PART III Chapter 2

Other Equivalent models of Standard Turing machine

Outline

- Equivalent models of Turing machine
- multi-tape TMs
[2way TMs
\square multi-head TMs
- 2Dimensional TMs
- 2Stack machine
— Counter machine
— Nondeterministic TMs
- Universal TM
- A k-tape ($k \geq 1$) Turing machine is a 9-tuple

$$
\mathbf{M}=(\mathbf{Q}, \Sigma, \Gamma,[, \square, \delta, \mathbf{s}, \mathbf{t}, \mathbf{r}) \text { where }
$$

\square Q : is a finite set of (program) states like labels in traditional programs
$\square \Gamma \quad$: tape alphabet
$\square \Sigma \subset \Gamma$: input alphabet
[[$\in \Gamma-\Sigma$: The left end-of-tape mark
$\square \square \in \Gamma-\Sigma$ is the blank tape symbol
$\square \mathbf{s} \in \mathbf{Q}$: initial state
$\square \mathbf{t} \in \mathbf{Q}$: the accept state
$\mathrm{C} \neq \mathbf{t} \in \mathbf{Q}$: the reject state and
$\square \delta:(\mathbb{Q}-\{t, r\}) \times \Gamma^{k} \rightarrow \mathbf{Q x}(\Gamma \cup\{L, R\})^{k}$ is a total transition function with the restriction: if $\delta\left(p, x_{1}, \ldots, x_{k}\right)=\left(q, y_{1}, \ldots, y_{k}\right)$ then if $x_{j}=\left[==>y_{j}=[\right.$ or R. i.e., the TM cannot overwrite other symbol at left-end and never move off the tape to the left.

3-tape Turing machine

Equivalence of STMs and Multi-tape TMs

- $\mathbf{M}=(\mathbf{Q}, \Sigma, \Gamma,[, \square, \delta, s, t, r):$ a k-tape TMs
==> M can be simulated by a k-track STM
$\mathbf{M}^{\prime}=\left(\mathbf{Q}^{\prime}, \Sigma, \Gamma^{\prime},\left[, \square, \delta^{\prime}, \mathbf{s}, \mathbf{t}^{\prime}, \mathrm{r}^{\prime}\right)\right.$ where
$\square \Gamma^{\prime}=\Gamma \mathrm{U}(\Gamma \mathrm{U})^{\mathrm{k}}$ where $\underline{\Gamma}=\{\underline{\mathrm{a}} \mid \mathrm{a} \in \Gamma\}$.
\bullet M' = init • M'' where the task of Init is to convert initial input tape content : $\left[x_{1} x_{2} \ldots x_{n} \square^{\omega}\right.$ into

and then go to the initial state s" of M" to start simulation of M.
- Each state q of M is simulated by a submachine M_{q} of $M^{\prime \prime}$ as follows:

Q'(q)

- let $\left(\mathrm{q}, \mathrm{x}^{1}, \mathrm{p}_{1}, \mathrm{y}^{1}\right), \ldots,\left(\mathrm{q}, \mathrm{x}^{\mathrm{m}}, \mathrm{p}_{\mathrm{m}}, \mathrm{y}^{\mathrm{m}}\right)$ be the set of all instructions (starting from state q) having the form $\delta\left(q, x^{i}\right)=\left(p_{i}, y^{i}\right)$, where $x^{i}, y^{i}=$ ($\left.x_{1}^{i}, x^{i}{ }_{2}, \ldots, x_{k}^{i}\right),\left(y^{i}{ }_{1}, y^{i}{ }_{2}, \ldots, y_{k}^{i}\right)$. Then M_{q} behaves as follows:
0 . [terminate?] if $q=t$ then accept; if $q=r$ then reject.

1. [determine what symbols are scanned by tape heads] for $\mathrm{j}=1$ to k do $\{/ /$ determine symbol scanned by jth head move right until the symbol at the jth track is underlined, remember which symbol is underlined (say a_{j}) in the control store and then move to left end.\}
2. [perform action: $\delta\left(q, a_{1}, \ldots, a_{k}\right)=\left(p, b_{1}, \ldots, b_{k}\right)$ for each tape head] for $\mathrm{j}=1$ to k do\{ // perform b_{j} at the jth tape
case1. $b_{j}=b \in \Gamma==>$ Move R until \underline{a}_{j}; replace symbol \underline{a}_{j} at jth track by \underline{b}_{j} case2. $b_{j}=R==>$ Move R unitl a_{j}, replace a_{j} by a_{j} and underline its right neighbor symbol.
case3: $b_{j}=L$. Similar to case 2. Finally move to left end. \} [go to next state] go to start state of M_{p} to simulate M at state p.

Running time analysis

- How many steps of M" are needed to simulate one step of execution of M ?
- Sol:
- Assume the running time of M on input x of length n is $f(n)$.
\square step 1 requires time: $O(k \times 2 f(n))$
\square Step 2 requires time: $O(k \times 2 f(n))$
\square Step 3 requires $O(1)$ time
\square => Each step requires time $\mathbf{O}(4 k \times f(n))$.
\square and total time required to simulate $M=f(n) \times O(4 k f(n))$
$\square \quad=0\left(f(n)^{2}\right)$.

Turing machine with 2 way infinite tape

- A 2way single tape Turing machine is a 8-tuple

$$
\mathbf{M}=(\mathbf{Q}, \Sigma, \Gamma,[, \square, \delta, \mathbf{s}, \mathbf{t}, \mathbf{r}) \text { where }
$$

\square Q : is a finite set of (program) states like labels in traditional programs
$\square \Gamma \quad$: tape alphabet
$\square \Sigma \subset \Gamma$: input alphabet
[[$\in \Gamma-\Sigma$: The left end-of-tape mark (no longer needed!!)
$\square \square \in \Gamma-\Sigma$ is the blank tape symbol
$\square s \in Q$: initial state
$\square \mathbf{t} \in \mathbf{Q}$: the accept state
$\mathrm{C} \neq \mathbf{t} \in \mathbf{Q}$: the reject state and
$\square \delta:(\mathbb{Q}-\{t, r\}) \times \Gamma$--> $Q x(\Gamma \cup\{L, R\})$ is a total transition function.

2 way infinite tape
$\ldots \square \square \square \mathbf{a b a b b b c} \mathbf{c} \mathbf{a b c} \mathbf{c} \mathbf{a} \mathbf{a b b c} \mathbf{c} \mathbf{b} \mathbf{b}$
 simulated by

- M = (Q, $\Sigma, \Gamma, \square, \delta$, s, t,r): a 2way TM
==> M can be simulated by a 2-track STM:
$M^{\prime}=\left(Q^{\prime}, \Sigma, \Gamma^{\prime},\left[, \square, \delta^{\prime}, s, t^{\prime}, r^{\prime}\right)\right.$ where
- $\mathbf{Q}^{\prime}=\mathbf{Q} \mathbf{U}(\mathbf{Q x}\{\mathbf{u}, \mathrm{d}\}) \mathbf{U}\{\ldots\}$,
$\square \Gamma^{\prime}=\Gamma \mathrm{U} \Gamma^{2} \mathbf{U}\{[\}$,
— M' = init • M' where the task of Init is to convert initial input tape content : $\square^{\omega} x_{1} x_{2} \ldots x_{n} \square^{\omega}$ into

and then go to the initial state s" of M' to start simulation of M.
- Each instruction of M is simulated by one or two instructions of M" as follows:
case 1: $y \in \Gamma$
$\square==>\delta^{\prime \prime}((q, u),(x, z))=((p, u),(y, z))$ and
$\square \quad \delta^{\prime \prime}((q, d),(z, x))=((p, d),(z, y))$ for all $z \in \Gamma$
case2 : $y=R$.
$\mathrm{L}==>\delta^{\prime \prime}((\mathrm{q}, \mathrm{u}),(\mathrm{x}, \mathrm{z}))=((\mathrm{p}, \mathrm{u}), \mathrm{R})$ and $\delta^{\prime \prime}((\mathrm{q}, \mathrm{d}),(\mathrm{z}, \mathrm{x}))=((\mathrm{p}, \mathrm{d}), \mathrm{L})$
$\square \quad$ for all $z \in \Gamma$.
case 3: $\mathrm{y}=\mathrm{L}$.
$\square==>\delta^{\prime \prime}((q, u),(x, z))=((p, u), L)$ and $\delta^{\prime}((q, d),(z, x))=((p, d), R)$
\square for all $z \in \Gamma$.
+additional conditions
\square 1. left end => change direction:
[$\delta^{\prime \prime}\left((\mathrm{q}, \mathrm{u}),[)=((\mathrm{q}, \mathrm{d}), \mathrm{R}), \delta^{\prime \prime}((\mathrm{q}, \mathrm{d}),[)=((\mathrm{q}, \mathrm{u}), \mathrm{R})\right.$ for all $\mathrm{q} \notin\{\mathrm{t}, \mathrm{r}\}$.
\square 2. $\square \rightarrow(\square, \square): \quad \delta^{\prime \prime}((\mathbf{q}, \alpha), \square)=((q, \alpha),(\square, \square))$
- Theorem: If both L and $\sim L$ are r.e., then $L($ and $\sim L)$ is recursive.
Pf: Suppose $L=L\left(M_{1}\right)$ and $\sim L=L\left(M_{2}\right)$ for two STM M_{1} and M_{2}. Now construct a new 2 -tape TM M as follows: on input: x

1. copy x from tape 1 to tape 2. // COPY
2. Repeat \{ execute 1 step of M_{1} on tape 1 ; execute 1 step of M_{2} on tape 2 \}
until either M_{1} halts or M_{2} halts.
3. If M_{1} accepts or M_{2} rejects then [M] accept If $\mathbf{M}_{\mathbf{2}}$ accepts or \mathbf{M}_{1} rejects then [\mathbf{M}] reject. // $2+3=M_{1}| | M_{2}$ defined later
So if $x \in L=>M_{1}$ accept x or M_{2} rejects $=>M$ accept if $x \notin L=>M_{2}$ accept or M_{1} rejects $==>M$ reject. Hence M is total and $L=L(M)$ and L is recursive.

Interleaved execution of two TMs

- $M_{1}=\left(Q_{1}, \Sigma, \Gamma,\left[, \square, \delta_{1}, \mathbf{s}_{1}, t_{1}, r_{1}\right) ; M_{2}=\left(Q_{2}, \Sigma, \Gamma,\left[, \square, \delta_{2}, \mathbf{s}_{2}, \mathbf{t}_{2}, r_{2}\right)\right.\right.$ where $\delta_{1}: \mathbf{Q}_{1} \times \Gamma \rightarrow Q_{1} \times(\Gamma \mathrm{U}\{\mathrm{L}, \mathrm{R}\}) ; \delta_{2}: \mathbf{Q}_{2} \times \Gamma \cdots \mathrm{Q}_{2} \times \Gamma \mathrm{U}(\{L, R\}) ;$
$==>M={ }_{\text {def }} M_{1}| | M_{2}=\left(Q_{1} \times Q_{2} \times\{1,2\} U\{T, R\}, \Sigma, \Gamma,[, \square, \delta, s, T, R)\right.$ where

1. $\delta: Q_{1} \times Q_{2} \times\{1,2\} \times \Gamma^{2}-->\left(Q_{1} \times Q_{2} \times\{1,2\}\right) \times(\Gamma U\{L, R\})^{2}$ is given by
\square Let $\delta_{1}\left(q_{1}, a\right)=\left(p_{1}, a^{\prime}\right)$ and $\delta_{2}\left(q_{2}, b\right)=\left(p_{2}, b^{\prime}\right)$ then
$\square \delta\left(\left(q_{1}, q_{2}, 1\right),(a, b)\right)=\left(\left(p_{1}, q_{2}, 2\right), a^{\prime}, b\right)$ and
$\square \delta\left(\left(q_{1}, q_{2}, 2\right),(a, b)\right)=\left(\left(q_{1}, p_{2}, 1\right), a, b^{\prime}\right)$
2. M has initial state $s=\left(s_{1}, s_{2}, 1\right)$.
3. M has an accepting state T from states $\left\{\left(t_{1}, q_{2}, 1\right) \mid q_{2} \in Q_{2}\right\} U$ $\left\{\left(q_{1}, r_{2}, 2\right) \mid q_{1} \in Q_{1}\right\}$ and a rejecting state R from states $\left\{\left(q_{1}, t_{2}, 2\right)\right.$ $\left.\mid q_{1} \in \mathbf{Q}_{1}\right\} \cup\left\{\left(r_{1}, q_{2}, 2\right) \mid q_{2} \in \mathbf{Q}_{2}\right\}$.
$\square \delta\left(\left(t_{1}, q_{2}, 1\right),(a, b)\right) \rightarrow(T,(a, b)), \delta\left(\left(q_{1}, r_{2}, 2\right),(a, b)\right) \rightarrow(T,(a, b))$
$\square \delta\left(\left(r_{1}, q_{2}, 1\right),(a, b)\right) \rightarrow(R,(a, b)), \delta\left(\left(q_{1}, t_{2}, 2\right),(a, b)\right) \rightarrow(R,(a, b))$
4. By suitably designating halting states of M as accept or reject states, we can construct machine accepting languages that are boolean combination of $L\left(M_{1}\right)$ and $L\left(M_{2}\right)$. Ex: $T=\left\{\left(\mathbf{t}_{1}, \mathbf{q}_{2}, 1\right) \mid q_{2} \in Q_{2}\right\}$ and $R=\left\{\left(q_{1}, t_{2}, 2\right) \mid q_{1} \in Q_{1}\right\}$ in previous example.

- Proposed Computation models
— TMs (DTM, NDTM, RATM, multi-tape, 2way, multi Dimensional, multi-head, and their combinations,...)
— Grammars
[u-recursive function,
] λ-calculus
- Counter Machine
- 2STACK machine
- Post system,...
- All can be shown to have the same computation power
- Church-Turing Thesis:
\square A language or function is computable iff it is Turingcomputable (i.e., can be computed by a total TM).
— An algorithm is one that can be carried out by a total TM.

Universal Turing machine

- TMs considered so far are dedicated in the sense that each of their control store is hard-wired to solve one particular problem
- e.g., TMs for + , x, copy,...
- Problem: Is there any TM that can compute what all TMs can compute?
Yes!! we call it universal TM (UTM), which is nothing special but a general-purpose TM.
- UTM is a TM simulator,i.e., given a spec "M" of a TM M "w" (data) and a desc " w "of an input w, UTM can simulate the execution of M on \mathbf{w}.
"M" (program)

- $\mathbf{M}=(\mathbf{Q}, \Sigma, \Gamma,[, \square, \delta, \mathbf{s}, \mathbf{t}, r): \mathbf{a}$ STM.
- TM M can be described by a string (i.e., a TL-program) as follows:
- Tape symbols of M are encoded by strings from $a\{0,1\}^{*}$

प blank(\square) ==> a0 left-end [==> a1
(\quad ==> a00 L ==> a01
[others => a10,a11,a000,a001,....

- State symbols of M are encoded by strings from $q\{0,1\}^{*}$
[start state s ==> q0;
\square accept state $t==>q 1, \quad$ reject state $r==>q 00 ;$
[other states => q01,q10,q11, q111,...
- For $b \in \Gamma U\{R, L\} \cup Q$, we use $e(b) \in a\{0,1\}^{*} U q\{0,1\}^{*}$ to denote the encoding of b.

An example

- $\mathbf{M}=(\mathbf{Q}, \Sigma, \Gamma,[, \square, \delta, \mathbf{s}, \mathbf{t}, \mathbf{r})$ where
$\square Q=\{s, g, r, t\}, \Gamma=\{[, a, \square\}$ and
$\square \delta=\{(s, a, g, \square),(s, \square, t, \square),(s,[, s, R)$,
$\square \quad(g, a, s, a),(g, U, s, R),(g,[, r, R)\}$
=E>
\square Suppose state and tape symbols are represented in TL as follows:
[s => q0; t => q1; r => q00; g => q01
- प => a0; [=> a1; R => a00; L => a01;
- a => a10
\square Hence a string: ‘[aa $\square a$ ' $\in \Gamma^{*}$ can be encoded in TL as
$\square \mathbf{e}\left([a a \square a)="\left[a a \square a "=_{\text {def }}\right.\right.$ a1a10a10a0a10

Describe a TM by TL

- Let $\delta=\left\{\alpha_{j} \mid \alpha_{j}=\left(p_{j}, a_{j}, q_{j}, b_{j}\right) ; j=1\right.$..n\} be the set of all instructions. ==>
- M can be encoded in TL as a string
$\square \mathrm{e}(\mathrm{M})=$ "M" $\in\left\{q, a, 0,1,[,(,), ’\}^{*}\right.$
ロ

$$
=_{\text {def }} \mathbf{e}\left(\alpha_{1}\right), \mathbf{e}\left(\alpha_{2}\right), \mathrm{e}\left(\alpha_{3}\right), \ldots, \mathrm{e}\left(\alpha_{n}\right)
$$

\square where for $\mathrm{j}=1$ to n ,
-
\square ex: for the previous example: we have
$\square \delta=\{(\mathbf{s}, \mathbf{a}, \mathbf{g}, \square),(\mathbf{s}, \square, \mathbf{t}, \square),(\mathbf{s},[, \mathbf{s}, \mathbf{R})$,

- ($\mathrm{g}, \mathrm{a}, \mathrm{s}, \mathrm{a}$), ($\mathrm{g}, \mathrm{U}, \mathrm{s}, \mathrm{R}),(\mathrm{g},[\mathrm{r}, \mathrm{R})\}$ hence
[e(M) ="M" = '(q0,a10,q01,a0),(q0,a0,q1,a0),...
\square
...,(q01,a1,q00,a00)'

TL and UTM U

- Let $\Sigma_{0}=\{q, a, 0,1,(),,\}=,=>$ the set of TL-programs,

$$
\text { TL }=_{\operatorname{def}}\{x \mid x=e(M) \text { for some STM M }\}
$$

is the set of all string representations of STMs.
and $\Gamma_{0}=\Sigma_{0} \mathrm{U}\{\square,[\}$ is the tape alphabet of UTM U .
Note: Not only encoding TMs, TL can also encode data.

- Relationship between TM, input and UTM:

Note: if such U exists, then we need not implement other TMs

- We use $\mathrm{U}(\mathrm{e}(\mathrm{M}) \mathrm{e}(\mathrm{w})$) to denote the result of UTM U on executing input $\mathrm{e}(\mathrm{M}) \mathrm{e}(\mathrm{w})$.
- U will be shown to have the property: for all machine M and input w,

M halts on input w with result $M(w)$ iff
U halts on input $e(M) e(w)$ with result $e(M(w))$
i.e., e(M(w)) = U(e(M)e(w)).

- U can be designed as a 3-tape TM.
\square 1st tape : first store input "M" "w"; and then used as the [only working] tape of M and finally store the output.
- 2nd tape: store the program "M" (instruction table)
— 3rd tape: store the current state of M (program counter)
- U behaves as follows:

1. [Initially:]
\square 1. copy " M " from 1st tape to 2nd tape.
— 2. shift "w" at the 1st tape down to the left-end
\square 3. place ' $q 0$ ' at the 3rd tape (PC).
2. [simulation loop:] // between each simulation step, 2,3rd tape heads point to left-end; and 1st tape head points to the a pos of the encoded version of the symbol which the simulated machine M would be scanning.
Each step of M is simulated by U as follows:
2.1 [halt or not] If PC =e(t) or $e(r)==>$ acept or reject, respectively.
2.2 [Instruction fetch] U scans its 2nd tape until it finds a tuple ($q \alpha, a \beta, q \gamma, a \lambda$) s.t. (1) q α matches PC and (2) $a \beta$ matches 1st tape's encoded scanned symbol

2.3 [Instruction execution] :

\square 1. change PC to $q \gamma$.
\square 2. perform action suggested by $a \lambda$.
\square if $a \lambda=e(b)$ with $b \in \Gamma==>$ write $a \lambda$ at the 1st tape head pos.
\square if $a \lambda=e(L) \quad==>U$ move 1 st tape head to the previous
a position.
] if $a \lambda=e(R)==>U$ move 1st tape head to the next a position or append aO^{J} to the 1st tape in case such an 'a' cannot be found.

Theorem: M(w) accepts, rejects or does not halt iff U("M"3"w") accepts, rejects or does not halt, respectively.

