## Chapter 3

## Pushdown Automata and Context-Free Languages

- A NPDA (Nondeterministic PushDown Automata) is a 7-tuple $\mathbf{M}=(\mathbf{Q}, \Sigma, \Gamma, \delta, \mathbf{s}, \perp, F)$ where
$\square Q$ is a finite set (the states)
$\square \Sigma$ is a finite set (the input alphabet)
$\square \Gamma$ is a finite set (the stack alphabet)
$\square \delta \subseteq(\mathbb{Q} \times(\Sigma \cup\{\varepsilon\}) \times \Gamma) \times\left(Q \times \Gamma^{*}\right)$ is the transition relation
$\square \mathbf{s} \in Q$ is the start state
$\square \perp \in \Gamma$ is the initial stack symbol
$\square F \subseteq Q$ is the final or accept states
- $\left((p, a, A),\left(q, B_{1} B_{2} \ldots B_{k}\right)\right) \in \delta$ means that
whenever the machine is in state $p$ reading input symbol a on the input tape and $A$ on the top of the stack, it pops $A$ off the stack, push $B_{1} B_{2} \ldots B_{k}$ onto the stack ( $B_{k}$ first and $B_{1}$ last), move its read head right one cell past the one storing $a$ and enter state $q$.
$\left((p, \varepsilon, A),\left(q, B_{1} B_{2} \ldots B_{k}\right)\right) \in \delta$ means similar to $\left((p, a, A),\left(q, B_{1} B_{2} \ldots B_{k}\right)\right)$ $\in \delta$ except that it need not scan and consume any input symbol.


## Configurations

- Collection of information used to record the snapshot of an executing NPDA
- an element of $\mathbf{Q} \times \Sigma^{*} \times \Gamma^{*}$.
- Configuration $\mathbf{C}=(\mathbf{q}, \mathrm{x}, \mathrm{w})$ means
$\square$ the machine is at state $q$,
$\square$ the rest unread input string is $\mathbf{x}$,
$\square$ the stack content is $\mathbf{w}$.
- Example: the configuration ( $p$, baaabba, $A B A C \perp$ ) might describe the situation:



## Start configuration and the next configuration relations

- Given a NPDA M and an input string $x$, the configuration (s, $x, \perp$ ) is called the start configuration of NPDA on $\mathbf{x}$.
- $\mathrm{CF}_{\mathrm{M}}=_{\text {def }} \mathrm{Q} \times \Sigma^{*} \times \Gamma^{*}$ is the set of all possible configurations for a NPDA M.
- One-step computation of a NPDA:
$\square$ Let the next configuration relation --> ${ }_{M}$ on $\mathrm{CF}_{\mathrm{M}}$ be the set of pairs :
$\square\left\{(p, a y, A \beta) \rightarrow_{M}(q, y, \gamma \beta) \mid((p, a, A),(q, \gamma)) \in \delta.\right\} U$
$\square\left\{(p, y, A \beta) \rightarrow_{M}(q, y, \gamma \beta) \mid((p, \varepsilon, A),(q, \gamma)) \in \delta\right\}$
$\square->_{\mathrm{M}}$ describes how the machine can move from one configuration to another in one step. (i.e., C --> ${ }_{M}$ D iff D can be reached from $C$ by executing one instruction)
$\square$ Note: NPDA is nondeterministic in the sense that for each C there may exist multiple D's s.t. C $-\boldsymbol{- P}_{\mathrm{M}}$ D.


## Multi-step computations and acceptance

- Given a next configuration relation --> ${ }_{\mathrm{m}}$ :

Define $-->{ }^{n}{ }_{M}$ and $-->{ }^{*}{ }_{M}$ as usual, i.e.,

- C $\rightarrow>_{\mathrm{M}}{ }^{\mathrm{D}}$ iff C $=\mathrm{D}$.
- C $->^{n+1}{ }_{M}$ iff $\exists E C-->{ }_{M} E$ and $E-->_{M} D$.
$\square C->^{*}{ }_{M} D$ iff $\exists \mathrm{n} \geq 0 \mathrm{C}->_{\mathrm{M}}^{\mathrm{M}} \mathrm{D}$.
$\square$ i.e., --->* ${ }_{M}$ is the ref. and trans. closure of $-->{ }_{M}$.
- Acceptance: When will we say that an input string $x$ is accepted by an NPDA M?
[ two possible answers:
$\square$ 1. by final states: $M$ accepts $x$ (by final state) iff
$\square \quad(s, x, \perp)->^{*}{ }_{M}(p, \varepsilon, \alpha)$ for some final state $p \in F$.
$\square$ 2. by empty stack: $M$ accepts $x$ by empty stack iff
— $(s, x, \perp)->^{*}{ }_{M}(p, \varepsilon, \varepsilon)$ for any state $p$.
[ Remark: both kinds of acceptance have the same expressive power.
$\mathbf{M}=(\mathbf{Q}, \Sigma, \Gamma, \delta, \mathbf{s},, F): a \operatorname{NPDA}$.
The languages accepted by $M$ is defined as follows:
$\square$ 1. accepted by final state:
— $\quad L_{f}(M)=\{x \mid M$ accepts $x$ by final state $\}$
$\square$ 2. accepted by empty stack:
] $L_{e}(M)=\{x \mid M$ accepts $x$ by empty stack $\}$.
$\square$ 3. Note: Depending on the context, we may sometimes use $L_{f}$ and sometimes use $L_{e}$ as the official definition of the language accepted by a NPDA. I.e., if there is no worry of confusion, we use $L(M)$ instead of $L_{e}(M)$ or $L_{f}(M)$ to denote the language accepted by $M$.
4 4. In general $L_{e}(M) \neq L_{f}(M)$.


## Some example NPDAs

Ex 23.1 : Define a NPDA $M_{1}$ which accepts the set of balanced strings of parentheses [] by empty stack.
$\square M_{1}$ requires only one state $q$ and behaves as follows:
$\square$ repeat \{ 1 . if input is ' $[$ ' : push '[‘ onto the stack ;
[ 2. if input is ' $]$ ' and top is ' $[$ ': pop
[ 3. if input is ' $\varepsilon$ ' and top is $\perp$ : pop. \}
Formal definition: $\mathbf{Q}=\{q\}, \Sigma=\{[]\},, \Gamma=\{[, \perp\}$,
start state $=\mathbf{q}$, initial stack symbol $=\perp$.

$$
\begin{aligned}
\delta=\{ & ((q,[, \perp),(q,[\perp)), \\
& ((q,[,[),(q,[[)), \quad / / 1.1,1.2 \\
& ((q,],[),(q, \varepsilon)), \\
& ((q, \varepsilon, \perp),(q, \varepsilon))\}
\end{aligned}
$$

Transition Diagram representation of the program $\delta$ :

$$
\left((p, a A),\left(q, B_{1} \ldots B_{n}\right)\right) \in \delta \Rightarrow \quad P \quad a, A / B_{1} \ldots B_{n},
$$

This machine is not deterministic. Why ?

## Example : Execution sequences of M1

- Let input $x=[[[]][]][]$. Then below is a successful computation of $\mathrm{M}_{1}$ on x :
- (q, [[[]][]][], $\quad \perp$ ) : the start configuration transition (1) $->_{M}(q, \quad[[]][]][], \quad[\perp)$ transition (1) $\left.->_{\mathrm{M}}(\mathrm{q}, \quad[]][]\right][], \quad[[\perp)$
(1) $\left.\left.->_{M}(q, \quad]\right][]\right][],[[[\perp)$
(2) $\left.->_{M}(q, \quad][]\right][], \quad[[\perp)$
(1) $\rightarrow \rightarrow_{M}(q, \quad[]][], \quad[\perp)$
(2) $->_{M}(q$,
]][], [[ $\perp$ )
(2) $->_{M}(q$,
][], [ 1 )
(1) $->_{M}(q$,

(2) $->_{M}(q$,
], [ $\perp$ )
(2) $->_{M}(q$,
(3) $->_{M}(q$,
) :accept configuration
accepts by empty stack


## Failure computation of M1 on $x$

- Note besides the above successful computation, there are other computations that fail.
Ex: (q, [[[]][]][], $\perp$ ) : the start configuration -->** ${ }_{M}(q,[], \quad \perp)$
$->_{M}(q,[], \quad$ ) transition (3)
a dead state in which the input is not empty and we cannot move further ==> failure!!
Note: For a NPDA to accept a string $x$, we need only one successful computation (i.e., $\exists \mathrm{D}=(\ldots, \varepsilon, \varepsilon$ ) with empty input and stack s.t. (s,x, $\perp$ ) $->^{*}{ }_{M}$ D. )
- Theorem 1: String $x \in\{[,]\}^{*}$ is balanced iff it is accepted by $M_{1}$ by empty stack.


## - Definitions:

1. A string $x$ is said to be pre-balanced if $L(y) \geq R(y)$ for all prefixes $y$ of $x$.
2. A configuration $(q, z, \alpha)$ is said to be blocked if the pda $M$ cannot use up input $z$, i.e., there is no state $r$ and stack $\beta$ such that $(q, z, \alpha) \rightarrow^{*}(r, \varepsilon, \beta)$.

- Facts:
$\square$ 1. If initial configuration ( $s, z, \perp$ ) is blocked then $z$ is not accepted by $M$.
〕 2. If $(q, z, \alpha)$ is blocked then ( $q, z w, \alpha$ ) is blocked for all w $\in \Sigma^{*}$.
Pf: 1. If $(s, z, \perp)$ is blocked, then there is no state $p$, stack $\beta$ such that $(s, z, \perp)$ $-->^{*}(p, \varepsilon, \beta)$, and hence $z$ Is not accepted.

2. Assume ( $\mathrm{q}, \mathrm{zw}, \alpha$ ) is not blocked, then there must exists intermediate $\operatorname{cfg}\left(\mathrm{p}, \mathrm{w}, \alpha^{\prime}\right)$ such that $(\mathrm{q}, \mathrm{zw}, \alpha) \rightarrow *\left(\mathrm{p}, \mathrm{w}, \alpha^{\prime}\right) \rightarrow *(\mathrm{r}, \varepsilon, \beta)$. But $(\mathrm{q}, \mathrm{zw}, \alpha)$
$\rightarrow *\left(p, w, \alpha^{\prime}\right)$ implies $(q, z, \alpha) \rightarrow *\left(p, \varepsilon, \alpha^{\prime \prime}\right)$ and $(q, z, \alpha)$ is not blocked.

Lemma 1: For all strings $\mathrm{z}, \mathrm{x}$,
$\square$ if $z$ is prebalanced then ( $q, z x, \perp$ )-->* $(q, x, \alpha \perp)$ iff $\alpha=[\llcorner(z)-R(z)$;
$\square$ if $z$ is not prebalanced, $(q, z, \perp)$ is blocked.
Pf: By induction on $z$.
basic case: $\mathbf{z =}$. Then ( $\mathbf{q}, \mathbf{z x}, \perp)=(\mathbf{q}, \mathbf{x}, \perp) \rightarrow^{*}(\mathbf{q}, \mathbf{x}, \alpha \perp)$ iff $\alpha=\varepsilon=\left[^{L(z)-R(z)}\right.$. inductive case: $z=y a$, where $a$ is '[' or ']'.
case 1: $z=y[$. If $y$ is prebalanced, then so is $z$.
By ind. hyp., ( $q, y[x, \perp)$-->* $\left(q,\left[x,\left[{ }^{L(y)-R(y)} \perp\right)\right.\right.$, hence

$$
\begin{aligned}
(q, z x, \perp)=(q, y[x, \perp) & ->^{*}(q,[x,[L(y)-R(y) \perp) \\
& -\gg(q, x,[[L(y)-R(y) \perp)=(q, x,[L(z)-R(z) \perp) .
\end{aligned}
$$

and if $(q, z x, \perp) \rightarrow^{*}(q, x, \alpha \perp)$, there must exists $\alpha$ ' such that
$(q, z x, \perp)=\left(q, y[x, \perp) \rightarrow^{*}\left(q,\left[x, \alpha^{\prime} \perp\right), \rightarrow^{*}(q, x, \alpha \perp)\right.\right.$. But, by ind.hyp., $\alpha^{\prime}=$ $\left[{ }^{L(y)-R(y)}\right.$, hence the only allowable instruction is 1.1 (push [), hence $a=[a ;$ $=\left[\begin{array}{l}L(z)-R(z)\end{array}\right.$.
If $y$ is not prebalanced, then, by ind. hyp., $(q, y, \perp)$ is blocked and hence ( $q, y[, \perp$ ) is blocked as well.
case 2: $z=y$ ]. here are 3 cases to consider .
case 21: $y$ is not prebalanced. Then $z$ neither prebalanced.
By ind. hyp. ( $q, y, \perp$ ) is blocked, hence ( $q, y], \perp$ ) is blocked
case 22: $y$ is prebalanced and $L(y)=R(y)$. Then $z$ is not prebalanced.
By ind. hyp., ( $\left.q, y], \perp)-->^{*}(q],, \alpha \perp\right)$ iff $\alpha=[(z)-R(z)=\varepsilon$.
But then ( $q,], \perp$ ) is blocked. Hence ( $q, z, \perp$ ) is blocked.
case23: $y$ is prebalanced and $L(y)>R(y)$. Then $z$ is prebalanced as well.
By Ind.hyp., ( $\left.q, y], \perp)-->^{*}(q],, \alpha \perp\right)$ iff $\alpha=\left[(z)-R(z)\right.$ matches $\left[{ }^{+}\right.$. Hence

$$
\begin{aligned}
& (q, y] x, \perp)-->^{*}(q,] x,[(y)-R(y) \perp) \quad---i n d . \text { hyp } \\
& \text {--> }\left(q, x,\left[^{[(y)-R(y)-1} \perp\right)\right. \text {--- (instruction 2) } \\
& =\left(q, x,\left[\begin{array}{l}
L(z)-R(z) \perp)
\end{array}\right.\right.
\end{aligned}
$$

On the other hand, if ( $q, y] x, \perp$ )-->* $(q, x, \alpha \perp)$.
Then there must exist a cfg ( $q,] x, \alpha^{\prime} \perp$ ) such that
$\left.(q, y] x, \perp)->^{*}(q] x,, \alpha^{\prime} \perp\right) \quad->^{*}(q, x, \alpha \perp)$., where, by ind.hyp., $\alpha^{\prime}=\left[\begin{array}{l}L(y)-R(y)\end{array}\right.$
I.e, $(q, y] x, \perp)-->^{*}(q] x,,[(y)-R(y) \perp) ~-->^{*}(q, x, \alpha \perp)$.

But then the only instruction executable in the last part is (2).
Hence $\alpha=[L(y)-R(y)-1=[L(z)-R(z)$.

Pf [of theorem 1] : Let $x$ be any string.
If $x$ is balanced, then it is prebalanced and $L(x)-R(x)=0$.
Hence, by lemma 1,

$$
(q, x \varepsilon, \perp)->^{*}\left(q, \varepsilon,\left[{ }^{0} \perp\right)->_{3}(q, \varepsilon, \varepsilon) .\right.
$$

As a result, $x$ is accepted.
If $x$ is not balanced, then either
(1) it is not prebalanced( $\exists$ a prefix $y$ of $x, L(y)<R(y))$ or
(2) $x$ is prebalanced ( $\forall$ prefix $y$ of $x, L(y)>R(y)$ )

For the former case, by lemma 1, $(q, x, \perp)$ is blocked and $x$ is not accepted.
For the latter case, by lemma 1, (q,x, $\perp$ ) -->* $(q, \varepsilon, \alpha \perp)$ iff $\alpha=\left[{ }^{L(x)-}\right.$ $R(x)>0$ contains one or more [.
But then ( $q, \varepsilon, \alpha \perp$ ) is a dead configuration (which cannot move further) and is not accepted! Hence $x$ is not accepted!

## Another example

- The set $\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is known to be not Context-free but its complement
$L_{1}=\{a, b\}^{*}-\left\{w w \mid w \in\{a, b\}^{*}\right\} \quad$ is.

Exercise: Design a NPDA P2 to accept $L_{1}$ by empty stack.

Hint: $x \in L_{1}$ iff
(1) $|x|$ is odd or
(2) $x=y a z y b z$ ' or $y b z y a z^{\prime}$ for some $y, z, z^{\prime} \in\{a, b\}^{*}$ with $|z|=\left|z^{\prime}\right|$, which also means $x=$ yay'ubu' or yby'uau' for some $y, y^{\prime}, u, u^{\prime} \in\{a, b\}^{*}$ with $|y|=|y ’|$ and $|u|=\left|u^{\prime}\right|$.

2 behaves as follows: Nondeterministicallly guess input has odd or even length $/ /(\varepsilon, \perp) \rightarrow(q 0, \perp) ;(\varepsilon, \perp) \rightarrow(q 2, \perp) ;(\varepsilon, \perp) \rightarrow(q 6, \perp)$ case odd length :
q 0 : on any input c , goto $\mathrm{q} 1 \quad / /(\mathrm{c}, \perp) \rightarrow(\mathrm{q} 1, \perp), \mathrm{c}$ is ' a ' or ' b '
q1: on any input $c$, go to $q 0 ; / /(c, \perp) \rightarrow(q 0, \perp)$ on $(\varepsilon, \perp)$ pop $\perp$ (and accept). $/ /(\varepsilon, \perp) \rightarrow(q 1, \varepsilon)$
case even length:
// q2~q5 : handle case: input = xayubv with $|x|=|y|$ and $|u|=|v|$
q2: (c, s) $\rightarrow$ (q2, o s);(a, s) $\rightarrow$ (q3, s) I/ push o until 'a'
q3: $(c, o) \rightarrow(q 3, \varepsilon) ;(c, \perp) \rightarrow(q 4, \perp) / /$ pop o foreach $c$ until $\perp$
q4: $(c, s) \rightarrow(q 4, o s) ;(b, s) \rightarrow(q 5, s) / / p u s h ~ o ~ f o r e a c h ~ c u n t i l ~ ' b ' ~$
q5: (c,o) $\rightarrow(\mathrm{g} 5, \varepsilon)$; // pop o foreach c unitl $\perp$
$(\varepsilon, \perp) \rightarrow(q 5, \varepsilon) / /$ pop $\perp$ and accept
// q6 ~ q9 :handle case: input = xbyuav with $|x|=|y|$ and $|u|=|v|$ (left as an exercise)

## More Examlpes

- Find PDA for each of the following languages:
( $L 1=\left\{w \in\{0,1\}^{*} \mid\right.$ the length of $w$ is odd and its middle symbol is 0.$\}$
( $L 2=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains as many $0 s$ as 1 s.$\left.\right\}$
( L3 $=\left\{w \in\{0,1\}^{*} \mid w\right.$ contains more 1 s than 0 s.$\left.\right\}$
( $\mathrm{L} 4=\left\{a^{n} b^{m} c^{k} \mid k=m+2 n\right\}$.
- L5 = $\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid \# \mathrm{a}(\mathrm{w})+\# \mathrm{~b}(\mathrm{w}) \neq \# \mathrm{c}(\mathrm{w})\right\}$.

2 // \#a(w) is the number of a's occurring in w.

- L6 $=\left\{w \in\{a, b\}^{*} \mid \# a(w) \leq 2 x \# b(w)\right\}$.


## Equivalent expressive power of both types of acceptance

- $\mathbf{M}=(\mathbf{Q}, \Sigma, \Gamma, \delta, \mathbf{s},, F)$ : a PDA

Let $u, t$ : two new states $\notin Q$ and

- : a new stack symbol $\notin \Gamma$.
- Define a new PDA M' = ( $\left.Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime}, s^{\prime}, ~, ~ F^{\prime}\right)$ where
$\square Q^{\prime}=\mathbf{Q} \mathbf{U}\{\mathbf{u}, \mathrm{t}\}, \quad \Gamma^{\prime}=\Gamma \mathrm{U}\{\stackrel{*}{ }\}, \quad \mathbf{s}^{\prime}=\mathbf{u}, \quad F^{\prime}=\{\mathrm{t}\}$ and
$\square \delta^{\prime}=\delta U\{(u, \varepsilon, *)$--> (s, $\left.\perp \bullet)\right\} / /$ push $\perp$ and call $M$
$\square \quad U\left\{(f, \varepsilon, A)->(t, A) \mid f \in F\right.$ and $\left.A \in \Gamma^{\prime}\right\} /^{*}$ return to $M^{\prime}$ after reaching final states */
$\square \quad U\left\{(t, \varepsilon, A)\right.$--> $\left.(t, \varepsilon) \mid A \in \Gamma^{\prime}\right\} / /$ pop until EmptyStack
- Diagram form relating $M$ and $M^{\prime}$ : see next slide.

Theorem: $L_{f}(M)=L_{e}\left(M^{\prime}\right)$
pf: $M$ accepts $x=>(s, x, \perp) \rightarrow_{M} \quad(q, \varepsilon, \gamma)$ for some $q \in F$
$=>(u, x)-,>_{M^{\prime}}(s, x, \perp)-->{ }_{M^{\prime}}(q, \varepsilon, \gamma \diamond)-_{M^{\prime}}(t, \varepsilon, \gamma \diamond)$ --> $^{*}{ }^{\prime}(\mathbf{t}, \varepsilon, \varepsilon)=>M^{\prime}$ accepts $x$ by empty stack.

## From final state to emptystack：

$(\varepsilon, A, \varepsilon)^{\text {ttt }}$ for all As

for all As

## M

## $M^{\prime}$

凸：push $\perp$ and call M
ॐ孔：return to $t$ of M＇once reaching final states of $M$
凸孔孔：pop all stack symbols until emptystack

## From FinalState to EmptyStack

Conversely, M' accepts $x$ by empty stack
$=>(u, x, *)->_{M^{\prime}}(s, x, \perp \diamond)-->*_{M^{\prime}}(q, y, \gamma \diamond)-->(t, y, \gamma \diamond) ~-->^{*}$
(t, $\varepsilon, \varepsilon$ ) for some $q \in F$
$\Rightarrow \mathbf{y}=\varepsilon$ since $\mathbf{M}^{\prime}$ cannot consume any input symbol after it enters state $t$. $=>$ M accepts $x$ by final state.

- Define next new PDA M" = ( $\left.Q^{\prime}, \Sigma, \Gamma^{\prime}, \delta^{\prime \prime}, s^{\prime},{ }^{\prime}, F^{\prime}\right)$ where
$\square Q^{\prime}=Q U\{u, t\}, \quad \Gamma^{\prime}=\Gamma U\{\diamond\}, \quad s^{\prime}=u, \quad F^{\prime}=\{t\}$ and
$\square \delta^{\prime \prime}=\delta U\{(u, \varepsilon, *)-->(s, \perp \diamond)\} / /$ push $\perp$ and call $M$
$\square \quad U\{(p, \varepsilon, \diamond)->(t, \varepsilon) \mid p \in Q\} I^{*}$ return to $M^{\prime \prime}$ and accept
[ if EmptyStack */
- Diagram form relating M and M": See slide 15.


## From EmptyStack to FinalState

- Theorem: $\mathrm{L}_{\mathrm{e}}(\mathrm{M})=\mathrm{L}_{\mathrm{f}}\left(\mathrm{M}^{\prime \prime}\right)$.
pf: $M$ accepts $x=>(s, x, \perp){ }^{-\gg{ }^{n}}{ }_{M}(q, \varepsilon, \varepsilon)$

=> M" accepts $x$ by final state (and empty stack).

Conversely, M" accepts $x$ by final state (and empty stack)
 some state $q$ in $Q$
=> $\mathrm{y}=\varepsilon$ [and STACK= $\varepsilon$ ] since M'' does not consume any input symbol at the last transition ((q, $\varepsilon, \downarrow),(\mathbf{t}, \varepsilon))$
=> $M$ accepts $x$ by empty stack.
QED

## From emptystack to final state (and emptystack)



## M

## M"

§ : push $\perp$ and call M
tt: if emptystack (i.e.see * on stack), then pop * and return to state $t$ of $\mathrm{M}^{\prime \prime}$

## Equivalence of PDAs and CFGs

- Every CFL can be accepted by a PDA (with only one state).
- $\mathbf{G}=(\mathbf{N}, \Sigma, \mathrm{P}, \mathrm{S})$ : a CFG.
$\square$ wlog assume all productions of $G$ are of the form:
$\square A \rightarrow c B_{1} B_{2} B_{3} \ldots B_{k}(k \geq 0)$ and $c \in \Sigma U\{\varepsilon\}$.
$\square$ note: 1. A -> $\varepsilon$ satisfies such constraint; 2. can require $k \leq 2$.
- Define a PDA M = (\{q\}, $\Sigma, \mathbf{N}, \delta, q, S,\{ \})$ from $\mathbf{G}$ where
$\square q$ is the only state (hence also the start state),
$\square \Sigma$, the set of terminal symbols of $G$, is the input alphabet of M,
$\square \mathrm{N}$, the set of nonterminals of G , is the stack alphabet of M ,
© S, the start nonterminal of $G$, is the initial stack symbol of $M$,
$\square\}$ is the set of final states. (hence $\mathbf{M}$ accepts by empty stack!!
- $\delta=\left\{\left((q, c, A),\left(q, B_{1} B_{2} \ldots B_{k}\right)\right) \mid A \rightarrow c B_{1} B_{2} B_{3} \ldots B_{k} \in P\right\}$

PDAs and CFLs

## Example

- G: 1.S -> [B S

2. $S \rightarrow[B$
3. S-> [SB
4. S -> [ S B S
5. B -> ]
$(q,[, S)-->(q, B S)$
$(q,[, S)-->(q, \quad B)$
$==>\delta:(\mathbf{q},[, S)$--> (q, S B)
(q, [, S) $->$ (q, S B S)
$(q], B,) \rightarrow(q, \varepsilon)$

- $L(G)=$ the set of nonempty balanced parentheses.
- leftmost derivation v.s. computation sequence (see next table)

$$
\begin{aligned}
& \text { S Lـ->* }{ }_{G}[[[]][]]<==>(q,[[[]][1]], S)->_{M}^{*}(q, \varepsilon, \varepsilon) \\
& S^{L-->n_{G}}\left[[[]] B S B \quad<=>\left(q,[[[]][[]], S){ }^{-->{ }^{n}}{ }_{M}(q,][]\right], B S B\right)
\end{aligned}
$$

PDAs and CFLs

| rule applied | sentential form of left-most derivation | configuration of the pda accepting $x$ |
| :---: | :---: | :---: |
|  | S | (q, [[[]][]], S ) |
| 3 | [ S B | (q, [ [[]]][]], SB ) |
| 4 | [ [ B S B | (q, [ [ []] []], SBSB ) |
| 2 | [ [ [ B B S B | (q, [[[ $[$ ]] []], BBSB ) |
| 5 | [ [ [ ] B S B | (q, [[]] ] []], BSB ) |
| 5 | [ [ [ ] ] S B | (q, [[]]] []], SB ) |
| 2 | [ [ [ ] ] [ B B | (q, [[]]][ ] ], BB ) |
| 5 | [ [ [ ] ] []B | (q, , [[]]][] ], B ) |
| 5 | [ [ [ ] ] [ ] ] | (q, , [[]][]]] |

## leftmost derivation v.s. computation sequence

Lemma 1: For any $z, y \in \Sigma^{*}, \gamma \in \mathbf{N}^{*}$ and $A \in N$,

$$
A^{L-->n_{G}} \mathbf{z} \gamma \quad \text { iff } \quad(q, z y, A) \quad-->{ }_{M}(q, y, \gamma)
$$

 pf: By ind. on $n$.
 iff ( $q, z y, A$ ) $\rightarrow^{->}{ }_{M}(q, y, \gamma)$
Ind. case: 1. (only-if part)
Suppose $A^{L^{-}->^{n+1}}{ }_{G} \mathbf{z} \gamma$ and $B->c \beta$ was the last rule applied.


Hence (q, u cy, A ) $->{ }^{n}{ }_{M}(q, ~ c y, B \alpha) \quad / / ~ b y ~ i n d . ~ h y p . ~$

$$
\rightarrow_{M}(q, y, \beta \alpha) \quad / / \text { since }((q, c, B),(q, \beta)) \in \delta
$$

## leftmost derivation v.s. computation sequence (cont'd)

2. (if-part) Suppose (q, zy, A) $-^{>^{n+1}} \mathrm{M}(\mathrm{q}, \mathrm{y}, \gamma)$ and $((q, c, B),(q, \beta)) \in \delta$ was the last transition executed. I.e.,
$(q, z y, A)=(q, u c y, A){ }^{-->{ }^{n}}{ }_{M}(q, c y, B \alpha)->_{M}(q, y, \beta \alpha)=(q, y, \gamma)$. where $\mathbf{z}=\mathbf{u c}$ and $\gamma=\beta \alpha$ for some $\mathbf{u}, \alpha$. But then
$\mathrm{A}^{\mathrm{L}-{ }^{-}>\mathrm{n}_{\mathrm{G}} \mathrm{uB} \alpha \quad / / \text { by ind. hyp., }}$
L--> uc $\beta \alpha=\mathbf{z} \gamma / /$ since by def. $B->c \beta \in P$ Hence A ${ }^{\text {L-- }}{ }^{n+1}{ }_{G} \mathbf{z} \gamma$ QED

Theorem 2: $L(G)=L(M)$.
pf: $x \in L(G)$ iff $S{ }^{L}->^{*}{ }_{G} x$
iff $(q, x, S)--{ }^{*}{ }_{M}(q, \varepsilon, \varepsilon)$
iff $x \in L(M)$. QED

## Simulating PDAs by CFGs

Claim: Every language accepted by a PDA can be generated by a CFG.

- Proved in two steps:
$\square$ 1. Special case : Every PDA with only one state has an equivalent CFG
૫ 2. general case: Every PDA has an equivalent CFG.
- Corollary: Every PDA can be minimized to an equivalent PDA with only one state.
pf: M : a PDA with more than one state.

1. apply step 2 to find an equivalent CFG G
2. apply theorem 2 on $G$, we find an equivalent PDA with only one state.

- $M=(\{s\}, \Sigma, \Gamma, \delta, s, \perp,\{ \})$ : a PDA with only one state.

Define a CFG G $=(\Gamma, \Sigma, P, \perp)$ where

$$
P=\{A->c \beta \mid((q, c, A),(q, \beta)) \in \delta\}
$$

Note: $M==>G$ is just the inverse of the transformation : G ==> M defined at slide 22.

Theorem: $L(G)=L(M)$.
Pf: Same as the proof of Lemma 1 and Theorem 2.

## Simulating general PDAs by CFGs

- How to simulate arbitrary PDA by CFG ?
[ idea: encode all state/stack information in nonterminals !!
Wlog, assume $M=(Q, \Sigma, \Gamma, \delta, s, \perp,\{t\})$ be a PDA with only one final state and $M$ can empty its stack before it enters its final state. (The general pda M'’ at slide 21 satisfies such constraint.)
Let $\mathrm{N} \subseteq \mathbf{Q} \times \Gamma^{*} \mathbf{x} \mathbf{Q}$.
Elements of $N$ such as ( $p, A B C, q$ ) are written as <pABCq>. Define a CFG G = (N, $\Sigma,<s \perp t>, P)$ based on $M$, where $P=\left\{\langle p A r\rangle \rightarrow c<q B_{1} B_{2} \ldots B_{k} r>\right.$
$\left.\left\lvert\,\left((p, c, A),\left(\begin{array}{l}q, B_{1} B_{2} \ldots B_{k}\end{array}\right)\right) \in \delta\right., k \geq 0, c \in \Sigma U\{\varepsilon\}, r \in Q\right\}$
U // Rules for nonterminals <q $B_{1} B_{2} \ldots B_{k} r>$
$\left\{<p A \alpha r>\rightarrow<p A q><q \alpha r>,<p p>\rightarrow \varepsilon \mid p, q, r \in Q\right.$ and $\left.\alpha \in \Gamma^{*}\right\}$

For a computation process :

$$
\left(p, w y, A_{1} A_{2} \ldots A_{n} \beta\right) \rightarrow_{M}^{*}(r, y, \beta),
$$

there must exists $x_{1} x_{2} \ldots x_{n}=w$ and states $q_{1}, q_{2}, \ldots, q_{n}$ such that

$$
\begin{aligned}
&\left(p, w y, A_{1} A_{2} \ldots A_{n} \beta\right) \\
& \rightarrow^{*}{ }_{M}\left(q_{1}, x_{2} \ldots x_{n} y, A_{2} \ldots A_{n} \beta\right) \\
& \rightarrow_{M}^{*}\left(q_{2}, x_{3} \ldots x_{n} y, A_{3} \ldots A_{n} \beta\right) \rightarrow^{*} \ldots \\
& \rightarrow^{*}{ }_{M}\left(q_{n-1}, x_{n} y, A_{n} \beta\right) \rightarrow_{M}^{*}\left(q_{n}=r, y, \beta\right) .
\end{aligned}
$$

We want the grammar derivation $\rightarrow_{G}$ to simulate such computation:

$$
\begin{aligned}
&<p A_{1} A_{2} \ldots A_{n} r> \\
& \rightarrow^{*} x_{1}<q_{1} A_{2} \ldots A_{n} r> \\
& \rightarrow^{*} x_{1} x_{2}<q_{2} A_{2} \ldots A_{n} r>\rightarrow^{*} \ldots \\
& \rightarrow^{*} x_{1} x_{2} \ldots x_{n-1}<q_{n-1} A_{n} r>\rightarrow^{*} x_{1} x_{2} \ldots x_{n}<q_{n} r>=x_{1} x_{2} \ldots x_{n} \text { if } q_{n}=r
\end{aligned}
$$

PDAs and CFLs

## Rules for $<p A_{1} A_{2} \ldots A_{n} r>$

case 1: $n=0:\left(p, w y, A_{1} A_{2} \ldots A_{n} \beta\right) \rightarrow^{*}{ }_{M}(r, y, \beta)$.
l.e, $(p, w y, \beta) \rightarrow{ }_{m}^{*}(r, y, \beta)$,
which must be permitted if $w=\varepsilon$ and $p=r$.
we thus have rule $\langle p p\rangle \rightarrow \varepsilon$ for all state $p$.
case 2: $n>1:\left(p, w y, A_{1} A_{2} \ldots A_{n} \beta\right) \rightarrow^{*}{ }_{m}(r, y, \beta)$. Then there must exists uv $=\mathbf{w}$, and state $q$ such that
$\left(p, u, A_{1} a\right) \rightarrow^{*} M(q, \varepsilon, \alpha)$ and
$\left(p, w y, A_{1} A_{2} \ldots A_{n} \beta\right) \rightarrow^{*}{ }_{M}\left(q, v y, A_{2} \ldots A n \beta\right) \rightarrow^{*}{ }_{M}(r, y, \beta)$
We thus have the assumption:
$\left\langle p A q>\rightarrow^{*} u\right.$ and $<q A_{2} \ldots A_{n} r>\rightarrow v$.
and the rules $\left\langle p A_{1} \underline{A}_{2} \ldots A_{n} \underline{r} \gg<p A q><q A_{1} \underline{A}_{2} \ldots A_{\underline{n}} \underline{r}>\right.$ for all states $p, q, r$.

PDAs and CFLs

## Rules for $\left\langle p A_{1} A_{2} \ldots A_{n} r>\right.$

case 3: $n=1:(p, w y, A \beta) \rightarrow{ }_{M}^{*}(r, y, \beta)$.
This is possible only if

$$
(p, w y, A \beta) \rightarrow_{M}(q, v y, \gamma \beta) \rightarrow^{*}{ }_{M}(r, y, \beta) .,
$$

where $w=c v$ and ( $(p, c, A),(q, r)$ ) is an instruction.

We thus need rule <pAr> $\rightarrow \mathbf{c}<q \gamma r>$ for all states $r$, and the assumption: <q $\quad r^{\prime} \rightarrow^{*} v$,
to guarantee the derivation: $<p A r>\rightarrow c<q \gamma r>\rightarrow^{*} c v=w$.


So, if $(p, c, A) \rightarrow_{M}(q, \beta)$ we have rules: $<p A r>\rightarrow c<q \beta r>$ for all states $r$.

## Simulating PDAs by CFG (cont'd)

- Note: Besides storing sate information on the nonterminals, G simulate $\mathbf{M}$ by guessing nondeterministically what states M will enter at certain future points in the computation, saving its guesses on the sentential form, and then verifying later that those guesses are correct.
Lemma 25.1: if $\left\langle\mathrm{pB}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{\mathrm{k}} q\right\rangle$ is a nonterminal, then

$$
\begin{align*}
& \left(p, x, B_{1} B_{2} \ldots B_{k}\right)->_{M}^{*}(q, \varepsilon, \varepsilon) \quad \text { iff } \\
& <p B_{1} B_{2} \ldots B_{k} q>\rightarrow_{G}^{*}{ }_{G} x . \tag{}
\end{align*}
$$

Notes: 1 . when $\mathrm{k}=0 \quad$ ($\left.^{*}\right)$ is reduced to $\left\langle\mathrm{pq}>\rightarrow^{*}{ }_{G} \mathrm{x}\right.$, where <pq> = $\varepsilon$ if $p=q$ and $<p q>$ is undefined if $p \neq q$. 2. In particular, $(\mathrm{p}, \mathrm{x}, \mathrm{B})-\boldsymbol{-}^{*}{ }_{\mathrm{M}}(\mathrm{q}, \varepsilon, \varepsilon)$ iff $\left\langle\mathrm{pBq}>\rightarrow{ }^{*}{ }_{\mathrm{G}} \mathrm{x}\right.$.

Pf: by ind. on $\mathbf{n}$. Basis: $\mathbf{k}=\mathbf{0}$.
LHS holds iff ( $x=\varepsilon, k=0$, and $p=q$ ) iff RHS holds.

## Simulating PDAs by CFGs (cont'd)

## Inductive case:

(=>:) Suppose ( $p, x, B_{1} B_{2} \ldots B_{k}$ ) -->* ${ }_{m}(q, \varepsilon, \varepsilon)$ and $\left(\left(p, c, B_{1}\right),\left(r, C_{1} \underline{C}_{2} \ldots C_{m}\right)\right)$ is the first instr. executed. I.e.,
$\left(p, x, B_{1} B_{2} \ldots B_{k}\right)->_{M}\left(r, y, C_{1} C_{2} \ldots C_{m} B_{2} \ldots B_{k}\right)$
$\rightarrow_{M}^{*}\left(s, z, B_{2} \ldots B_{k}\right)$
-->** ${ }_{M}(q, \varepsilon, \varepsilon), \quad$ where $x=c y=c d z$.
By ind. hyp.,
$\left\langle r C_{1} C_{2} \ldots C_{m} s>\rightarrow^{*} d \quad\right.$ since $\left(r, d C_{1} C_{2} \ldots C_{m}\right)->^{*}(s, \varepsilon, \varepsilon)$ and $\left\langle s B_{1} \ldots B_{k} q>\quad \rightarrow^{*} z\right.$

Hence $\left\langle p B_{1} B_{2} \ldots B_{k} q>\rightarrow<p B_{1} r><r B_{1} B_{2} \ldots B_{k} q>\right.$
$\rightarrow \mathrm{c}<\mathrm{rC}_{1} \mathrm{C}_{2} \ldots \mathrm{C}_{\mathrm{m}} \mathrm{s}><\mathrm{rB}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{\mathrm{k}} \mathrm{q}>\rightarrow^{*} \mathrm{cdz}=\mathrm{x}$

## Simulating PDAs by CFGs (cont'd)

(<=:) $<p B_{1} B_{2} \ldots B_{k} q>{ }^{L}>_{G}^{*} x$.
Suppose <pB$B_{1} B_{2} \ldots B_{k} q>\rightarrow<p B_{1} q_{1}><q_{1} B_{2} \ldots B_{k} q>$
$\left.{ }^{L} \rightarrow_{G} c<r_{0} C_{1} C_{2} \ldots C_{m} q_{1}\right\rangle\left\langle q_{1} B_{2} \ldots B_{k} q\right\rangle$
${ }^{\mathrm{L}} \rightarrow_{\mathrm{G}}{ }^{\mathrm{n}} \mathrm{cy}(=x)$
where $\left.\left.\left\langle\mathrm{pB}_{1} \mathrm{q}_{1}\right\rangle \rightarrow \mathrm{c}<\mathrm{r}_{0} \mathrm{C}_{1} \mathrm{C}_{2} \ldots \mathrm{C}_{\mathrm{m}} \mathrm{q}_{1}\right\rangle \in \mathrm{P}-\mathbf{-}^{*}\right)$.
But then since, by (*), $\left[(p, c, B 1),\left(r_{0}, C_{1} C_{2} \ldots C_{m}\right)\right]-(* *)$ is an instr of M,
$\left(p, x, B_{1} \ldots B_{k}\right)->_{m}\left(r_{0}, y, C_{1} C_{2} \ldots C_{m} B_{2} \ldots B_{n}\right) \quad--B y(* *)$
-->* $\left(q 1, z, B_{2} \ldots B_{n}\right)$-- by IH
$-->{ }_{m}(q, \varepsilon, \varepsilon) . \quad--$,by ind. hyp. QED
Theorem $25.2 \mathrm{~L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$.
Pf: $x \in L(G)$ iff $\left\langle s \perp t>\rightarrow^{*} x\right.$ iff ( $s, x, \perp$ ) -->* ${ }_{M}(t, \varepsilon, \varepsilon) \quad----$ Lemma 25.1 iff $x \in L(M)$. QED

## Example

- $L=\left\{x \in\{[,]\}^{*} \mid x\right.$ is a balanced string of [ and ]], i.e., \#] $(x)=2$ \#[(x) and all "]]"s must occur in pairs \}
- Ex: [ ]] [[]] ]] $\in \operatorname{L}$ but [][]]] $\notin \mathrm{L}$.
- L can be accepted by the PDA
$\mathbf{M}=(\mathbf{Q}, \Sigma, \Gamma, \delta, \mathbf{p}, \perp,\{t\})$, where
$Q=\{p, q, t\}, \Sigma=\{[]\},, \Gamma=\{A, B, \perp\}$,
and $\delta$ is given as follows:
- (p, [, $\perp$ ) --> (p, A $\perp$ ),
- (p,[,A) $-->(p, A A)$,
[ (p, ], A) --> (q, B),
$\square(q], B),-->(p, \varepsilon)$,


- $M$ can be simulated by the CFG $\mathbf{G}=(\mathbf{N}, \Sigma,<p \perp t>, P)$ where
- $N=\left\{\langle X D Y\rangle X, Y \in\{p, q, t\}\right.$ and $\left.D \in\{A, B, \perp\}^{*}\right\}$,
$\square$ and $P$ is derived from the following pseudo rules :
[ (p, [, $\perp$ ) --> (p, A $\perp$ ): <p $\perp$ ?> $\rightarrow$ [ <pA $\perp$ ?>
- ( $p,[, A$ ) --> ( $p, A A$ ) : <p A ?> $\rightarrow$ [ <pAA?>
[ (p, ], A) --> (q, B), : <p A ?> $\rightarrow$ ] <qB?>
Each of the above produces 3 rules ( $?=p$ or $q$ or $t$ ). $(q$, ], B) --> $(p, \varepsilon),:<q B ?>\rightarrow$ ] <p $\varepsilon$ ?>

This produces only 1 rule : <qBp> $\rightarrow$ ]
( ? = p, but could not be q or t why ?)
<q B ?> $\rightarrow$ ] <p $\varepsilon$ ?> => <qBp> $\rightarrow$ ] <p $\varepsilon p>\rightarrow^{0}$ ]
$(\mathrm{p}, \varepsilon, \perp)$--> $(\mathrm{t}, \varepsilon):<\mathrm{p} \perp$ ? $>\rightarrow\langle\mathrm{t} \varepsilon$ ? $>$
This results in one rule : <p $\perp$ t> $\rightarrow \varepsilon$
$\square<p \perp ?>\rightarrow[\langle p A \perp ?>\rightarrow$ results in 3 rules : ? = p, q or t.
$\square<p \perp p>\rightarrow[\quad\langle p A \perp p>--(1)$
$\square<p \perp q>\rightarrow[<p A \perp q>$
$\square\langle p \perp t>\rightarrow$ [ <pA $\perp$ t>
$\square$ (1)~(3) each again need to be expanded into 3 rules.
$\square<p A \perp p>\rightarrow<p A ?><? \perp p>$ where ? is $p$ or $q$ or $t$.
Q<pA $\perp p>\rightarrow<p A p><p \perp p>$
$0<p A \perp p>\rightarrow<p A q><q \perp p>$
$0<p A \perp p>\rightarrow\langle p A t><t \perp p>$
( $<\mathrm{pA} \perp q>\rightarrow<p A ?><$ ? $\perp q>$ where ? is $p$ or $q$ or $t$.
© <pA $\perp q>\rightarrow<p A p><p \perp q>$
© <pA $\perp q>\rightarrow\langle p A q><q \perp q>$
6) <pA $\perp q>\rightarrow<p A t><t \perp q>$
] <pA $\perp \mathrm{t}>\rightarrow\langle\mathrm{pA}$ ? $><$ ? $\perp \mathrm{t}>$ where ? is p or q or t . O...
— Similarly <pA?> $\rightarrow$ [ <pAA?> results in 9 rules:
प Where $?_{2}=p, q$, or t.
〕 $<p \mathrm{~A} p\rangle \rightarrow\left[\left\langle\mathrm{pA} ?_{2}\right\rangle<?_{2} \perp \mathrm{p}\right\rangle--(1)$
0 <p A p> $\rightarrow$ [ <pAp> <p $\perp p>$
6 <p A p> $\rightarrow$ [ <pAq> <q $\perp p>$

- <pAp> $\rightarrow$ [ <pAt> <t $\perp p>$

〕 $<p A q>\rightarrow\left[\left\langle p A ?_{2}\right\rangle<?_{2} \perp q>--(2)\right.$
© ...
] <pAt> $\rightarrow$ [ $\left\langle\mathrm{pA} ?_{2}><?_{2} \perp \mathrm{t}\right\rangle \quad--(3)$
© ...

## Problem: How many rules are there in the generated grammar?

- Let $m$ be the max number of symbols pushed in $\delta$.
$\square \quad$ i.e., $m=\max \{|\beta| \mid(p, c, A) \rightarrow(q, \beta) \in \delta\}$
$\square$ Then $|G|=O\left(|\delta| x|Q|^{m}\right)$
- Notes:

प 1. $|Q|=10, m=3=>|G|=1000|\delta|$
Q 2. Each instruction $(p, c, A) \rightarrow\left(q, B_{1} \ldots B_{m}\right)$ induces the $|Q|^{m}$ rules
$\square\left\{<p A X_{m}>\rightarrow c<q B_{1} X_{1}><X_{1} B_{2} X_{2}>\ldots<X_{m-1} B_{m} X_{m}>\mid X_{1}, X_{2}, \ldots X_{m} \in Q\right\}$
3. If $m=2$ or use intermediate symbols/rules: Then
$\square|G|=O(|\delta| x|Q| x m x|Q|)$. Instr $(p, c, A) \rightarrow\left(q, B_{1} \ldots B_{m}\right)$ induces rules

- $\left\{\quad<p A X_{m}>\rightarrow c<q B_{1} B_{2} B_{3} \ldots B_{m} X_{m}>\right.$,

D $<q B_{1} B_{2} B_{3} \ldots B_{m} X_{m}>\rightarrow\left\langle q B_{1} X_{1}\right\rangle<X_{1} B_{2} B_{3} \ldots B_{m} X_{m}>$,
$\left.\square<X_{1} B_{2} B_{3} \ldots B_{m} X_{m}\right\rangle \rightarrow\left\langle X_{1} B_{2} X_{2}\right\rangle\left\langle X_{2} B_{3} \ldots B_{m} X_{m}\right\rangle, \ldots$
$\left.\square<X_{m-2} B_{m-1} B_{m} X_{m}\right\rangle \quad \rightarrow\left\langle X_{m-2} B_{m-2} X_{m-1}\right\rangle\left\langle X_{m-1} B_{m} X_{m}\right\rangle$

- | $\left.X_{1}, X_{2}, \ldots X_{m} \in Q\right\} / / m x|Q|$ nonterminals $\left\langle X_{J} B_{J+1} B_{3} \ldots B_{m} X_{m}>\right.$,

