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Outline 

 Equivalent models of Turing machine 

 multi-tape TMs 

 2way TMs 

 multi-head TMs 

 2Dimensional  TMs 

 2Stack machine 

 Counter machine 

 Nondeterministic TMs 

 

 Universal TM 
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multi-tape TM 

 A k-tape ( k 1) Turing machine is a 9-tuple 

                  M = (Q,S,G, , , d, s, t,r ) where  

 Q : is a finite set of (program) states like labels in  
traditional programs 

 G         :   tape alphabet 

 S  G : input alphabet 

   G - S  : The left end-of-tape mark 

   G - S is the blank tape symbol 

 s  Q : initial state 

 t  Q : the accept state 

 r  t  Q: the reject state and 

 d: (Q - {t,r})x Gk --> Qx(G{L,R})k is a total transition 
function with the restriction: if d(p, x1,...,xk) =(q, y1,...,yk) 
then if xj =  ==> yj = [ or R. i.e., the TM cannot overwrite 
other symbol at left-end and never move off the tape to 
the left. 
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accept final state 

reject final state 

current state 

initial state 

control store (program) 

permitted actions: 

1. read/write 

2. move left/right 

depending on scanned symbols 

and current state 

3-tape Turing machine 

 x1  x2   x3  x4   x5 ..    xn …. 

 y1  y2   y3  y4   y5 ..    yn …. 

 z1  z2   z3  z4   z5 ..    zn …. 

[ 

[ 

[ 
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Equivalence of STMs and Multi-tape TMs 

 M = (Q,S,G, , , d, s, t,r ): a k-tape TMs 

 ==> M can be simulated by a k-track STM 

   M’ = (Q’,S,G’, ,  , d’, s, t’,r’ ) where 

 G’= G U (GUG)k where G = { a | a  G}. 

 M’ = init  M’’ where the task of Init is to convert initial input 

tape content :  [x1x2...xn w      into  

 

 

 

 

   and then go to the initial state s’’ of M’’ to start simulation of 

M. 

 Each state q of M is simulated by a submachine Mq of  M’’ as 

follows: 
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[ 

[ 

[ 

x1 x2   ...   xn 

        ....    

        ...     
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 x1  x2   x3  x4   x5 ..    xn …. [ 

 y1  y2   y3  y4   y5 ..    yn …. [ 

Q(q) 

 x1  x2   x3  x4   x5 ..    xn …. [ 

 y1  y2   y3  y4   y5 ..    yn …. [ 

Q’(q) 

[ 

is simulated by 
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[ 

x1 x2  ...   xn 

    

s’’ 

[ 

[ 

[ 

x1 x2  ...   xn 

       ....        

s 

[ x1 x2  x3   ...   xn     

s' 

Init 

simulate 

1. R until  ; L 

2. case (I/P) of 

     'a'G\ '['  => 

         R,(a, , ),L,L, goto2 

     '['            => R,([,[,[),L 

       ....    

       ....    

       ....    
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How does M’’ simulate M ? 

 let (q, x1, p1, y
1),...,(q, xm,pm,ym) be the set of all instructions 

(starting from state q) having the form d(q, xi) = (pi,y
i), where  xi,yi = 

(xi
1,x

i
2,...,x

i
k), (y

i
1,y

i
2,...,y

i
k). Then Mq behaves as follows: 

0. [terminate?] if q = t then accept; if q = r then reject. 

1. [determine what symbols are scanned by tape heads] 

    for j = 1 to k do {  // determine symbol scanned by jth head 

    move right until the symbol at the jth track is underlined, 

    remember which symbol is underlined (say aj) in the control store 
and then move to left end.} 

2. [perform action:d(q, a1,...,ak) = (p, b1,...,bk) for each tape head] 

    for j= 1 to k do{   //  perform bj at the jth tape 

case1. bj = bG==>Move R until aj; replace symbol aj at jth track by bj 

case2. bj = R ==>Move R unitl aj, replace aj by aj and underline its 
right neighbor symbol.   

case3: bj = L. Similar to case 2.    Finally move to left end. } 

3. [go to next state] go to start state of Mp to simulate M at state p. 
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Running time analysis 

 How many steps of M’’ are needed to simulate one step of  

execution of M ? 

 Sol: 

 Assume the running time of M on input x of length n is f(n). 

 step 1 requires time : O(k x 2 f(n))  

 Step 2 requires time: O( k x 2 f(n)) 

 Step 3 requires O(1) time 

 => Each step requires time O(4k x f(n)). 

 and total time required to simulate M = f(n) x O(4k f(n))  

       = O (f(n)2). 
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Turing machine with 2 way infinite tape 

 A 2way single tape Turing machine is a 8-tuple 

                  M = (Q,S,G, , , d, s, t,r ) where  

 Q : is a finite set of (program) states like labels in  
traditional programs 

 G         :   tape alphabet 

 S  G : input alphabet 

   G - S  : The left end-of-tape mark (no longer needed!!) 

   G - S is the blank tape symbol 

 s  Q : initial state 

 t  Q : the accept state 

 r  t  Q: the reject state and 

 d: (Q - {t,r})x G --> Qx(G{L,R}) is a total transition function. 
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...    a b a a b b c c a b c c a a b b c c b b   ....... 

q 

2 way infinite tape 

fold here! 

                         a b b c c  a  b  c  c  a a  b  b  c c b  b  

a b a                        
[ 

(q, up) 

simulated by 

1 way infinite tape 
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 M = (Q,S,G,  , d, s, t,r ): a 2way TM 

 ==> M can be simulated by a 2-track STM: 

   M’ = (Q’,S,G’, ,  , d’, s, t’,r’ ) where  

 Q’ = Q U (Qx{u,d}) U {...}, 

 G’= G U G2 U{ [ }, 

 M’ = init  M’’ where the task of Init is to convert initial 
input tape content :  w x1x2...xnw      into  

 

 

 

 

  

and then go to the initial state s’’ of M’’ to start simulation of M. 

 Each instruction of M is simulated by one or two instructions 
of M’’ as follows: 

 

 

Equivalence of STMs and 2way TMs 

 

 

                                                     

[ 
x1  x2  ...  xn 

       ...   
     .... 
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How to simulate 2way tape TM using 1way tape TM 

Let  d(q,x) = (p, y) be an instruction of M then: 

case 1:  y  G 

 ==> d’’((q,u), (x,z) ) =((p,u),(y,z)) and  

        d’’((q,d),(z,x)) = ((p,d), (z,y)) for all z  G 

case2 : y = R. 

 ==> d’’((q,u), (x,z)) =((p,u),R) and d’’((q,d),(z,x)) = ((p,d), L) 

        for all z  G. 

case 3: y = L. 

 ==> d’’((q,u), (x,z)) =((p,u),L) and d’((q,d),(z,x)) = ((p,d), R) 

  for all z  G. 

+additional conditions 

 1.  left end => change direction: 

   d’’((q,u), [) = ((q,d),R), d’’((q,d),[)=((q,u),R) for all q {t,r}. 

 2.   (, ):   d’’((q, a), )  = ((q, a), (, )) 
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Properties of r.e. languages 

 Theorem: If both L and ~L are r.e., then L ( and ~L) is 
recursive. 

Pf: Suppose L=L(M1) and ~L = L(M2) for two STM M1 and M2. 

  Now construct a new 2 -tape TM M as follows: 

 on input: x 

 1. copy x from tape 1 to tape 2.    //  COPY 

 2.  Repeat { execute 1 step of M1 on tape 1; 

                      execute 1 step of M2 on tape 2 } 

      until either M1 halts or M2 halts.  

 3. If M1 accepts or M2 rejects then [M] accept  

    If  M2 accepts or M1 rejects then [M] reject.  // 2+3 = M1 || M2 

defined later 

So if x  L => M1 accept x or M2 rejects => M accept 

      if x L => M2 accept or M1 rejects ==> M reject. 

    Hence M is total and L =L(M) and L is recursive. 
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Interleaved  execution of two TMs 

 M1 = (Q1,S,G, ,  , d1, s1, t1,r1 ) ; M2 = (Q2,S,G, ,  , d2, s2, t2,r2 ) where 

 d1: Q1 x G --> Q1 x (G U{L,R}); d2: Q2 x G --> Q2 x G U({L,R}); 

==> M =def M1 || M2 = (Q1xQ2x{1,2}U{T,R} , S,G, , , d,s,T,R) where 

1. d: Q1xQ2x{1,2}x G 2 --> (Q1xQ2x{1,2}) x (G U{L,R})2 is given by 

 Let d1(q1,a) = (p1,a’) and d2(q2,b) = (p2,b’) then 

 d ((q1,q2,1),(a,b)) = ((p1,q2,2), a’,b) and 

 d ((q1,q2,2),(a,b)) = ((q1,p2,1), a,b’) 

2. M has initial state s = (s1,s2,1). 

3. M has an accepting state T from states {(t1,q2,1) | q2  Q2} U 
{(q1,r2,2) | q1  Q1} and a rejecting state R from states {(q1,t2,2) 
| q1  Q1} U {(r1,q2,2) | q2  Q2}. 

 d((t1,q2,1),(a,b)) (T,(a,b)), d((q1,r2,2),(a,b)) (T,(a,b)) 

 d((r1,q2,1),(a,b)) (R,(a,b)), d((q1,t2,2),(a,b)) (R,(a,b)) 

4. By suitably designating halting states of M as accept or reject states, we 
can construct machine accepting languages that are boolean combination 
of L(M1) and L(M2). Ex: T = {(t1,q2,1) | q2  Q2} and R = {(q1,t2,2) | q1  Q1}  in 
previous example. 
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A programming Language for TMs and Universal TM 

 Proposed Computation models 

 TMs ( DTM, NDTM, RATM, multi-tape, 2way, multi 

Dimensional, multi-head, and their combinations,...) 

 Grammars  

 u-recursive function, 

 l-calculus 

 Counter Machine 

 2STACK machine 

 Post system,... 

 All can be shown to have the same computation power 

 Church-Turing Thesis: 

 A language or function is computable iff  it is Turing-

computable (i.e., can be computed by a total TM). 

 An algorithm is one that can be carried out by a total TM. 
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Universal Turing machine 

 TMs considered so far are dedicated in the sense that each 

of their control store is hard-wired to solve one particular 

problem  

 e.g., TMs for +, x, copy,... 

 Problem: Is there any TM that can compute what all  TMs can 

compute ? 

 Yes!! we call it universal TM (UTM), which is nothing special 

but a general-purpose TM. 

 UTM is a TM simulator,i.e., 

given a spec “M” of a TM M 

 and a desc “w”of an input w,  

UTM can simulate the  

execution  of M on w. 

UTM 

(general-purpose 

computer) 

“w” (data) 

“M” (program) 

“M(w)” 
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UTM 

(general-purpose 

computer) 

“w” (data) 

“M” (program) 

“M(w)” 
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TL : a programming language for TMs 

 M = (Q,S,G, , , d, s, t,r ) : a STM. 

 TM M can be described by a string (i.e., a TL-program) as 

follows: 

 Tape symbols of M are encoded by strings from a{0,1}* 

 blank()  ==>   a0  left-end [ ==> a1 

             R ==> a00     L ==> a01 

 others => a10,a11,a000,a001,…. 

 State symbols of M are encoded by strings from q{0,1}* 

 start state s ==> q0;       

 accept state t ==> q1,     reject state r ==> q00;   

 other states => q01,q10,q11, q111,… 

 For b  GU{R,L} U Q, we use e(b)  a{0,1}* U q{0,1}* to 

denote the encoding of b. 
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An example 

 M = (Q,S,G, ,  , d, s, t,r ) where 

 Q = {s, g, r,t }, G = { [, a, } and  

 d = { (s, a, g,  ), (s,  ,t,  ), (s, [, s, R), 

          (g, a, s, a),  (g, U, s, R), (g, [, r, R)  } 

==>  

 Suppose state and tape symbols are represented in TL as 

follows: 

 s => q0 ; t => q1; r => q00; g => q01 

  => a0;  [ => a1;  R => a00; L => a01; 

 a => a10 

 Hence a string: ‘[aaa’  G* can be encoded in TL as 

 e([aaa) = “[aaa” =def a1a10a10a0a10      
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Describe a TM by TL 

 Let d = { aj | aj = (pj, aj, qj, bj); j = 1 ..n} be the set of all 

instructions. ==> 

  M can be encoded in TL as a string 

 e(M) = “M” {q,a,0,1,[, (,),，}*  

          =def  e(a1),e(a2),e(a3),...,e(an)  

 where for j = 1 to n,   

            e(aj) =def ‘(‘ e(pj) ‘,’ e(aj) ‘,’ e(qj) ‘,’ e(bj) ‘)’ 

 ex: for the previous example: we have 

 d = { (s, a, g, ), (s, ,t, ), (s, [, s, R), 

          (g, a, s, a),  (g, U, s, R), (g, [, r, R)  }  hence 

 e(M) =“M” = ‘(q0,a10,q01,a0),(q0,a0,q1,a0),... 

             ...,(q01,a1,q00,a00)’ 
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TL and UTM U 

 Let S0= {q,a,0,1,(,),，} ==>  the set of TL-programs,  

     TL =def { x | x = e(M) for some STM M } 

    is the set of all string representations of STMs. 

and G0 = S0 U { ,[ }  is the tape alphabet of UTM U. 

Note: Not only encoding TMs, TL can also encode data. 

 Relationship between TM, input and UTM: 

 

Note: if such U exists, 

then we need not 

 implement other TMs 

 

STM M 

UTM U 

w M(w) 

e(M) e(w) e(M(w)) 

encoding decoding 
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The design of  UTM U 

 We use U(e(M)e(w) ) to denote the result of UTM U on 

executing input e(M)e(w). 

 U will be shown to have the property: for all machine M and 

input w, 

          M halts on input w with result M(w) iff  

          U halts on input e(M)e(w) with result e(M(w))  

       i.e., e(M(w)) = U(e(M)e(w)). 

 U can be designed as a 3-tape TM. 

 1st tape : first store input “M” “w”; and then used as  the 

[only working ] tape of M and finally store the output. 

 2nd tape: store the program “M” (instruction table) 

 3rd tape: store the current state of M (program counter) 
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 U behaves as follows: 

1. [Initially:] 

 1. copy “M” from 1st tape to 2nd tape. 

 2. shift “w” at the 1st tape down to the left-end 

 3. place ‘q0’ at the 3rd tape (PC). 

2. [simulation loop:] // between each simulation step, 2,3rd tape 

heads point to left-end; and 1st tape head points to the a pos 

of the encoded version of the symbol which the simulated 

machine M would be scanning. 

Each step of M is simulated by U as follows: 

2.1  [halt or not] If PC =e(t) or e(r) ==> acept or reject, 

respectively. 

2.2 [Instruction fetch] U scans its 2nd tape until it finds a 

tuple (qa,ab,qg,al) s.t. (1) qa matches PC and (2) ab 

matches 1st tape’s encoded scanned symbol 
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2.3 [Instruction execution] :  

 1. change PC to qg. 

 2. perform action suggested by al. 

  if al = e(b) with bG ==> write al at the 1st tape head pos. 

  if al = e(L)    ==> U move 1st tape head to the previous 

                                a position. 

  if al = e(R)   ==> U move 1st tape head to the next a  

                               position or append a0J to the 1st tape in 

                               case such an ‘a’ cannot be found. 

 

Theorem: M(w) accepts, rejects or does not halt iff U(“M””w”) 

accepts, rejects or does not halt, respectively. 

 


