PART III

Turing Machines and Effective Computability

PART III Chapter 1

Turing Machines

Turing machines

- the most powerful automata (> FAs and PDAs)
- invented by Turing in 1936
- can compute any function normally considered computable
- Turing-Church Thesis:
\square Anything (function, problem, set etc.) that is (though to be) computable is computable by a Turing machine (i.e., Turing-computable).
- Other equivalent formalisms:
- post systems (string rewriting system)
- Formal Grammars (Chomsky Hierarchy): on strings
[μ-recursive function : on numbers
] λ-calculus, combinatory logic: on λ-term
© C, BASIC, PASCAL, JAVA languages,... : on strings

Informal description of a Turing machine

1. Finite automata (DFAs, NFAs, etc.):
(limited input tape: one-way, read-only
[no working-memory

- finite-control store (program)

2. PDAs:
— limited input tape: one-way, read-only
\square one additional stack as working memory
\square finite-control store (program)
3. Turing machines (TMs):
\square a semi-infinite tape storing input and supplying additional working storage.
\square finite control store (program)

- can read/write and two-way(move left and right) depending on the program state and input symbol scanned.

Turing machines and LBAs

4. Linear bounded automata (LBA): special TMs
\square the input tape is of the same size as the input length (i.e., no additional memory supplied except those used to store the input)

- can read/write and move left/right depending on the program state and input symbol scanned.
- Primitive instructions of a TM (like +,-,*, etc in C or BASIC):

1. $L, R \quad / /$ moving the tape head left or right
2. $a \in \Gamma, \quad$ // write the symbol $a \in \Gamma$ on the current scanned position
depending on the precondition:
3. current state and
4. current scanned symbol of the tape head

The structure of a TM instruction:

- An instruction of a TM is a tuple:

$$
(q, \quad a, \quad p, \quad d) \in Q \times \Gamma \times Q \times(\Gamma \cup\{L, R\})
$$

where
$\square q$ is the current state
\square a is the symbol scanned by the tape head

- (\mathbf{q}, \mathbf{a}) defines a precondition that the machine may encounter
- (p,d) specify the actions to be done by the TM once the machine is in a condition matching the precondition (i.e., the symbol scanned by the tape head is ' a ' and the machine is at state q)
$\square \mathrm{p}$ is the next state that the TM will enter
$\square \mathrm{d}$ is the action to be performed:
©d = b $\in \Gamma$ means "write the symbol b to the tape cell currently scanned by the tape head".
$\boldsymbol{\sigma}=\mathrm{R}$ (or L) means "move the tape head one tape cell in the right (or left, respectively) direction.
- A Deterministic TM program δ is simply a set of TM instructions (or more formally a function: $\delta: \mathbf{Q} \times \Gamma \ldots \mathbf{Q x}(\Gamma \mathrm{U}\{\mathrm{L}, \mathrm{R}\})$)

Formal Definition of a standard TM (STM)

- A deterministic 1-tape Turing machine (STM) is a 9-tuple

$$
\mathbf{M}=(\mathbf{Q}, \Sigma, \Gamma,[, \square, \delta, \mathbf{s}, \mathbf{t}, \mathrm{r}) \text { where }
$$

$\square Q$: is a finite set of (program) states with a role like labels in traditional programs
$\square \Gamma \quad$: tape alphabet
$\square \Sigma \subset \Gamma$: input alphabet
$\square[\in \Gamma-\Sigma$: The left end-of-tape mark
$\square \square \in \Gamma-\Sigma$ is the blank tape symbol
$\square \mathbf{s} \in \mathbf{Q}$: initial state
$\square \mathbf{t} \in \mathbf{Q}$: the accept state
$\square \mathbf{r} \neq \mathbf{t} \in \mathrm{Q}$: the reject state and
$\square \delta:(\mathbf{Q}-\{t, r\}) \times \Gamma \rightarrow \mathbf{Q x}(\Gamma \cup\{L, R\})$ is a total transition function with the restriction: if $\delta(p,[)=(q, d)$ then $d=R$. i.e., the STM cannot write any symbol at left-end and never move off the tape to the left.

Configurations and acceptances

- Issue: h / w to define configurations like those defined in FAs and PDAs?
- At any time t_{0} the TM M's tape contains a semi-infinite string of the form
- Let \square^{ω} denotes the semi-infinite string:

Note: Although the tape is an infinite string, it has a finite canonical representation: y, where $y=\left[y_{1} \ldots y_{m}\right.$ (with $y_{m} \neq \square$)

A configuration of the TM \mathbf{M} is a global state giving a snapshot of all relevant info about M's computation at some instance in time.

Formal definition of a configuration

Def: a cfg of a STM M is an element of

$$
\mathrm{CF}_{\mathrm{M}}==_{\operatorname{def}} \mathrm{Q} \times\left\{\left[y \mid y \in\left(\Gamma-\{[\})^{*}\right\} \times N \quad / / N=\{0,1,2, \ldots\}\right.\right.
$$

When the machine M is at $\operatorname{cfg}(p, z, n)$, it means M is

1. at state p
2. Tape head is pointing to position n and
3. the input tape content is z.

Obviously cfg gives us sufficient information to continue the execution of the machine.
Def: 1. [Initial configuration:] Given an input x and a STM M, the initial configuration of M on input x is the triple:
(s, $[x, 0)$
2. If $\operatorname{cfg} 1=(p, y, n)$, then $\mathbf{c f g} 1$ is an accept configuration if $p=t$ (the accept configuration), and cfg1 is an reject cfg if $p=r$ (the reject cfg). cfg1 is a halting cfg if it is an accept or reject cfg.

One-step and multi-step TM computations

- one-step Turing computation ($\mid-{ }_{-}$) is defined as follows:
- $\|_{-} \subseteq \mathrm{CF}_{M}{ }^{2}$ is the least binary relation over CF_{M} s.t.

0. $(p, z, n) \mid-{ }_{m}\left(q, s_{b}(z), n\right) \quad$ if $\delta\left(p, z_{n}\right)=(q, b)$ where $b \in \Gamma$
1. $(p, z, n) \mid-{ }_{m}(q, z, n-1) \quad$ if $\delta\left(p, z_{n}\right)=(q, L)$
2. $(p, z, n) \mid-{ }_{m}(q, z, n+1) \quad$ if $\delta\left(p, z_{n}\right)=(q, R)$
\square where $s_{b}{ }_{b}(z)$ is the resulting string with the n-th symbol of z replaced by 'b'.

] $\quad \mathbf{s}^{6}{ }_{b}($ [baa $)=[$ baa $\square \square b$

- |-- ${ }^{M}$ is defined to be the set of all pairs of configurations each satisfying one of the above three rules.
Notes: 1. if $C=(p, z, n) \mid--_{м}(q, y, m)$ then $n \geq 0$ and $m \geq 0$ (why?)

2. |--м is a function [from nonhalting cfgs to cfgs] (i.e., if C |--м $D \& C \mid-{ }_{-} E$ then $\left.D=E\right)$.
3. define $\mid--{ }_{M}$ and $\mid-{ }^{*}{ }_{M}$ (ref. and tran. closure of $\left.\mid--_{M}\right)$ as usual.

Accepting and rejecting of TM on inputs

- $x \in \Sigma$ is said to be accepted by a STM M if

$$
\operatorname{icfg}_{M}(x)=_{\operatorname{def}}\left(s,[x, 0) \mid--_{M}^{*}(t, y, n) \text { for some } y \text { and } n\right.
$$

\square I.e, there is a finite computation

$$
\left(s,[x, 0)=C_{0}\left|--_{м} C_{1}\right|--м \ldots \mid--_{м} C_{k}=\left(t, _, _\right)\right.
$$

starting from the initial configuration and ending at an accept configuration.

- x is said to be rejected by a STM M if ($s,[x, 0) \mid--{ }_{M}(r, y, n) \quad$ for some y and n
\square l.e, there is a finite computation

\square starting from the initial configuration and ending at a reject configuration.
Notes: 1. It is impossible that x is both accepted and rejected by a STM. (why ?)

2. It is possible that x is neither accepted nor rejected. (why ?)

Def:

1. M is said to halt on input x if either M accepts x or rejects x.
2. M is said to loop on x if it does not halt on x.
3. A TM is said to be total if it halts on all inputs.
4. The language accepted by a TM M,
$L(M)=_{\text {def }}\left\{x\right.$ in $\Sigma^{*} \mid x$ is accepted by M, i.e., $\left(s,\left[x \square^{\omega}, 0\right) \mid-{ }^{*}{ }_{M}(t,-,-)\right\}$
5. If $L=L(M)$ for some STM M
==> L is said to be recursively enumerable (r.e.)
6. If $L=L(M)$ for some total STM M
==> L is said to be recursive
7. If $\sim L==_{\text {def }} \Sigma^{*}-L=L(M)$ for some STM M (or total STM M)
==> L is said to be Co-r.e. (or Co-recursive, respectively)

Ex1: Find a STM to accept $L_{1}=\left\{w \# w \mid w \in\{a, b\}^{*}\right\}$ note: L_{1} is not a CFL.
The STM has tape alphabet $\Gamma=\{a, b, \#,-, \square,[\}$ and behaves as follows: on input z : (Hopefully of the form: w \# w $\in\{a, b, \#\}^{*}$)

1. if z is not of the form $\{a, b\}^{*} \#\{a, b\}^{*}=>$ goto reject
2. move left until '[' is encountered and in that case move right
3. while I/P (i.e., symbol scanned by input head) = '-' move right;
4. if $I / P=$ ' a ' then
4.1 write ' - '; move right until \# is encountered; Move right;
4.2 while I/P = '-' move right
4.3 case (I/P) of \{ 'a' : (write '-'; goto 2); o/w: goto reject \}
5. if $\mathrm{I} / \mathrm{p}=$ ' b ' then...$/ /$ like 4.1~ 4.3
6. If I/P = '\#' then // All symbols left to \# have been compared
6.1 move right
6.2 while $\mathrm{I} / \mathrm{P}=$ '--" move right
6.3 case (I/P) of \{'ם’ : goto Accept; o/w: go to Reject \}

More detail of the STM

Step 1 can be accomplished as follows:
1.1 while I/P matches ($\sim \wedge \sim \square$) R; // i.e, I/P $\neq \#$ and I/P $\neq \square$ //or equivalently, while I/P matches (a V bV [V -) R if $\square=>$ reject // no \# found on the input if \# => R;
1.2 While (~\# $\wedge \sim \square) ~ R ;$
if $\square=>$ goto accept [or goto 2 if regarded as a subroutine] if \# => goto Reject; // more than one \#s found

Step 1 requires only two states:

Graphical representation of a TM

means:
if $($ state $=p) \wedge($ cnd true for $I / P)$ then 1. perform ACs and
2. go to q

ACs can be primitive ones: R, L, a, \ldots or another subroutine $\mathrm{TM} \mathrm{M}_{1}$.

Ex: the arc from s to s in the left graph implies the existence of 4 instructions:
(s, a, s, R), (s,b,s,R),
(s, $[, s, R$), and ($s,-, s, R$)

Tabular form of a STM

- Translation of the graphical form to tabular form of a STM

$\stackrel{\delta}{\delta}$	[a	b	\#	-	\square
>s	s, R	s, R	s, \mathbf{R}	\mathbf{u}, \mathbf{R}	x	r, \mathbf{X}
u	X	\mathbf{u}, \mathbf{R}	\mathbf{u}, \mathbf{R}	r, X	x	\mathbf{t}, \square
tF	halt	halt	halt	halt	halt	halt
rF	halt	halt	halt	halt	halt	halt

X means don't care

The rows for $t \& r$ indeed need not be listed!!

The complete STM accepting L_{1}

Recall the following definitions:

1. M is said to halt on input x if either M accepts x or rejects \mathbf{x}.
2. M is said to loop on x if it does not halt on x.
3. A TM is said to be total if it halts on all inputs.
4. The language accepted by a TM M,
$L(M)={ }_{\text {def }}\left\{x \in \Sigma^{*} \mid x\right.$ is accepted by M, i.e., $\left(s,\left[x \square^{\omega}, 0\right) \mid-{ }^{*}{ }_{M}\right.$ ($\mathbf{t},-,-$) \}
5. If $L=L(M)$ for some STM M
$==>L$ is said to be recursively enumerable (r.e.)
6. If $L=L(M)$ for some total STM M
==> L is said to be recursive
7. If $\sim L=_{\text {def }} \Sigma^{*}-L=L(M)$ for some STM M (or total STM M) ==> L is said to be Co-r.e. (or Co-recursive, respectively)

Recursive languages are closed under complement

Theorem 1: Recursive languages are closed under complement. (i.e., If L is recursive, then $\sim L=\Sigma^{*}-L$ is recursive.)
pf: Suppose L is recursive. Then $L=L(M)$ for some total TM M.
Now let M^{*} be the machine M with accept and reject states switched (i.e., the accepting state t^{*} of M^{*} is r of M, while rejecting state r^{*} of M^{*} is t of M).
Now for any input x,

$$
\begin{aligned}
& \square x \notin \sim L=>x \in L(M)=>\operatorname{icfg}_{M}(x) \mid{ }_{-m}^{*}(t,-,-) \quad=> \\
& \operatorname{icfg}_{M^{*}}(x) \mid-_{M^{*}}{ }^{*}\left(r^{*},-,-\right)=>x \notin L\left(M^{*}\right) \text {. } \\
& \square x \in \sim L=>x \notin L(M)=>\operatorname{icfg}_{M}(x) \mid-{ }^{*}{ }^{*}(r,-,-)=> \\
& \operatorname{icfg}_{M^{*}}(x) \text { - }_{\mathbf{m}^{*}} \text { (t*,-,-) }=>x \in L\left(M^{*}\right) \text {. }
\end{aligned}
$$

Hence $\sim L=L\left(M^{*}\right)$ and is recursive.
Note. The same argument cannot be applied to r.e. languages. (why?)
Exercise: Are recursive sets closed under union, intersection, concatenation and/or Kleene's operation ?

Some more termonology

Set : Recursive and recursively enumerable(r.e.)
predicate: Decidability and semidecidability
Problem: Solvability and semisolvabilty

- P : a statement about strings (or a property of strings)
- A: a set of strings
- Q : a (decision) Problem.

We say that

1. P is decidable $<==>\{x \mid P(x)$ is true $\}$ is recursive
2. A is recursive $<==>$ " $x \in A$ " is decidable.
3. P is semidecidable $<==>\{x \mid P(x)$ is true $\}$ is r.e.
4. A is r.e. $<==>$ " $x \in A$ " is semidecidable.
5. Q is solvable $<=>\operatorname{Rep}(Q)=_{\text {def }}\{" P " \mid P$ is a positive instance of Q \} is recursive.
Q is semisolvale $<==>\operatorname{Rep}(Q)$ is r.e..

- Relationship of Languages, Grammars and machines

Language	recognition model	generation model
Regular languages; type 3 languages	Finite automata (DFA, NFA)	regular expressions type 3(right linear, regular) grammar
context-free language (CFL) ; type 2 languages	Pushdown automata	Context free grammar (CFG) ; type 2 grammar
context-sensitive language (CFL) ; type 1 languages	LBA (Linear Bounded	Context sensitive grammar(CSG) ; type 1 Grammar
Recursive Languages	Total Turing machines	-
R.E. (Recursively enumerative) language; type 0 language	Turing machines	type 0 grammar ;

The Chomsky Hierarchy

type 3
 (regular langs)
 CFLs (type 2 langs)
 CSLs (type 1 Langs)
 Recursive Languages

Recursively Enumerable(type 0) languages
All Languages

Phrase-structure (unrestricted) grammar

Def.: A unrestricted grammar G is a tuple $G=(N, \Sigma, S, P)$ where
$\square \mathrm{N}, \Sigma$, and S are the same as for CFG, and
\square P, a finite subset of ($\mathrm{NU} \Sigma)^{*} \mathbf{N}(\mathrm{NU} \Sigma)^{*} \mathbf{x}(\mathrm{NU} \Sigma)^{*}$, is a set of production rules of the form:
] $\quad \alpha \rightarrow \beta$ where
$\square \quad \alpha \in(N U \Sigma)^{*} N(N U \Sigma)^{*}$ is a string over (NUS)* containing at least on nonterminal.
$\square \beta \in(N U \Sigma)^{*}$ is a string over (NU $\left.\Sigma\right)^{*}$.
Def: \mathbf{G} is of type
$\square 1$ (context-sensitive) if $S \rightarrow \varepsilon$ or $|\alpha| \leq|\beta|$.
— 2 (context-free) if $\alpha \in N$ and $\beta \neq \varepsilon$ or $S \rightarrow \varepsilon$.
— 3 (right linear) if every rule is one of the forms: $\Delta \mathrm{A} \rightarrow \mathrm{aB}$ or $\mathrm{A} \rightarrow \mathrm{a}(\mathrm{a} \neq \varepsilon)$ or $\mathrm{S} \rightarrow \varepsilon$.

Derivations

- Derivation $\rightarrow_{\mathrm{G}} \subseteq(\mathrm{NU} \Sigma)^{*} \mathrm{x}(\mathrm{NU} \Sigma)^{*}$ is the least set of pairs such that:
$\forall x, y \in(\Sigma U N)^{*}, \alpha \rightarrow \beta \in P, \quad x \alpha y \rightarrow_{G} x \beta y$.
- Let $\rightarrow^{*}{ }_{G}$ be the ref. and tran. closure of \rightarrow_{G}.
- $L(G)$: the languages generated by grammar G is the set:

$$
L(G)==_{\text {def }}\left\{x \in \Sigma^{*} \mid S \rightarrow_{G}^{*} x\right\}
$$

Example

- Design CSG to generate the language $L=\left\{0^{n 1 n} 2^{n} \mid n \geq 0\right\}$, which is known to be not context free.
Sol: Consider the CSG G_{1} with the following productions:
$S \rightarrow \varepsilon, \quad S \rightarrow$ 0SA2 $\quad 2 A \rightarrow A 2$,
$0 A \rightarrow 01$
$1 \mathrm{~A} \rightarrow 11$
For G_{1} we have
$S \rightarrow$ 0SA2 $\rightarrow \ldots \rightarrow 0^{k}(A 2)^{k} \rightarrow^{*} 0^{k} A^{k} 2^{k} \rightarrow 0^{k} 1^{k} 2^{k} \therefore L \subseteq L(G 1)$.
Also note that
\square if $S \rightarrow^{*} \alpha$ then $\# 0(\alpha)=\#(A \mid 1)(\alpha)=\#(2)(\alpha)$.
प if $S \rightarrow{ }^{*} \alpha \in\{0,1,2\}^{*}$ then
($\alpha_{k}=0$ implies $\alpha_{j}=0$ for all $\mathrm{j}<\mathrm{k}$.
$2 \alpha_{k}=1$ implies $\alpha_{j}=1$ or 0 for all $j<k$.
where α_{k} is the k-th symbol in string α_{k}.
(Hence α must be of the form $0 * 1 * 2^{*}=>\alpha \in L$. QED

