Formal Language and Automata Theory

Chapter 3

Pushdown Automata and Context-Free Languages

Transparency No. P2C3-1

NPDAs

- A NPDA (Nondeterministic PushDown Automata) is a 7-tuple
 - M = (Q, Σ , Γ , δ ,s, \bot , F) where
 - **Q** is a finite set (the states)
 - $\Box \Sigma$ is a finite set (the input alphabet)
 - $\Box \Gamma$ is a finite set (the stack alphabet)
 - □ δ ⊆ (Q x (Σ U {ε})x Γ) x (Q x Γ*) is the transition relation
 - $\Box \ s \in Q$ is the start state
 - $\Box \perp \in \Gamma$ is the initial stack symbol
 - \Box $F \subseteq Q$ is the final or accept states
- $((p,a,A),(q,B_1B_2...B_k)) \in \delta$ means that

whenever the machine is in state p reading input symbol a on the input tape and A on the top of the stack, it pops A off the stack, push $B_1B_2...B_k$ onto the stack (B_k first and B_1 last), move its read head right one cell past the one storing a and enter state q.

 $((p,\varepsilon,A),(q,B_1B_2...B_k)) \in \delta$ means similar to $((p,a,A),(q,B_1B_2...B_k)) \in \delta$ except that it need not scan and consume any input symbol.

Configurations

- Collection of information used to record the snapshot of an executing NPDA
- an element of $\mathbf{Q} \times \Sigma^* \times \Gamma^*$.
- Configuration C = (q, x, w) means
 - **I** the machine is at state q,
 - **I** the rest unread input string is x,
 - □ the stack content is w.
- Example: the configuration (p, baaabba, ABAC⊥) might describe the situation:

Start configuration and the next configuration relations

- Given a NPDA M and an input string x, the configuration (s, x, \perp) is called the start configuration of NPDA on x.
- CF_M =_{def} Q x Σ* x Γ* is the set of all possible configurations for a NPDA M.
- One-step computation of a NPDA:
 - I Let the next configuration relation -->_M on CF_M be the set of pairs :
 - $\Box \quad \{ (\mathsf{p}, \mathsf{ay}, \mathsf{A}\beta) \dashrightarrow_{\mathsf{M}} (\mathsf{q}, \mathsf{y}, \gamma \beta) \mid ((\mathsf{p}, \mathsf{a}, \mathsf{A}), (\mathsf{q}, \gamma)) \in \delta. \} \mathsf{U}$
 - $\Box \{ (\mathbf{p}, \mathbf{y}, \mathbf{A}\beta) \dashrightarrow_{\mathsf{M}} (\mathbf{q}, \mathbf{y}, \gamma \beta) \mid ((\mathbf{p}, \varepsilon, \mathbf{A}), (\mathbf{q}, \gamma)) \in \delta \}$
 - \square -->_M describes how the machine can move from one configuration to another in one step. (i.e., C -->_M D iff D can be reached from C by executing one instruction)
 - Note: NPDA is nondeterministic in the sense that for each
 C there may exist multiple D's s.t. C -->_M D.

Multi-step computations and acceptance

- Given a next configuration relation -->_M:
 - Define --->ⁿ_M and --->*_M as usual, i.e.,

$$\Box C -->^{0}{}_{M} D \text{ iff } C = D.$$

- \Box C -->ⁿ⁺¹_M iff \exists E C-->ⁿ_M E and E-->_M D.
- $\Box C \dashrightarrow^*_{\mathsf{M}} D \text{ iff } \exists n \ge 0 C \dashrightarrow^n_{\mathsf{M}} D.$
- \square i.e., --->*_M is the ref. and trans. closure of --> $_{\rm M}$.
- Acceptance: When will we say that an input string x is accepted by an NPDA M?
 - **I** two possible answers:
 - □ 1. by final states: M accepts x (by final state) iff
 - □ (s,x, ⊥) -->*_M (p,ε, α) for some final state p ∈ F.
 - □ 2. by empty stack: M accepts x by empty stack iff
 - □ (s,x, ⊥) -->*_M (p, ε , ε) for any state p.
 - **Remark: both kinds of acceptance have the same expressive power.**

Language accepted by a NPDAs

 $M = (Q, \Sigma, \Gamma, \delta, s, F) : a NPDA.$

The languages accepted by M is defined as follows:

- □ 1. accepted by final state:
- $\Box \quad L_{f}(M) = \{x \mid M \text{ accepts } x \text{ by final state} \}$
- □ 2. accepted by empty stack:
- $\Box \quad L_e(M) = \{x \mid M \text{ accepts } x \text{ by empty stack} \}.$
- 3. Note: Depending on the context, we may sometimes use L_f and sometimes use L_e as the official definition of the language accepted by a NPDA. I.e., if there is no worry of confusion, we use L(M) instead of L_e(M) or L_f(M) to denote the language accepted by M.
- □ 4. In general $L_e(M) \neq L_f(M)$.

Some example NPDAs

- Ex 23.1 : Define a NPDA M₁ which accepts the set of balanced strings of parentheses [] by empty stack.
 - \square **M**₁ requires only one state **q** and behaves as follows:
 - □ repeat { 1. if input is '[' : push '[' onto the stack ;
 - □ 2. if input is ']' and top is '[' : pop
 - **3.** if input is ' ϵ ' and top is \perp : pop. }
- Formal definition: $Q = \{q\}, \Sigma = \{[,]\}, \Gamma = \{[, \bot]\}, \Gamma =$

start state = q, initial stack symbol = \perp . $\delta = \{ ((q,[, \pm]), (q, [\pm])), ((q,[, [), (q, [[))), // 1.1, 1.2)), ((q,], [), (q, \epsilon)), // 2)$ $((q, \ensuremath{i}, (q, \ensuremath{\epsilon})), // 3)$

Transition Diagram representation of the program $\boldsymbol{\delta}$:

 $((p, a A), (q, B_1...B_n)) \in \delta \Rightarrow p a, A/B_1...B_n$

This machine is not deterministic. Why ?

Transparency No. P2C3-7

Example : Execution sequences of M1

Let input x = [[[]][]]. Then below is a successful computation of M₁ on x:

Failure computation of M1 on x

- Note besides the above successful computation, there are other computations that fail.
- Ex: $(q, [[]]][], \perp)$: the start configuration -->*_M $(q, [], \perp)$
 - -->_M (q, [],) transition (3)
 - a dead state in which the input is not empty and we cannot move further ==> failure!!
- Note: For a NPDA to accept a string x, we need *only one successful computation* (i.e., $\exists D = (_, \epsilon, \epsilon)$ with empty input and stack s.t. $(s,x,\bot) \rightarrow M^{*} D$.)
- Theorem 1: String x ∈ {[,]}* is balanced iff it is accepted by M₁ by empty stack.

• Definitions:

- 1. A string x is said to be pre-balanced if $L(y) \ge R(y)$ for all prefixes y of x.
- 2. A configuration (q, z, α) is said to be blocked if the pda M cannot use up input z, i.e., there is no state r and stack β such that (q, z, α) \rightarrow^* (r, ε , β).

• Facts:

- 1. If initial configuration (s, z, \perp) is blocked then z is not accepted by M.
- 2. If (q, z, α) is blocked then (q, zw, α) is blocked for all w $\in \Sigma^*$.

Pf: 1. If (s, z, \perp) is blocked, then there is no state p, stack β such that (s, z, \perp) -->* (p, ϵ , β), and hence z ls not accepted.

2. Assume (q, zw, α) is not blocked, then there must exists intermediate cfg (p, w, α') such that $(q, zw, \alpha) \rightarrow * (p, w, \alpha') \rightarrow * (r, \varepsilon, \beta)$. But $(q, zw, \alpha) \rightarrow * (p, w, \alpha') \rightarrow * (p, w, \alpha')$ implies $(q, z, \alpha) \rightarrow * (p, \varepsilon, \alpha'')$ and (q, z, α) is not blocked.

Transparency No. P2C3-10

Lemma 1: For all strings z,x,

□ if z is prebalanced then (q, zx, \bot)-->* (q, x, $\alpha \bot$) iff $\alpha = [L(z)-R(z)]$;

 \Box if z is not prebalanced, (q, z, \bot) is blocked.

Pf: By induction on z.

```
basic case: z = \varepsilon. Then (q, zx, \bot) = (q, x, \bot) \rightarrow^* (q, x, \alpha \bot) iff \alpha = \varepsilon = [^{L(z)-R(z)}.
inductive case: z = ya, where a is '[' or ']'.
case 1: z = y[. If y is prebalanced, then so is z.
By ind. hyp., (q, y[x, \bot) \rightarrow^* (q, [x, [^{L(y)-R(y)} \bot), hence
(q, zx, \bot) = (q, y[x, \bot) \rightarrow^* (q, [x, [^{L(y)-R(y)} \bot))
```

-->(q, x, [[^{L(y)-R(y)} \bot) =(q, x, [^{L(z)-R(z)} \bot).

and if (q, zx, \perp) \rightarrow * (q,x, $\alpha \perp$), there must exists α ' such that

(q, zx, ⊥) = (q, y[x, ⊥) →* (q,[x, α '⊥), →* (q,x, α ⊥). But, by ind.hyp., α ' = $[^{L(y) - R(y)}$, hence the only allowable instruction is 1.1(push [), hence a = [a' = $[^{L(z) - R(z)}$.

If y is not prebalanced, then, by ind. hyp., (q, y, \bot) is blocked and hence $(q, y[, \bot)$ is blocked as well.

case 2: z = y]. here are 3 cases to consider.

case 21: y is not prebalanced. Then z neither prebalanced. By ind. hyp. (q, y, \perp) is blocked, hence (q, y], \perp) is blocked case 22: y is prebalanced and L(y) = R(y). Then z is not prebalanced. By ind. hyp., (q, y], \perp)-->* (q,], $\alpha \perp$) iff $\alpha = [L(z)-R(z) = \varepsilon$. But then $(q,],\perp$) is blocked. Hence (q, z,\perp) is blocked. case23: y is prebalanced and L(y) > R(y). Then z is prebalanced as well. By Ind.hyp., $(q, y], \perp$)-->* $(q,], \alpha \perp$) iff $\alpha = [L(z)-R(z)]$ matches [*. Hence $(q,y]x,\perp)$ -->* $(q,]x, [^{L(y)-R(y)} \perp)$ --- ind. hyp --> (q, x, [^{L(y)-R(y)-1}⊥) --- (instruction 2) = (q, x, [L(z)-R(z)])On the other hand, if $(q,y]x,\perp)$ -->* $(q,x, \alpha \perp)$. Then there must exist a cfg (q,]x, $\alpha' \perp$) such that $(q,y]x,\perp)$ -->* $(q,]x, \alpha'\perp)$ -->* $(q,x, \alpha\perp)$, where, by ind.hyp., $\alpha' = [L(y) - R(y)]$. I.e, $(q,y]x,\perp)$ -->* $(q,]x, [^{L(y)}-R(y)\perp)$ -->* $(q,x, \alpha \perp)$. But then the only instruction executable in the last part is (2). Hence $\alpha = [L(y) - R(y) - 1] = [L(z) - R(z)]$. Transparency No. P2C3-12 **Pf [of theorem 1] :** Let x be any string.

If x is balanced, then it is prebalanced and L(x) - R(x) = 0. Hence, by lemma 1,

$$(q, x_{\varepsilon, \perp}) \rightarrow (q, \varepsilon, [^0 \perp) \rightarrow _3 (q, \varepsilon, \varepsilon).$$

As a result, x is accepted.

If x is not balanced, then either

- (1) it is not prebalanced(\exists a prefix y of x, L(y) < R(y)) or
- (2) x is prebalanced (\forall prefix y of x, L(y) > R(y))

For the former case, by lemma 1, (q, x, \perp) is blocked and

x is not accepted.

For the latter case, by lemma 1, $(q,x,\perp) \rightarrow (q, \epsilon,\alpha\perp)$ iff $\alpha = [L(x) - R(x) > 0]$ contains one or more [.

But then (q, $\epsilon, \alpha \perp$) is a dead configuration (which cannot move further) and is not accepted! Hence x is not accepted!

Another example

- The set {ww | w ∈ {a,b}*} is known to be not Context-free but its complement
 - $L_1 = \{a,b\}^* \{ww \mid w \in \{a,b\}^*\}$ is.

Exercise: Design a NPDA P2 to accept L_1 by empty stack.

- Hint: $x \in L_1$ iff
 - (1) **|x|** is odd or

 (2) x = yazybz' or ybzyaz' for some y,z,z' ∈ {a,b}* with |z|=|z'|, which also means
 x = yay'ubu' or yby'uau' for some y,y',u,u' ∈ {a,b}* with |y|=|y'| and |u|=|u'|. PDAs and CFLs PDAs and CFLs odd or even length // $(\varepsilon, \bot) \rightarrow (q0, \bot); (\varepsilon, \bot) \rightarrow (q2, \bot); (\varepsilon, \bot) \rightarrow (q6, \bot)$ case odd length :

q0 : on any input c, goto q1 // (c, \perp) \rightarrow (q1, \perp), c is 'a' or 'b' q1: on any input c, go to q0 ; // (c, \perp) \rightarrow (q0, \perp)

on (ϵ , \perp) pop \perp (and accept). // (ϵ , \perp) \rightarrow (q1, ϵ) case even length:

// q2~q5 : handle case: input = xayubv with |x|=|y| and |u|=|v| q2: (c, s) → (q2, o s);(a, s) → (q3, s) // push o until 'a' q3: (c, o) → (q3, ε) ; (c, ⊥) → (q4, ⊥) // pop o foreach c until ⊥ q4: (c, s) → (q4, o s) ; (b, s) → (q5, s) //push o foreach c until 'b' q5: (c,o) →(g5, ε) ; // pop o foreach c unitl ⊥ (ε , ⊥) → (q5, ε) // pop ⊥ and accept // q6 ~ q9 :handle case: input = xbyuav with |x|=|y| and |u|=|v|

... (left as an exercise)

Transparency No. P2C3-15

More Examlpes

• Find PDA for each of the following languages:

- □ L1={w∈{0,1}*|the length of w is odd and its middle symbol is 0.}
- \Box L2={w \in {0,1}* | w contains as many 0s as 1s.}
- □ L3 ={w ∈ {0,1}* | w contains more 1s than 0s.}
- $\Box L4 = \{a^{n}b^{m}c^{k} \mid k = m + 2n\}.$
- □ L5 = {w ∈ {a,b,c}* | #a(w) + #b(w) ≠ #c(w) }.

// #a(w) is the number of a's occurring in w.

 $\Box \ \ L6 = \{w \in \{a,b\}^* \mid \#a(w) \le 2 \ x \ \#b(w) \} \ .$

PDAs and CFLs

Equivalent expressive power of both types of acceptance $M = (Q, \Sigma, \Gamma, \delta, s, F) : a PDA$ Let u, t : two new states \notin Q and • : a new stack symbol $\notin \Gamma$. Define a new PDA M' = (Q', Σ , Γ ', δ ',s', \blacklozenge , F') where $\Box \mathbf{Q}' = \mathbf{Q} \mathbf{U} \{\mathbf{u}, \mathbf{t}\}, \Gamma' = \Gamma \mathbf{U} \{ \blacklozenge \}, \mathbf{s}' = \mathbf{u}, F' = \{\mathbf{t}\} \text{ and } \mathbf{u} \in \{\mathbf{u}, \mathbf{t}\}, \Gamma' = \{\mathbf{u}, \mathbf{u}\}, \mathbf{u} \in \{\mathbf{u}, \mathbf{u}\}, \mathbf{u}$ $\Box \delta' = \delta U \{ (u,\varepsilon, \diamond) \rightarrow (s, \bot \diamond) \} // push \bot and call M$ U { (f, ε , A) -> (t,A) | f \in F and A \in Γ ' } /* return to M' Π after reaching final states */ U {(t, ε ,A) --> (t, ε) | A $\in \Gamma$ ' } // pop until EmptyStack Π Diagram form relating M and M': see next slide. Theorem: $L_f(M) = L_e(M')$ pf: M accepts x => (s, x, \perp) -->ⁿ_M (q, ϵ , γ) for some q \in F => (u, x, \blacklozenge) $-->_{M^{\gamma}}$ (s, x, $\bot \blacklozenge$) $-->^{n}_{M^{\gamma}}$ (q, ε , $\gamma \blacklozenge$) $-->_{M^{\gamma}}$ (t, ε , $\gamma \blacklozenge$) $-->^{*}_{M}$, (t, ε , ε) => M' accepts x by empty stack.

Transparency No. P2C3-18

From FinalState to EmptyStack

Π

Conversely, M' accepts x by empty stack

=> (u, x,
$$\blacklozenge$$
) -->_M, (s, x, $\bot \blacklozenge$) -->*_M, (q, y, $\gamma \blacklozenge$) --> (t, y, $\gamma \blacklozenge$) -->*
(t, ε , ε) for some q \in F

 \Rightarrow y = ϵ since M' cannot consume any input symbol after it enters state t. => M accepts x by final state.

Define next new PDA M" = (Q',Σ,Γ',δ",s', ◆, F') where
Q' = Q U { u, t }, Γ' = Γ U { ◆ }, s' = u, F' = {t } and
δ" = δ U { (u,ε, ◆) --> (s, ⊥ ◆) } // push ⊥ and call M
U { (p,ε, ◆) -> (t, ε) | p ∈ Q } /* return to M" and accept
if EmptyStack */

• Diagram form relating M and M": See slide 15.

From EmptyStack to FinalState

Conversely, M" accepts x by final state (and empty stack) => (u, x, ♦) -->_{M"} (s, x, ⊥♦) -->*_{M"} (q, y, ♦) -->_{M"} (t, ε, ε) for some state q in Q

=> y = ε [and STACK= ε] since M'' does not consume any input symbol at the last transition ((q, ε, ♦), (t, ε))

=> M accepts x by empty stack.

QED

Equivalence of PDAs and CFGs

- Every CFL can be accepted by a PDA (with only one state).
- $G = (N, \Sigma, P, S) : a CFG.$
 - **U wlog assume all productions of G are of the form:**
 - $\Box \quad \textbf{A -> c } B_1B_2B_3...B_k \text{ (} k \ge 0 \text{) and } c \in \Sigma \text{ U } \{\epsilon\}.$
 - □ note: 1. A -> ϵ satisfies such constraint; 2. can require k≤ 2.
- Define a PDA M = ({q}, Σ , N, δ , q, S, {}) from G where
 - **q** is the only state (hence also the start state),
 - $\Box~\Sigma,$ the set of terminal symbols of G, is the input alphabet of M,
 - **N**, the set of nonterminals of G, is the stack alphabet of M,
 - **S**, the start nonterminal of **G**, is the initial stack symbol of **M**,
 - □ {} is the set of final states. (hence M accepts by empty stack!!)
 - $\Box \ \delta = \{ ((q,c,A), (q, B_1B_2...B_k)) | A \rightarrow c B_1B_2B_3...B_k \in P \}$

Example

• G: 1. S -> [BS (q, [, S) --> (q, BS)2. S -> [B (q, [, S) --> (q, B)3. S-> [SB $=> \delta : (q, [, S) --> (q, SB)$ 4. S -> [SBS (q, [, S) --> (q, SB)5. B ->] (q, [, S) --> (q, SBS)

- L(G) = the set of nonempty balanced parentheses.
- leftmost derivation v.s. computation sequence (see next table)
- $$\begin{split} S & \sqsubseteq_{--} >^{*}{}_{G} \left[\left[\left[\right] \right] \right] \right] & <==> \left(q, \left[\left[\left[\right] \right] \right] \right], S \right) & \dashrightarrow_{M} \left(q, \varepsilon, \varepsilon \right) \\ S & \sqsubseteq_{--} >^{n}{}_{G} \left[\left[\left[\right] BSB \right] & <==> \left(q, \left[\left[\left[\right] \right] \right] \right], S \right) & \dashrightarrow_{M} \left(q, \right] \left[\right] \right], BSB \right) \\ A & \sqsubseteq_{--} >^{n}{}_{G} z \gamma & <==> \left(q, z y , A \right) & \dashrightarrow_{M} \left(q, y , \gamma \right) \end{split}$$

		P	
rule applied	sentential form of left-most derivation	configuration of the pda accepting x	
	S	(q,	[[[]],S)
3	<u>[SB</u>	(q, [[[[]] []], SB)
4	[<u>SBS</u> B	(q, <mark>[[</mark>	[]] []], SBSB)
2	[[<u>B</u> BSB	(q, [[[]][]], BBSB)
5	[[]BSB	(q, [[[]][]], BSB)
5	[[]]SB	(q, [[]]	[]], SB)
2	[[]] <u>[</u> B]B	(q, [[[]] []], BB)
5	[[[]]B	(q, , [[[]][]], B)
5	[[[]]]]	(q, , [[[]][]] ,)

leftmost derivation v.s. computation sequence

Lemma 1: For any $z, y \in \Sigma^*$, $\gamma \in N^*$ and $A \in N$, $A \stackrel{L}{\longrightarrow} ^n_G z \gamma$ iff $(q, zy, A) \stackrel{->n}{\longrightarrow} ^n_M (q, y, \gamma)$

Ex: $S^{L} - >_{G}^{3}$ [[BBSB <==> (q, [[[]]], S) - >_{M}^{3} (q,]][]], BBSB) pf: By ind. on n. Basis: n = 0. $A^{L} - >_{G}^{\circ} z \gamma$ iff $z = \varepsilon$ and $\gamma = A$ iff $(q, zy, A) - >^{0}_{M} (q, y, \gamma)$ Ind. case: 1. (only-if part) Suppose A ^L-->ⁿ⁺¹_G $z \gamma$ and B -> $c\beta$ was the last rule applied. I.e., $A^{L} - > n_{G}^{n} uB\alpha^{L} - >_{G} uc \beta\alpha = z \gamma$ with z = uc and $\gamma = \beta\alpha$.

Hence $(q, u cy, A) \rightarrow M_M (q, cy, B\alpha) // by ind. hyp.$ -->_M $(q, y, \beta\alpha) // since ((q,c,B),(q, \beta)) \in \delta$

PDAs and CFLs

leftmost derivation v.s. computation sequence (cont'd)

2. (if-part) Suppose $(q, zy, A) \rightarrow M^{n+1}M(q, y, \gamma)$ and $((q,c,B),(q, \beta)) \in \delta$ was the last transition executed. I.e.,

(q, zy, A) = (q, ucy, A) -->ⁿ_M (q, cy, B α) -->_M (q, y, $\beta\alpha$) =(q,y, γ). where z = uc and $\gamma = \beta\alpha$ for some u, α . But then A ^L-->ⁿ_G uB α // by ind. hyp., ^L--> uc $\beta\alpha = z \gamma$ // since by def. B -> c $\beta \in P$ Hence A ^L-->ⁿ⁺¹_G $z \gamma$ QED

```
Theorem 2: L(G) = L(M).

pf: x \in L(G) iff S {}^{L} --> {}^{*}_{G} x

iff (q, x, S) --> {}^{*}_{M} (q, \varepsilon, \varepsilon)

iff x \in L(M). QED
```

Simulating PDAs by CFGs

Claim: Every language accepted by a PDA can be generated by a CFG.

- Proved in two steps:
 - I 1. Special case : Every PDA with only one state has an equivalent CFG
 - **2.** general case: Every PDA has an equivalent CFG.
- Corollary: Every PDA can be minimized to an equivalent PDA with only one state.
- pf: M : a PDA with more than one state.
 - 1. apply step 2 to find an equivalent CFG G

2. apply theorem 2 on G , we find an equivalent PDA with only one state.

PDA with only one state has an equivalent CFG.

M = ({s}, Σ, Γ, δ, s, ⊥, {}) : a PDA with only one state.
 Define a CFG G = (Γ, Σ, P, ⊥) where
 P = { A → cβ | ((q, c, A), (q, β)) ∈ δ }

Note: M ==> G is just the inverse of the transformation : G ==> M defined at slide 22.

Theorem: L(G) = L(M).

Pf: Same as the proof of Lemma 1 and Theorem 2.

Simulating general PDAs by CFGs

• How to simulate arbitrary PDA by CFG ?

idea: encode all state/stack information in nonterminals !!
 Wlog, assume M = (Q, Σ, Γ, δ, s, ⊥, {t}) be a PDA with only one final state and M can empty its stack before it enters its final state. (The general pda M" at slide 21 satisfies such constraint.)

Let $\mathbb{N} \subseteq \mathbb{Q} \times \Gamma^* \times \mathbb{Q}$.

Elements of N such as (p, ABC, q) are written as <pABCq>.

Define a CFG G = (N, Σ , <s \pm t>, P) based on M, where

 $P = \{ \langle pAr \rangle \rightarrow c \langle q B_1 B_2 \dots B_k r \rangle$ $| ((p,c,A), (q, B_1 B_2 \dots B_k)) \in \delta, k \geq 0, c \in \Sigma \cup \{\epsilon\}, r \in Q \}$ $\cup // \text{ Rules for nonterminals } \langle q B_1 B_2 \dots B_k r \rangle$ $\{ \langle pA\alpha r \rangle \rightarrow \langle pAq \rangle \langle q\alpha r \rangle, \langle pp \rangle \rightarrow \epsilon \mid p,q,r \in Q \text{ and } \alpha \in \Gamma^* \}$

For a computation process :

(p, wy, $A_1A_2...A_n \beta$) $\rightarrow *_M$ (r, y, β), there must exists $x_1x_2...x_n = w$ and states $q_1, q_2, ..., q_n$ such that

$$(p, wy, A_{1}A_{2}...A_{n}\beta)$$

$$\Rightarrow^{*}_{M} (q_{1}, x_{2}...x_{n}y, A_{2}...A_{n}\beta)$$

$$\Rightarrow^{*}_{M} (q_{2}, x_{3}...x_{n}y, A_{3}...A_{n}\beta) \Rightarrow^{*}...$$

$$\Rightarrow^{*}_{M} (q_{n-1}, x_{n}y, A_{n}\beta) \Rightarrow^{*}_{M} (q_{n}=r, y,\beta).$$
We want the grammar derivation \Rightarrow_{G} to simulate such computation:

PDAs and CFLs

Rules for

case 1: n = 0 : (p, wy, $A_1A_2...A_n \beta$) $\rightarrow *_M$ (r, y, β). I.e, (p, wy, β) $\rightarrow *_M$ (r, y, β), which must be permitted if w = ϵ and p = r.

we thus have rule $\langle pp \rangle \rightarrow \varepsilon$ for all state p.

case 2: n > 1 : (p, wy, $A_1A_2...A_n \beta$) $\rightarrow *_M$ (r, y, β). Then there must exists uv = w, and state q such that (p, u, A_1a) $\rightarrow *M$ (q, ϵ , α) and

(p, wy, $A_1A_2...A_n \beta$) $\rightarrow *_M$ (q, vy, $A_2...An\beta$) $\rightarrow *_M$ (r, y, β) We thus have the assumption:

 $\langle pAq \rangle \rightarrow^* u \text{ and } \langle qA_2...A_nr \rangle \rightarrow v.$

and <u>the rules $< pA_1A_2...A_n r > \rightarrow < pAq > < qA_1A_2...A_n r >$ </u> for all states p,q,r.

PDAs and CFLs

Rules for

case 3: n = 1 : (p, wy, A β) \rightarrow^*_M (r, y, β).

This is possible only if

(p, wy, A β) →_M (q, vy, γβ) →^{*}_M (r, y, β).,

where w = cv and ((p,c,A), (q, r)) is an instruction.

<u>We thus need rule $\langle pAr \rangle \rightarrow c \langle q\gamma r \rangle$ for all states r,</u>

and the assumption: $\langle q\gamma r \rangle \rightarrow^* v$, to guarantee the derivation: $\langle pAr \rangle \rightarrow c \langle q\gamma r \rangle \rightarrow^* c v = w$

 $<pAr > \rightarrow c < q\gamma r > \rightarrow^* cv = w$.

Transparency No. P2C3-33

Simulating PDAs by CFG (cont'd)

- Note: Besides storing sate information on the nonterminals, G simulate M by guessing nondeterministically what states M will enter at certain future points in the computation, saving its guesses on the sentential form, and then verifying later that those guesses are correct.
- Lemma 25.1: if $\langle pB_1B_2...B_kq \rangle$ is a nonterminal, then $(p,x,B_1B_2...B_k) \xrightarrow{*} (q,\epsilon,\epsilon)$ iff $\langle pB_1B_2...B_kq \rangle \xrightarrow{*} _G x.$ (*)

Notes: 1. when k = 0 (*) is reduced to $\langle pq \rangle \rightarrow _G^* x$, where $\langle pq \rangle = \varepsilon$ if p=q and $\langle pq \rangle$ is undefined if $p \neq q$. 2. In particular, $(p,x,B) \rightarrow _M^* (q,\varepsilon,\varepsilon)$ iff $\langle pBq \rangle \rightarrow _G^* x$. Pf: by ind. on n. Basis: k = 0. LHS holds iff (x = ε , k = 0, and p = q) iff RHS holds.

Transparency No. P2C3-34

Simulating PDAs by CFGs (cont'd)

Inductive case:

(=>:) Suppose $(p,x,B_1B_2...B_k) \rightarrow M (q,\epsilon,\epsilon)$ and $((p,c,B_1),(r,C_1C_2...C_m))$ is the first instr. executed. I.e.,

$$\begin{array}{ll} (p,x,B_1B_2...B_k) \dashrightarrow_M (r, y, C_1C_2...C_mB_2...B_k) \\ \rightarrow^*_M (s, z, B_2...B_k) \\ \dashrightarrow^*_M (q,\epsilon,\epsilon), & \text{where } x = cy = cdz. \\ \text{By ind. hyp.,} \\ < rC_1C_2...C_m s > \rightarrow^* d & \text{since } (r, d C_1C_2...C_m) \dashrightarrow^* (s,\epsilon,\epsilon) \text{ and} \\ < sB_1...B_k q > \rightarrow^* z \end{array}$$

Hence $\langle pB_1B_2...B_kq \rangle \rightarrow \langle pB_1r \rangle \langle rB_1B_2...B_kq \rangle$ $\rightarrow c \langle rC_1C_2...C_ms \rangle \langle rB_1B_2...B_kq \rangle \rightarrow^* cdz = x$

PDAs and CFLs

Simulating PDAs by CFGs (cont'd)

 $(<=:) < pB_1B_2...B_kq > L \rightarrow^*_G x.$ Suppose $\langle pB_1B_2...B_kq \rangle \rightarrow \langle pB_1q_1 \rangle \langle q_1B_2...B_kq \rangle$ $L \rightarrow G c < r_0 C_1 C_2 \dots C_m q_1 > < q_1 B_2 \dots B_k q >$ $L \rightarrow G^n$ cy (=x) where $\langle pB_1q_1 \rangle \rightarrow c \langle r_0 C_1C_2...C_m q_1 \rangle \in P --(*)$. But then since, by (*), $[(p, c, B1), (r_0, C_1C_2...C_m)] - (**)$ is an instr of M, $(p,x,B_1...B_k) \longrightarrow (r_0, y, C_1C_2...C_mB_2...B_n) \longrightarrow By (**)$ $-->^{*}$ (q1, z, B₂...B_n) -- by IH $-->^{n}$ (q, ε , ε). -- ,by ind. hyp. QED Theorem 25.2 L(G) = L(M). Pf: $x \in L(G)$ iff $\langle s \perp t \rangle \rightarrow x$ iff $(s,x,\perp) \rightarrow M (t,\epsilon,\epsilon)$ ---- Lemma 25.1 iff $x \in L(M)$. QED Transparency No. P2C3-36

Example

- L = {x∈ {[,]}* | x is a balanced string of [and]], i.e., #](x) = 2 #[(x) and all "]]"s must occur in pairs }
- Ex: []] [[]]] ∈ L but [][]] ∉ L.
- L can be accepted by the PDA

 $M = (Q, \Sigma, \Gamma, \delta, p, \bot, \{t\}), where$

$$Q = \{p,q,t\}, \Sigma = \{[,]\}, \Gamma = \{A, B, \bot\},\$$

and δ is given as follows:

$$□ (p, [, ⊥) --> (p, A⊥),
□ (p, [, A) --> (p, AA),
□ (p,], A) --> (q, B),
□ (q,], B) --> (p, ε),
□ (p, ε, ⊥) --> (t, ε)$$

- **M** can be simulated by the CFG G = (N, Σ , <p \pm t>, P) where $N = \{ \langle X D Y \rangle | X, Y \in \{p,q,t\} \text{ and } D \in \{A,B,\downarrow\}^* \},\$ Π and P is derived from the following pseudo rules : $(p, [, \bot) \rightarrow (p, A \bot):$ $(p,[,A) \rightarrow (p,AA) : \langle p A ? \rangle \rightarrow [\langle p A A ? \rangle$ $(p,], A) \rightarrow (q, B), : \langle p A ? \rangle \rightarrow] \langle q B ? \rangle$ Each of the above produces 3 rules (? = p or q or t). $(q,], B) \rightarrow (p, \varepsilon), : \langle q B ? \rangle \rightarrow] \langle p \varepsilon ? \rangle$ This produces only 1 rule : $\langle qBp \rangle \rightarrow]$ Π (? = p, but could not be q or t why ?)

 - $\Box \quad (\mathbf{p}, \varepsilon, \bot) \dashrightarrow (\mathbf{t}, \varepsilon) : <\mathbf{p} \bot ? \rightarrow <\mathbf{t} \varepsilon ? >$

This results in one rule : $\langle p \perp t \rangle \rightarrow \varepsilon$

- 0....
- $\Box < pA \perp t > \rightarrow < pA? > <? \perp t > where ? is p or q or t.$
- \bigcirc <pA \perp q> \rightarrow <pAt><t \perp q>
- \bigcirc <pA \perp q> \rightarrow <pAq><q \perp q>
- \bigcirc <pA \perp q> \rightarrow <pAp><p \perp q>
- $\Box < pA \perp q > \rightarrow < pA? > <? \perp q >$ where ? is p or q or t.
- $\bigcirc < pA \perp p > \rightarrow < pAt > < t \perp p >$
- $\bigcirc < pA \perp p > \rightarrow < pAq > < q \perp p >$
- $\bigcirc < pA \perp p > \rightarrow < pAp >$
- □ $< pA \perp p > \rightarrow < pA? > <? \perp p >$ where ? is p or q or t.
- $\Box \quad <\mathbf{p} \perp \mathbf{t} > \rightarrow [<\mathbf{p} A \perp \mathbf{t} > \dots (3)]$ \Box (1)~(3) each again need to be expanded into 3 rules.
- $\Box \quad \mathsf{<p} \perp \mathsf{q} \mathsf{>} \rightarrow \mathsf{[} \quad \mathsf{<pA} \perp \mathsf{q} \mathsf{>} \quad \mathsf{---(2)}$
- $\langle p \perp p \rangle \rightarrow [\langle pA \perp p \rangle \dots (1)]$
- $\square \rightarrow [< pA \perp ? > \rightarrow results in 3 rules : ? = p, q or t.$

```
PDAs and CFLs
```

```
□ Similarly < pA? > \rightarrow [ < pAA? > results in 9 rules:
```

```
\Box \quad \text{Where } ?_2 = p,q, \text{ or t.}
```

$$\Box \quad <\mathbf{p} \land \mathbf{p} > \rightarrow [<\mathbf{p} \land ?_2 > _2 \perp \mathbf{p} \cdots (1)$$

- \bigcirc \rightarrow [<pAp> <p \perp p>
- \bigcirc \rightarrow [<pAq> <q \perp p>
- \bigcirc \rightarrow [<pAt> <t \perp p>
- □ →[<pA?₂> <?₂⊥q> ---(2) ♀ ...

□
$$\rightarrow$$
 [2> <sub2⊥t> ---(3)
 \odot ...

PDAs and CFLs

Problem: How many rules are there in the generated grammar ?

- Let m be the max number of symbols pushed in δ .
 - □ i.e., m = max { $|\beta| | (p,c,A) \rightarrow (q, \beta) \in \delta$ } □ Then $|G| = O(|\delta| \times |Q|^m)$ ---- (1)

• Notes:

□ 1. |Q| = 10, m = 3 => |G| = 1000 |δ|

- □ 2. Each instruction (p,c,A) → (q, $B_1...B_m$) induces the $|Q|^m$ rules □ {<pAX_m> → c<qB₁X₁><X₁B₂X₂>...<X_{m-1}B_mX_m> | X₁,X₂,...X_m ∈ Q }
- 3. If m = 2 or use intermediate symbols/rules: Then
 - □ $|G| = O(|\delta|x|Q|xm |Q|)$. Instr (p,c,A)→(q,B₁...B_m) induces rules
 - $\Box \{ < pAX_m > \rightarrow c < qB_1B_2B_3...B_mX_m >,$
 - $\Box \quad \mathsf{<qB_1B_2B_3...B_mX_m} \mathsf{>} \mathrel{\rightarrow} \mathsf{<qB_1X_1} \mathsf{>} \mathsf{<} \mathsf{X_1B_2B_3...B_mX_m} \mathsf{>},$
 - $\square \langle X_1 B_2 B_3 \dots B_m X_m \rangle \rightarrow \langle X_1 B_2 X_2 \rangle \langle X_2 B_3 \dots B_m X_m \rangle, \dots$
 - $\exists \langle X_{m-2}B_{m-1}B_mX_m \rangle \rightarrow \langle X_{m-2}B_{m-2}X_{m-1}\rangle \langle X_{m-1}B_mX_m\rangle$
 - $[X_1, X_2, \dots, X_m \in \mathbf{Q}] // mx |\mathbf{Q}| \text{ nonterminals } < X_J B_{J+1} B_3 \dots B_m X_m >,$