PART III

Turing Machines and Effective Computability

PART III Chapter 1

Turing Machines

Turing machines

- the most powerful automata (> FAs and PDAs)
- invented by Turing in 1936
- can compute any function normally considered computable
- Turing-Church Thesis:
 - Anything (function, problem, set etc.) that is (though to be) computable is computable by a Turing machine (i.e., Turing-computable).
- Other equivalent formalisms:
 - post systems (string rewriting system)
 - □ Formal Grammars (Chomsky Hierarchy): on strings
 - \square μ -recursive function : on numbers
 - \square λ -calculus, combinatory logic: on λ -term
 - ☐ C, BASIC, PASCAL, JAVA languages,...: on strings

Informal description of a Turing machine

- 1. Finite automata (DFAs, NFAs, etc.):
 - ☐ limited input tape: one-way, read-only
 - no working-memory
 - ☐ finite-control store (program)
- 2. PDAs:
 - ☐ limited input tape: one-way, read-only
 - one additional stack as working memory
 - ☐ finite-control store (program)
- 3. Turing machines (TMs):
 - a semi-infinite tape storing input and supplying additional working storage.
 - ☐ finite control store (program)
 - can read/write and two-way(move left and right) depending on the program state and input symbol scanned.

Turing machines and LBAs

- 4. Linear bounded automata (LBA): special TMs
 - the input tape is of the same size as the input length
 (i.e., no additional memory supplied except those used to store the input)
 - ☐ can read/write and move left/right depending on the program state and input symbol scanned.
- Primitive instructions of a TM (like +,-,*, etc in C or BASIC):
 - 1. L, R // moving the tape head left or right
 - 2. $a \in \Gamma$, // write the symbol $a \in \Gamma$ on the current scanned position

depending on the precondition:

- 1. current state and
- 2. current scanned symbol of the tape head

The structure of a TM instruction:

• An instruction of a TM is a tuple:

 $(q, a, p, d) \in Q \times \Gamma \times Q \times (\Gamma \cup \{L,R\})$

where

- q is the current state
- a is the symbol scanned by the tape head
- ☐ (q,a) defines a precondition that the machine may encounter
- (p,d) specify the actions to be done by the TM once the machine is in a condition matching the precondition (i.e., the symbol scanned by the tape head is 'a' and the machine is at state q)
- p is the next state that the TM will enter
- ☐ d is the action to be performed:
 - \bigcirc d = b $\in \Gamma$ means "write the symbol b to the tape cell currently scanned by the tape head".
 - **②**d = R (or L) means "move the tape head one tape cell in the right (or left, respectively) direction.
- A Deterministic TM program δ is simply a set of TM instructions (or more formally a function: δ : Q x Γ --> Qx (Γ U{L,R}))

Formal Definition of a standard TM (STM)

A deterministic 1-tape Turing machine (STM) is a 9-tuple

M = (Q,
$$\Sigma$$
, Γ , [, \square , δ , s, t,r) where

Q: is a finite set of (program) states with a role like labels in traditional programs

- $\Box \Gamma$: tape alphabet
- $\square \Sigma \subset \Gamma$: input alphabet
- $\square \ [\in \Gamma \Sigma : The left end-of-tape mark]$
- $\square \subseteq \Gamma \Sigma$ is the blank tape symbol
- \square s \in Q : initial state
- \Box t \in Q : the accept state
- \Box r \neq t \in \mathbb{Q}: the reject state and
- $\[\]$ δ: (Q {t,r})x $\[\Gamma \]$ --> Qx($\[\Gamma \]$ U {L,R}) is a *total* transition function with the restriction: if $\[\delta(p, [) = (q, d) \]$ then $\[d = R. \]$ i.e., the STM cannot write any symbol at left-end and never move off the tape to the left.

Configurations and acceptances

- Issue: h/w to define configurations like those defined in FAs and PDAs ?
- At any time t₀ the TM M's tape contains a semi-infinite string of the form

Tape(
$$t_0$$
) = [$y_1y_2...y_m \square \square \square \square ($y_m \neq \square$)$

• Let \square^{ω} denotes the semi-infinite string:

Note: Although the tape is an infinite string, it has a finite canonical representation: y, where $y = [y_1...y_m \text{ (with } y_m \neq \Box)$

A configuration of the TM M is a global state giving a snapshot of all relevant info about M's computation at some instance in time.

Formal definition of a configuration

Def: a cfg of a STM M is an element of

$$CF_M =_{def} Q \times \{ [y | y \in (\Gamma - \{[\})^*\} \times N \ // N = \{0,1,2,...\} // \} \}$$

- When the machine M is at cfg (p, z, n), it means M is
 - 1. at state p
 - 2. Tape head is pointing to position n and
 - 3. the input tape content is z.
- Obviously cfg gives us sufficient information to continue the execution of the machine.
- Def: 1. [Initial configuration:] Given an input x and a STM M, the initial configuration of M on input x is the triple:

2. If cfg1 = (p, y, n), then cfg1 is an accept configuration if p = t (the accept configuration), and cfg1 is an reject cfg if p = r (the reject cfg). cfg1 is a halting cfg if it is an accept or reject cfg.

One-step and multi-step TM computations

- one-step Turing computation (|--M) is defined as follows:
- $|--_{M} \subseteq CF_{M}^{2}$ is the least binary relation over CF_{M} s.t.
 - 0. $(p,z,n) \mid --M (q,s_b^n(z),n)$ if $\delta(p,z_n) = (q,b)$ where $b \in \Gamma$
 - 1. $(p,z,n) \mid --M (q,z,n-1)$ if $\delta(p,z_n) = (q, L)$
 - 2. $(p,z,n) \mid --M (q,z,n+1)$ if $\delta(p,z_n) = (q,R)$
 - where sⁿ_b(z) is the resulting string with the n-th symbol of z replaced by 'b'.
 - \Box ex: s_b^4 ([baaacabc]) = [baabcabc]
- |--_M is defined to be the set of all pairs of configurations each satisfying one of the above three rules.
- Notes: 1. if $C=(p,z,n) \mid --M (q,y,m)$ then $n \ge 0$ and $m \ge 0$ (why?)
 - 2. $|--_{M}|$ is a function [from nonhalting cfgs to cfgs] (i.e., if C $|--_{M}|$ D & C $|--_{M}|$ E then D=E).
 - 3. define $|--^n_M|$ and $|--^*_M|$ (ref. and tran. closure of $|--_M|$) as usual.

Accepting and rejecting of TM on inputs

- \bullet $x \in \Sigma$ is said to be accepted by a STM M if
 - $icfg_{M}(x) =_{def} (s, [x, 0) | --*_{M} (t,y,n) for some y and n$
 - □ I.e, there is a finite computation

$$(s, [x, 0) = C_0 | --_M C_1 | --_M C_k = (t, _, _)$$

starting from the initial configuration and ending at an accept configuration.

x is said to be rejected by a STM M if

$$(s, [x, 0) | --*_M (r,y,n)$$
 for some y and n

I.e, there is a finite computation

- starting from the initial configuration and ending at a reject configuration.
- Notes: 1. It is impossible that x is both accepted and rejected by a STM. (why?)
- 2. It is possible that x is neither accepted nor rejected. (why?)

Languages accepted by a STM

Def:

- 1. M is said to *halt* on input x if either M accepts x or rejects x.
- 2. M is said to loop on x if it does not halt on x.
- 3. A TM is said to be total if it halts on all inputs.
- 4. The language accepted by a TM M,

L(M) =_{def} {x in
$$\Sigma^*$$
 | x is accepted by M, i.e., (s, [x \square^{ω} ,0) |--*_M (t, -,-) }

- 5. If L = L(M) for some STM M
 - ==> L is said to be recursively enumerable (r.e.)
- 6. If L = L(M) for some total STM M
 - ==> L is said to be recursive
- 7. If $\sim L =_{def} \Sigma^* L = L(M)$ for some STM M (or total STM M)
 - ==> L is said to be Co-r.e. (or Co-recursive, respectively)

Some examples

```
Ex1: Find a STM to accept L_1 = \{ w \# w \mid w \in \{a,b\}^* \}
note: L₁ is not a CFL.
The STM has tape alphabet \Gamma = {a, b,#, -, \square, [} and behaves as follows:
  on input z: (Hopefully of the form: w # w \in \{a,b,\#\}^*)
1. if z is not of the form {a,b}* # {a,b}* => goto reject
2. move left until '[' is encountered and in that case move right
3. while I/P (i.e., symbol scanned by input head) = '-' move right;
4. if I/P = 'a' then
   4.1 write '-'; move right until # is encountered; Move right;
   4.2 while I/P = '-' move right
   4.3 case (I/P) of { 'a' : (write '-'; goto 2); o/w: goto reject }
5. if I/p = 'b' then ... // like 4.1~ 4.3
6. If I/P = '#' then // All symbols left to # have been compared
   6.1 move right
   6.2 while I/P = '-" move right
```

6.3 case (I/P) of {'□' : goto Accept;

Transparency No. P3C1-14

o/w: go to Reject }

More detail of the STM

Step 1 can be accomplished as follows:

```
1.1 while I/P matches (~# /\ ~ □) R; // i.e, I/P ≠ # and I/P ≠ □
//or equivalently, while I/P matches (a \lambda b\lambda [\lambda - \rangle \lambda] \rangle \lambda \lambd
```

if # => goto Reject; // more than one #s found

Step 1 requires only two states:

Graphical representation of a TM

means:

if (state = p) /\ (cnd true for I/P) then 1. perform ACs and 2. go to q

ACs can be primitive ones: R, L, a,... or another subroutine TM M₁.

Ex: the arc from s to s in the left graph implies the existence of 4 instructions: (s, a, s, R), (s,b,s,R), (s, [,s,R), and (s,-,s,R)

Tabular form of a STM

Translation of the graphical form to tabular form of a STM

\tilde{c}	$\delta \Gamma$	[а	b	#	_	
C	> s	s,R	s,R	s,R	u,R	X	r,x
	u	X	u,R	u,R	r,x	X	t , □
	tF	halt	halt	halt	halt	halt	halt
	rF	halt	halt	halt	halt	halt	halt

X means don't care

The rows for t & r indeed need not be listed!!

The complete STM accepting L₁

Transparency No. P3C1-18

R.e. and recursive languages

Recall the following definitions:

- 1. M is said to *halt* on input x if either M accepts x or rejects x.
- 2. M is said to loop on x if it does not halt on x.
- 3. A TM is said to be *total* if it halts on all inputs.
- 4. The language accepted by a TM M,

L(M) =_{def} {x ∈
$$\Sigma$$
* | x is accepted by M, i.e., (s, [x □ $^{\omega}$,0) |--*_M (t, -,-) }

- 5. If L = L(M) for some STM M
 - ==> L is said to be recursively enumerable (r.e.)
- 6. If L = L(M) for some total STM M
 - ==> L is said to be recursive
- 7. If $\sim L =_{def} \Sigma^* L = L(M)$ for some STM M (or total STM M)
 - ==> L is said to be Co-r.e. (or Co-recursive, respectively,

Recursive languages are closed under complement

Theorem 1: Recursive languages are closed under complement. (i.e., If L is recursive, then \sim L = Σ^* - L is recursive.)

pf: Suppose L is recursive. Then L = L(M) for some total TM M.

Now let M* be the machine M with accept and reject states switched (i.e., the accepting state t* of M* is r of M, while rejecting state r* of M* is t of M).

Now for any input x,

$$\square x \notin \sim L \Rightarrow x \in L(M) \Rightarrow icfg_M(x) \mid -M^* (t, -, -) \Rightarrow$$

$$\Box$$
 icfg_{M*}(x) |-_{M*}* (r*,-,-) => x \notin L(M*).

$$\square x \in \sim L \Rightarrow x \notin L(M) \Rightarrow icfg_M(x) \mid_{-M}^* (r,-,-) \Rightarrow$$

Hence \sim L = L(M*) and is recursive.

Note. The same argument cannot be applied to r.e. languages. (why?)

Exercise: Are recursive sets closed under union, intersection, concatenation and/or Kleene's operation?

Transparency No. P3C1-20

Some more termonology

Set: Recursive and recursively enumerable(r.e.)

predicate: Decidability and semidecidability

Problem: Solvability and semisolvability

- P: a statement about strings (or a property of strings)
- A: a set of strings
- Q: a (decision) Problem.

We say that

- 1. P is decidable $<==> \{x \mid P(x) \text{ is true }\}$ is recursive
- 2. A is recursive $\langle ==>$ " $x \in A$ " is decidable.
- 3. P is semidecidable $\leq = > \{ x \mid P(x) \text{ is true } \} \text{ is r.e.}$
- 4. A is r.e. $\langle ==>$ " $x \in A$ " is semidecidable.
- 5. Q is solvable <=> Rep(Q) =_{def} {"P" | P is a positive instance of Q } is recursive.
- 6. Q is semisolvale <==> Rep(Q) is r.e..

The Chomsky Hierarchy

Relationship of Languages, Grammars and machines

	Telationship of Languages, Oranimals and machines					
Language	recognition model	generation model				
Regular languages;	Finite automata	regular expressions				
type 3 languages	(DFA, NFA)	type 3(right linear, regular) grammar				
context-free language (CFL);	Pushdown automata	Context free grammar (CFG);				
type 2 languages		type 2 grammar				
context-sensitive language (CFL);	LBA (Linear Bounded Automata)	Context sensitive grammar(CSG);				
type 1 languages		type 1 Grammar				
Recursive Languages	Total Turing machines	-				
R.E. (Recursively enumerative) language; type 0 language	Turing machines	type 0 grammar; unrestricted grammar				

Transparency No. P3C1-22

Phrase-structure (unrestricted) grammar

Def.: A unrestricted grammar G is a tuple G=(N, Σ , S, P) where

- \square N, Σ , and S are the same as for CFG, and
- **I** P, a finite subset of (NUΣ)* N (NUΣ)* x (NUΣ)*, is a set of production rules of the form:
- $\alpha \rightarrow \beta$ where
- α ∈ (NUΣ)* N (NUΣ)* is a string over (NUΣ)* containing at least on nonterminal.
- □ β ∈ (NUΣ)* is a string over (NUΣ)*.

Def: G is of type

- \Box 1 (context-sensitive) if S → ε or $|\alpha| \le |\beta|$.
- \square 2 (context-free) if $\alpha \in \mathbb{N}$ and $\beta \neq \varepsilon$ or $\mathbb{S} \rightarrow \varepsilon$.
- □ 3 (right linear) if every rule is one of the forms:
 - \bigcirc A \rightarrow a B or A \rightarrow a (a $\neq \varepsilon$) or S $\rightarrow \varepsilon$.

Derivations

• Derivation $\rightarrow_G \subseteq (NU\Sigma)^* \times (NU\Sigma)^*$ is the least set of pairs such that :

$$\forall x,y \in (\Sigma UN)^*, \alpha \rightarrow \beta \in P, x\alpha y \rightarrow_G x\beta y.$$

- Let \rightarrow^*_G be the ref. and tran. closure of \rightarrow_G .
- L(G): the languages generated by grammar G is the set:

$$L(G) =_{def} \{x \in \Sigma^* \mid S \rightarrow^*_G x \}$$

Example

Design CSG to generate the language L={0ⁿ1ⁿ2ⁿ | n ≥ 0 },
 which is known to be not context free.

Sol: Consider the CSG G₁ with the following productions:

$$S \rightarrow \epsilon$$
,

$$S \rightarrow 0SA2$$

$$2A \rightarrow A2$$

For G₁ we have

$$S \rightarrow 0SA2 \rightarrow ... \rightarrow 0^k(A2)^k \rightarrow^* 0^kA^k2^k \rightarrow 0^k1^k2^k :: L \subseteq L(G1).$$

Also note that

$$\square$$
 if $S \rightarrow^* \alpha$ then $\#0(\alpha) = \#(A|1)(\alpha) = \#(2)(\alpha)$.

$$\square$$
 if $S \rightarrow^* \alpha \in \{0,1,2\}^*$ then

$$\alpha_k = 0$$
 implies $\alpha_i = 0$ for all $j < k$.

$$\alpha_k = 1$$
 implies $\alpha_i = 1$ or 0 for all $j < k$.

where $\alpha_{\textbf{k}}$ is the k-th symbol in string $\alpha_{\textbf{k}}$.

□ Hence α must be of the form 0*1*2* => α ∈ L. QED