Q } // mx|Q| nonterminals <XJBJ+1B3…BmXm>,

