
 Transparency No. P3C2-1

Formal Language
and Automata Theory

PART III

Chapter 2

Other Equivalent models of

Standard Turing machine

Equivalent TM models

 Transparency No. P3C3-2

Outline

 Equivalent models of Turing machine

 multi-tape TMs

 2way TMs

 multi-head TMs

 2Dimensional TMs

 2Stack machine

 Counter machine

 Nondeterministic TMs

 Universal TM

Equivalent TM models

 Transparency No. P3C3-3

multi-tape TM

 A k-tape (k 1) Turing machine is a 9-tuple

 M = (Q,S,G, , , d, s, t,r) where

 Q : is a finite set of (program) states like labels in
traditional programs

 G : tape alphabet

 S G : input alphabet

 G - S : The left end-of-tape mark

 G - S is the blank tape symbol

 s Q : initial state

 t Q : the accept state

 r t Q: the reject state and

 d: (Q - {t,r})x Gk --> Qx(G{L,R})k is a total transition
function with the restriction: if d(p, x1,...,xk) =(q, y1,...,yk)
then if xj = ==> yj = [or R. i.e., the TM cannot overwrite
other symbol at left-end and never move off the tape to
the left.

Equivalent TM models

 Transparency No. P3C3-4

.

.

.

.

accept final state

reject final state

current state

initial state

control store (program)

permitted actions:

1. read/write

2. move left/right

depending on scanned symbols

and current state

3-tape Turing machine

 x1 x2 x3 x4 x5 .. xn ….

 y1 y2 y3 y4 y5 .. yn ….

 z1 z2 z3 z4 z5 .. zn ….

[

[

[

Equivalent TM models

 Transparency No. P3C3-5

Equivalence of STMs and Multi-tape TMs

 M = (Q,S,G, , , d, s, t,r): a k-tape TMs

 ==> M can be simulated by a k-track STM

 M’ = (Q’,S,G’, , , d’, s, t’,r’) where

 G’= G U (GUG)k where G = { a | a G}.

 M’ = init M’’ where the task of Init is to convert initial input

tape content : [x1x2...xn w into

 and then go to the initial state s’’ of M’’ to start simulation of

M.

 Each state q of M is simulated by a submachine Mq of M’’ as

follows:

[

[

[

[

x1 x2 ... xn

 ...

Equivalent TM models

 Transparency No. P3C3-6

 x1 x2 x3 x4 x5 .. xn …. [

 y1 y2 y3 y4 y5 .. yn …. [

Q(q)

 x1 x2 x3 x4 x5 .. xn …. [

 y1 y2 y3 y4 y5 .. yn …. [

Q’(q)

[

is simulated by

Equivalent TM models

 Transparency No. P3C3-7

[

[

[

[

x1 x2 ... xn

s’’

[

[

[

x1 x2 ... xn

s

[x1 x2 x3 ... xn

s'

Init

simulate

1. R until ; L

2. case (I/P) of

 'a'G\ '[' =>

 R,(a, ,),L,L, goto2

 '[' => R,([,[,[),L

Equivalent TM models

 Transparency No. P3C3-8

How does M’’ simulate M ?

 let (q, x1, p1, y
1),...,(q, xm,pm,ym) be the set of all instructions

(starting from state q) having the form d(q, xi) = (pi,y
i), where xi,yi =

(xi
1,x

i
2,...,x

i
k), (y

i
1,y

i
2,...,y

i
k). Then Mq behaves as follows:

0. [terminate?] if q = t then accept; if q = r then reject.

1. [determine what symbols are scanned by tape heads]

 for j = 1 to k do { // determine symbol scanned by jth head

 move right until the symbol at the jth track is underlined,

 remember which symbol is underlined (say aj) in the control store
and then move to left end.}

2. [perform action:d(q, a1,...,ak) = (p, b1,...,bk) for each tape head]

 for j= 1 to k do{ // perform bj at the jth tape

case1. bj = bG==>Move R until aj; replace symbol aj at jth track by bj

case2. bj = R ==>Move R unitl aj, replace aj by aj and underline its
right neighbor symbol.

case3: bj = L. Similar to case 2. Finally move to left end. }

3. [go to next state] go to start state of Mp to simulate M at state p.

Equivalent TM models

 Transparency No. P3C3-9

Running time analysis

 How many steps of M’’ are needed to simulate one step of

execution of M ?

 Sol:

 Assume the running time of M on input x of length n is f(n).

 step 1 requires time : O(k x 2 f(n))

 Step 2 requires time: O(k x 2 f(n))

 Step 3 requires O(1) time

 => Each step requires time O(4k x f(n)).

 and total time required to simulate M = f(n) x O(4k f(n))

 = O (f(n)2).

Equivalent TM models

 Transparency No. P3C3-10

Turing machine with 2 way infinite tape

 A 2way single tape Turing machine is a 8-tuple

 M = (Q,S,G, , , d, s, t,r) where

 Q : is a finite set of (program) states like labels in
traditional programs

 G : tape alphabet

 S G : input alphabet

 G - S : The left end-of-tape mark (no longer needed!!)

 G - S is the blank tape symbol

 s Q : initial state

 t Q : the accept state

 r t Q: the reject state and

 d: (Q - {t,r})x G --> Qx(G{L,R}) is a total transition function.

Equivalent TM models

 Transparency No. P3C3-11

... a b a a b b c c a b c c a a b b c c b b

q

2 way infinite tape

fold here!

 a b b c c a b c c a a b b c c b b

a b a
[

(q, up)

simulated by

1 way infinite tape

Equivalent TM models

 Transparency No. P3C3-12

 M = (Q,S,G, , d, s, t,r): a 2way TM

 ==> M can be simulated by a 2-track STM:

 M’ = (Q’,S,G’, , , d’, s, t’,r’) where

 Q’ = Q U (Qx{u,d}) U {...},

 G’= G U G2 U{ [},

 M’ = init M’’ where the task of Init is to convert initial
input tape content : w x1x2...xnw into

and then go to the initial state s’’ of M’’ to start simulation of M.

 Each instruction of M is simulated by one or two instructions
of M’’ as follows:

Equivalence of STMs and 2way TMs

[
x1 x2 ... xn

 ...

Equivalent TM models

 Transparency No. P3C3-13

How to simulate 2way tape TM using 1way tape TM

Let d(q,x) = (p, y) be an instruction of M then:

case 1: y G

 ==> d’’((q,u), (x,z)) =((p,u),(y,z)) and

 d’’((q,d),(z,x)) = ((p,d), (z,y)) for all z G

case2 : y = R.

 ==> d’’((q,u), (x,z)) =((p,u),R) and d’’((q,d),(z,x)) = ((p,d), L)

 for all z G.

case 3: y = L.

 ==> d’’((q,u), (x,z)) =((p,u),L) and d’((q,d),(z,x)) = ((p,d), R)

 for all z G.

+additional conditions

 1. left end => change direction:

 d’’((q,u), [) = ((q,d),R), d’’((q,d),[)=((q,u),R) for all q {t,r}.

 2. (,): d’’((q, a),) = ((q, a), (,))

Equivalent TM models

 Transparency No. P3C3-14

Properties of r.e. languages

 Theorem: If both L and ~L are r.e., then L (and ~L) is
recursive.

Pf: Suppose L=L(M1) and ~L = L(M2) for two STM M1 and M2.

 Now construct a new 2 -tape TM M as follows:

 on input: x

 1. copy x from tape 1 to tape 2. // COPY

 2. Repeat { execute 1 step of M1 on tape 1;

 execute 1 step of M2 on tape 2 }

 until either M1 halts or M2 halts.

 3. If M1 accepts or M2 rejects then [M] accept

 If M2 accepts or M1 rejects then [M] reject. // 2+3 = M1 || M2

defined later

So if x L => M1 accept x or M2 rejects => M accept

 if x L => M2 accept or M1 rejects ==> M reject.

 Hence M is total and L =L(M) and L is recursive.

Equivalent TM models

 Transparency No. P3C3-15

Interleaved execution of two TMs

 M1 = (Q1,S,G, , , d1, s1, t1,r1) ; M2 = (Q2,S,G, , , d2, s2, t2,r2) where

 d1: Q1 x G --> Q1 x (G U{L,R}); d2: Q2 x G --> Q2 x G U({L,R});

==> M =def M1 || M2 = (Q1xQ2x{1,2}U{T,R} , S,G, , , d,s,T,R) where

1. d: Q1xQ2x{1,2}x G 2 --> (Q1xQ2x{1,2}) x (G U{L,R})2 is given by

 Let d1(q1,a) = (p1,a’) and d2(q2,b) = (p2,b’) then

 d ((q1,q2,1),(a,b)) = ((p1,q2,2), a’,b) and

 d ((q1,q2,2),(a,b)) = ((q1,p2,1), a,b’)

2. M has initial state s = (s1,s2,1).

3. M has an accepting state T from states {(t1,q2,1) | q2 Q2} U
{(q1,r2,2) | q1 Q1} and a rejecting state R from states {(q1,t2,2)
| q1 Q1} U {(r1,q2,2) | q2 Q2}.

 d((t1,q2,1),(a,b)) (T,(a,b)), d((q1,r2,2),(a,b)) (T,(a,b))

 d((r1,q2,1),(a,b)) (R,(a,b)), d((q1,t2,2),(a,b)) (R,(a,b))

4. By suitably designating halting states of M as accept or reject states, we
can construct machine accepting languages that are boolean combination
of L(M1) and L(M2). Ex: T = {(t1,q2,1) | q2 Q2} and R = {(q1,t2,2) | q1 Q1} in
previous example.

Equivalent TM models

 Transparency No. P3C3-16

A programming Language for TMs and Universal TM

 Proposed Computation models

 TMs (DTM, NDTM, RATM, multi-tape, 2way, multi

Dimensional, multi-head, and their combinations,...)

 Grammars

 u-recursive function,

 l-calculus

 Counter Machine

 2STACK machine

 Post system,...

 All can be shown to have the same computation power

 Church-Turing Thesis:

 A language or function is computable iff it is Turing-

computable (i.e., can be computed by a total TM).

 An algorithm is one that can be carried out by a total TM.

Equivalent TM models

 Transparency No. P3C3-17

Universal Turing machine

 TMs considered so far are dedicated in the sense that each

of their control store is hard-wired to solve one particular

problem

 e.g., TMs for +, x, copy,...

 Problem: Is there any TM that can compute what all TMs can

compute ?

 Yes!! we call it universal TM (UTM), which is nothing special

but a general-purpose TM.

 UTM is a TM simulator,i.e.,

given a spec “M” of a TM M

 and a desc “w”of an input w,

UTM can simulate the

execution of M on w.

UTM

(general-purpose

computer)

“w” (data)

“M” (program)

“M(w)”

Equivalent TM models

 Transparency No. P3C3-18

UTM

(general-purpose

computer)

“w” (data)

“M” (program)

“M(w)”

Equivalent TM models

 Transparency No. P3C3-19

TL : a programming language for TMs

 M = (Q,S,G, , , d, s, t,r) : a STM.

 TM M can be described by a string (i.e., a TL-program) as

follows:

 Tape symbols of M are encoded by strings from a{0,1}*

 blank() ==> a0 left-end [==> a1

 R ==> a00 L ==> a01

 others => a10,a11,a000,a001,….

 State symbols of M are encoded by strings from q{0,1}*

 start state s ==> q0;

 accept state t ==> q1, reject state r ==> q00;

 other states => q01,q10,q11, q111,…

 For b GU{R,L} U Q, we use e(b) a{0,1}* U q{0,1}* to

denote the encoding of b.

Equivalent TM models

 Transparency No. P3C3-20

An example

 M = (Q,S,G, , , d, s, t,r) where

 Q = {s, g, r,t }, G = { [, a, } and

 d = { (s, a, g,), (s, ,t,), (s, [, s, R),

 (g, a, s, a), (g, U, s, R), (g, [, r, R) }

==>

 Suppose state and tape symbols are represented in TL as

follows:

 s => q0 ; t => q1; r => q00; g => q01

 => a0; [=> a1; R => a00; L => a01;

 a => a10

 Hence a string: ‘[aaa’ G* can be encoded in TL as

 e([aaa) = “[aaa” =def a1a10a10a0a10

Equivalent TM models

 Transparency No. P3C3-21

Describe a TM by TL

 Let d = { aj | aj = (pj, aj, qj, bj); j = 1 ..n} be the set of all

instructions. ==>

 M can be encoded in TL as a string

 e(M) = “M” {q,a,0,1,[, (,),，}*

 =def e(a1),e(a2),e(a3),...,e(an)

 where for j = 1 to n,

 e(aj) =def ‘(‘ e(pj) ‘,’ e(aj) ‘,’ e(qj) ‘,’ e(bj) ‘)’

 ex: for the previous example: we have

 d = { (s, a, g,), (s, ,t,), (s, [, s, R),

 (g, a, s, a), (g, U, s, R), (g, [, r, R) } hence

 e(M) =“M” = ‘(q0,a10,q01,a0),(q0,a0,q1,a0),...

 ...,(q01,a1,q00,a00)’

Equivalent TM models

 Transparency No. P3C3-22

TL and UTM U

 Let S0= {q,a,0,1,(,),，} ==> the set of TL-programs,

 TL =def { x | x = e(M) for some STM M }

 is the set of all string representations of STMs.

and G0 = S0 U { ,[} is the tape alphabet of UTM U.

Note: Not only encoding TMs, TL can also encode data.

 Relationship between TM, input and UTM:

Note: if such U exists,

then we need not

 implement other TMs

STM M

UTM U

w M(w)

e(M) e(w) e(M(w))

encoding decoding

Equivalent TM models

 Transparency No. P3C3-23

The design of UTM U

 We use U(e(M)e(w)) to denote the result of UTM U on

executing input e(M)e(w).

 U will be shown to have the property: for all machine M and

input w,

 M halts on input w with result M(w) iff

 U halts on input e(M)e(w) with result e(M(w))

 i.e., e(M(w)) = U(e(M)e(w)).

 U can be designed as a 3-tape TM.

 1st tape : first store input “M” “w”; and then used as the

[only working] tape of M and finally store the output.

 2nd tape: store the program “M” (instruction table)

 3rd tape: store the current state of M (program counter)

Equivalent TM models

 Transparency No. P3C3-24

 U behaves as follows:

1. [Initially:]

 1. copy “M” from 1st tape to 2nd tape.

 2. shift “w” at the 1st tape down to the left-end

 3. place ‘q0’ at the 3rd tape (PC).

2. [simulation loop:] // between each simulation step, 2,3rd tape

heads point to left-end; and 1st tape head points to the a pos

of the encoded version of the symbol which the simulated

machine M would be scanning.

Each step of M is simulated by U as follows:

2.1 [halt or not] If PC =e(t) or e(r) ==> acept or reject,

respectively.

2.2 [Instruction fetch] U scans its 2nd tape until it finds a

tuple (qa,ab,qg,al) s.t. (1) qa matches PC and (2) ab

matches 1st tape’s encoded scanned symbol

Equivalent TM models

 Transparency No. P3C3-25

2.3 [Instruction execution] :

 1. change PC to qg.

 2. perform action suggested by al.

 if al = e(b) with bG ==> write al at the 1st tape head pos.

 if al = e(L) ==> U move 1st tape head to the previous

 a position.

 if al = e(R) ==> U move 1st tape head to the next a

 position or append a0J to the 1st tape in

 case such an ‘a’ cannot be found.

Theorem: M(w) accepts, rejects or does not halt iff U(“M””w”)

accepts, rejects or does not halt, respectively.

