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The Halting Problem 

 L : any of your favorite programming languages (C, C++, Java, BASIC, 

TuringLang, etc. ) 

 Assumption: Every L-program P has a source representation(string?) “P” 

that can be used as an input of L-programs.  

 If P accepts a string as input, we can invoke P with its source “P" to get 

the result P(“P"). Note This is always true provided L is a general purpose 

language. 

 Problem: Design an L-program HALT(String, String) :boolean such that, when 

invoked with the source "P" of any L-program P(-) and a string X as input,    

    HALT("P", X), will  

 return true if  P(X) halt, and 

 return false if P(X) does not halt. 

 Note: we don’t care about the returned value if the first input is not passed 

the source of a program which requires a string input. 

 The problem of ,given (the source "P" of ) an  (L-)program P and a data X, 
determining if P will halt on input X is called the halting problem [for L]. 

 It can be shown that the halting problem is undecidable (or unsolvable) 
[i.e.,An L-program HALT(.,.) with the above behavior does not exist!!] 
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Halt("P",X) does not exist 
 Ideas leading   to the proof: 

Problem1 : What about the truth value of the sentences: 

 1.    L:  What "L" describes is false  

      2.          I am lying. 
 

Problem 2 : Let S = {X | X X}. Then does S belong to S or not ? 

The  analysis: S  S => S  S;  S  S => S  S. 

 

Problem 3 : 矛盾說: 1. 我的矛無盾不穿 2. 我的盾可抵擋所有茅 

     結論: 1. 2. 不可同時為真。 

 

Problem 4 : 萬能上帝: 萬能上帝無所不能 => 可創造一個不服從他的子民 

                             => 萬能上帝無法使所有子民服從=> 萬能上帝不是萬能 .  

      結論:萬能上帝不存在。 

 

Conclusion:  

 1. S is a class(,which could not be a member of  any class/set,) but not a set!! 

 2. If a language is too powerful, it may produce expressions that is 
meaningless or can not be realized. 

 Question: If HALT(P,X) can be programmed, will it incur any absurd result like the 
case of S? 

      Ans: yes!! 
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The proof 

 Assume HALT(String,String) does exist (i.e, can be written as 

an L-program). 

 Now construct a new program Diag(String) with HALT() as  a 
subroutine as follows: For any input string S, 

    Diag(S) {    L1:  if HALT(S,S) then goto L1 ; // while(HALT(S,S)); 

                       L2:  end.    }                                 //   

 Properties of Diag(): 

 1. Diag(S) halts iff HALT(S,S) returns false. 

 2. Hence if S= "P" is the source of a program P ==> 

    Diag("P") halts iff HALT("P","P") returns false  

           iff P does not halt on "P" (i.e., P("P") does not halt). 

 The absurd result: Will Diag() halt on input "diag" ? 

   Diag("Diag") halts <=> Diag("Diag") does not halt. --- by(2) 

    a contradiction!! Hence both Diag and HALT could not be 

implemented as an L-program. 
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Analysis of diag("p") and HALT("p","p") 

"p1" "p2" "p3" … "pk"  "diag" … … 

p1 0 

p2 1 

p3 1 

… …. 

pk 1 

diag 1 0 0 … 0  x ~x 0 … 

… 1 

… … 

1. Let p1,p2,… be the set of all programs accepting one string input. 

2. cell(m,n) = 1/0 means m(n) halts/does not halt. 

3. The diagonal row diag(.) corresponds to the complement of  p("p"). 

4. if the diagonal row could be decided by the program HALT("p","p")  then  

    the diag() program would  

    exist (= pm for some m ). 

5. Property of diag("pj") : 

    pj("pj") halts iff  

   diag("pj") does not halt. 

4. There is a logical 

   contradiction in(diag,"diag") 

   as to it is 0   or 1. 

6. Hence neither diag() nor 

   HALT() exist. " 
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The Halting problem (for Turing machine) 

 H =def {“M” ”w” |STM M halts on input w } 

            S0
* = {a,q, 0,1,(,), ，}* .   

 Notes: 

1.  By Turing-Church Thesis, any computable function or 
language can be realized by a [standard] Turing machine; 
hence H represents all instances of program-data pairs (P,D) 
s.t. program P  halts on input D.  

2. Hence to say HALT(P,X) does not exist is equivalent to say 
that there is no (total) Turing machine that can decide the 
language H (i.e., H is not recursive.)  

Theorem: H is r.e. but not recursive. 

Pf: (1) H is r.e. since H can be accepted by modifying the 
universal TM U so that it accepts no matter it would accept 
or reject in the original UTM. 

(2) H is not recursive: the proof is analog to previous proof. 

  Assume H is recursive => H = L(M) for some total TM M0. 
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H is not recursive 

    Now design a new TM M* with S0 as input alphabet as follows:  

 On input “M” : 

 

 

 

 

 

1. Assume “M” S0
* is a string over input alphabet of M. 

2. Append a further encoding e( “M”) of the TL program “M” to 
the input program ”M”. 

 Note: ”M”  S0
* = {a,q, 0,1,(,), ，}*. Hence if “M” = a q 0 1 ( )   then 

e("M") = a10 a11 a000 a001 a010 a011 …   

3. Call and execute M0( “M” e(”M”) )    // M0 uses alphabet S0 

    2.1 if M0 accepts (t0) => M* loop and does not halt. 

    2.2 if M0 rejects   (r0) => goto accept state t* of M* and halt. 

COPY 
M0 

“M” “M” e(”M”) 

M* 

r0 

t0 

t* 

loop 
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H is not recursive 

Properties of M*: 

0. M* and M0 use input alphabet S0. 

1. M0 is to HALT what  M* is to Diag. 

2. If M uses input  alphabet S0  (ex: M* and M0), then 

    M* (“M”) halts iff M0(“M” e(”M”)) rejects iff  M does not halt 

on input ”M” . 

Absurd result: Will M*(“M*”)  halt ? 

By (2), M*(“M*”) halts iff M* does not halt on input “M*”, 

 a contradiction!! 

Hence M* and M0 does not exist. 

 

Corollary: The class of recursive languages is a proper 

subclass of the class of r.e. languages. 

pf: H is r.e. but not recursive. 
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More undecidable problems about TMs 

 Theorem: The following problems about TMs are undecidable. 

1. [General Halting Problem; GHP] Given a TM M and input w, 
does M halt on input w.  

2. [Empty input Halting Problem; EHP] Given a TM M, does M halt 
on the empty input string e?  

3. Given a TM M, does M halt on any input ? 

4. Given a TM M, does M halt on all inputs ? 

5. Given two TMs M1 and M2, do they halt on the same inputs ? 

6. Given a TM M, Is the set h(M) = {x | M halts on x} recursive ? 

 Ex: h(U’) = {x | U’(x) halts, where U’ is like UTM U but loops if x is 
not of  form “M” ”w”}  = { “M” “w” | TM M halts on input w } = H is not 
recursive.  on input U’, the answer is false. 

7. [Halting problem for some fixed TM] Is there a TM M, the halting 
problem for which is undecidable (i.e., h(M) is not recursive) ?   

pf: (1) has been shown at slide 7; for (7) the UTM U is just one of such 
machines. (2) ~(6) can be proved by the technique of  problem 
reduction and (1). 
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Problem Reduction 

 L1, L2 : two languages over S1 and S2 respectively. 

 A reduction from L1 to L2 is a computable function f : S1* --> 

S2* s.t.          f(L1)  L2 and f(~L2)  ~L2.  

 I.e.,  for all string x  S1*,     x  L1 iff f(x)  L2. 

 

f(L1) 
L1 

~L1 

S1* S2* 

f(~L1) 

f(L1) 

L2 

~L2 
f(~L1) 
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Problem reduction. 

 We use L1 f L2 to mean f is a reduction from L1 to L2. 

 We use L1  L2 to mean there is a reduction from L1 to L2. 

 If L1  L2 we say L1 is reducible to L2. 

 L1  L2 implies that L1 is simpler than L2 in the sense  that we 

can use any program deciding L2 (as a subroutine) to decide 

L1. Hence 

1.  if L2 is decidable then so is L1 and 

2.  If L1 is undecidable, then so is L2. 

Theorem: If L1  L2 and L2 is decidable(or semidecidable, 

respectively), then so is L1. 

Pf: Let L2 = L(M) and  T is the TM computing the reduction f from L1 to L2.  

Now let M* be the machine: on input x 

1. call T, save the result f(x) on input tape 

2. Call M  // let M* accept (or reject) if  M accepts (or rejects). 

==> M* can decide (or semidecide) L1. QED 
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Proof of other undecidable problems 

pf of [EHP]:   //  Note: M halts on 'abc'  iff  (Wabc ∙ M) halts on "". 

 Let f be the function s.t. 

 f(x) = “WwM” if x = “M” ”w”; o/w let f(x) = “N”. 

where Ww is a TM which always writes the string w on the input tape , 

go back to left-end and then exits. And let N is a specific constant 

machine which never halts. 

Lemma: f is a reduction from H to EHP. (namely H  f EHP) 

pf: 1. f is computable. (OK!) 

 2. for any input x if x H => x = “M””w” for some TM M and input w  

and M halts on input w 

  => Ww M halts on empty input => f(x) = “WwM”  EHP. 

3. for any input x if x  H =>f(x) = “N” or  x = “M””w” for someTM M 

and input w  and M(w) does not halt 

    => N or Ww M does not halt on empty input => f(x) = “N” or “WwM” 

 EHP. 

   Corollary: H  EHP and EHP is undecidable. 
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Example for  why  f is computable 

 input: x = “M” “abcd” 

=> f(x) = “R aR bR cR dL LLL M” 

=>       = “(n0,[,n1,R), 

           (n1, ,n2,a), (n2,a,n3,R) 

           (n3, ,n4,b), (n4,b,n5,R) 

           (n5, ,n6,b), (n6,b,n7,R) 

           (n7, ,n8,d),(n8,d,n9,L), 

          (n9,x, n9,L), where x = c or b or a 

 

          (n9,[, s0,R),  where s0 is the initial state of “M” 

          ” + “M“ 

 

 

 

 

M 

w 

M 

w 

Ww 

e 

f("M""w" ) =  "Ww M" 

 

M(w) halts iff WwM(e) halts 
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 EHP  (3)={“M” | M halt on some input}, 

 EHP  (4) ={“M” | M halt on all inputs}. 

 Let f be the function s.t.for any TM M, 

f(“M”) = “ERASE M”, where ERASE is the  

machine which would erase all its input, 

 and go back to the left end. 

Lemma: f is a reduction from EHP 

               to (3) and(4). 

pf:  1. f is computable. 

 2. for any TM M, “M”  EHP <=> M halts on empty input 

 <=> (ERASE M) halts on some/all inputs 

 <=> “ERASE M”  (3),(4).  QED 

Corollary: (3) and(4) are undecidable. 

(5): (4) is reducible to (5). hint: M halts on all inputs iff M and T 
halt on same inputs, where T is any TM that always halts.  

 

M 

e 

M 

e 

Erase 

x 

     f("M") =  "E M" 

• M(e) halts iff EM(x)  

halts for all/some x. 
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Proof of more undecidable problems 

6.1. Given a TM M, Is the set h(M) =def {x | M halts on x} recursive ? 

6.2. Given a TM M, Is the set h(M) context free ? 

6.3. Given a TM M, Is the set h(M) regular ? 

pf:  we show that ~EHP (non-halting problem on empty input)  (6.1, 6.2 and 

6.3). note: EHP is not recursive implies ~EPH is neither recursive nor r.e.. 

 For any input machine M, construct a new 2-tape machine : 

     M’(y) = C(y)  M(e)  U( y). On input y, M'(y) behaves as follows 

1. C(y):    Move input y from 1st tape to 2nd tape. 

2. M(e):    run M as a subroutine with empty input on 1st tape.  

3. U(y) :  if M halts, then  run (1-tape UTM) U with 2nd tape as input. 

analysis:  

 M halts on empty input => M’ behaves the same as U => h(M’) = h(U) =H is 

not recursive (and neither context free nor regular). 

 M loops on empty input => M’ loops on all inputs => h(M’) = {} is regular 

(and context-free and recursive as well). 

Obviously M’ can be computed given M, Hence ~EHP  (6.1, 6.2 and 6.3). 

Note: This means all 3 problems are even not semidecidable. 
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L1 

All TMs (or All programs) All languages 

M1 

C: a class of languages 

h(M1) = L1 

Interesting Problem: Given a class of languages C, is the set h-1(C) decidable ? 

h-1(C) 
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The reduction f of NonEmptyHaltingProblem to target Problems 

L1 

All TMs (or All programs) All languages 

M1 

Regular 

h(M1) = L1 

cxt  

free 

Recursive 

H-1(Reg) 

h-1(CF) 

h-1(Rec) 

~EH 

M 

M 

EH 

     All TMs (or All programs) 

h(M’)= 

f:M |M' 

f(~EH) 

  M’ 

f(EH)  M’ 

H(M’) = H 
h 

f 
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More undecidable problems 

 A semi-Thue system is a pair T = (S, P) where  

 S is an alphabet and  

 P is a finite set of rules of the form: 

  a  b where a ∈ S+ and b ∈ S*. 

  The derivation relation induced by a semi-Thue system T: 

      T =def { (xay, xby) |  x, y ∈ S*, a b ∈ P } 

 let *T be the ref. and trans. closure of T. 

 The word-problem for semi-Thue system: 

 Given a semi-Thue system T and two words x and y, 

 determine if x *T y ? 

 Ex: If P = { 11001, 10011 }, Then 10010 * 0001 ? 

 Theorem: the word problem for Semi-Thue system (WST) is 

undecidable. I.e., WST =def { “(T,x,y)” | x *T y } is 

undecidable. 
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The undecidability of the word problem for ST system 

 We reduce the halting problem H to  WST. 

 TM configuration: (q, xy, n) 'xqy' where |x| = n-1. 

                TM instruction        SemiThue system rules 

 Let M be a STM. we construct a semi-Thue system T(M) with 

alphabet SM = Q U G U { ],qf,qg  }. The rule set PM of T(M) is 

defined as follows : Where a,b ∈ G,  p,q ∈ Q, 

 pa qb       if d(p,a) = (q, b),  

 pa  aq      if d(p,a) = (q, R),  +     p]  q]   if a =, 

 bpa  qba  if d(p,a) = (q,L) 

 p  qf   if p ∈ {t, r}   // halt =>enter qf, ready to eliminate all 
tape symbols left to current position. 

 xqf qf    where x  ∈ G \ { [ } 

 qf[  [qf  

 [qf [qg,   // ready to eliminate all remaining tape symbols 

 [qgx  [qg where x  ∈ G \ { ] }. 
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WST is undecidable. 

 Lemma: (s, [x, 0) |-*M (h,y,n ) iff  s[x] *T(M) [qg]. 

Sol: note: h means t or r.   Let (s, [x, 0) = C0 |-M C1 |- … |-M Cm = 

(h,y,n) be the derivation. 

 consider the mapping:  f( (p, [z, i) ) = [z1..i-1 p zi..|z|], 

 we have C |-M D  f(C) T(M) f(D) for all configuration C,D  (**). 

 This can be proved by the definition of T(M). 

Hence f(C0) = s[x] *T(M) f(Cm) = [y 1..n-1 h y n..|y|] 

            * [y 1..n-1 qf y n..|y|] * [qf y n..|y|]  

            * [qg y n..|y|]           * [qg] 

Conversely, if s[x] * [qg], there must exist intermediate cfgs 

s.t.  s[x] *  [yhz]  * [yqfz] * [qgz] * [qg]. 

Hence (s, [x, 0) |-*M (h,yz,|y|) and M halts on input x. 
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Word problem for special SemiThue systems. 

Corollary: H is reduciable to WST. 

Sol:  for any TM M and input x, M halts on x  iff (s, [x, 0) |-*M 
(h,y ,n ) for some y,n     iff s[x]  T(M) [qg].  

I.e., “(M,x)” ∈ H iff “(T(M), s[x],[qg])” ∈ WST, for all TM M and 
input x.       Hence H is reducible to WST. 

Theorem: WST is undecidable. 

[word problem for semi-Thue system T]: Given a semi-Thue 
system T,  the word problem for T is the problem of, given 
two input strings x, y, determining if x *T y. 

Define WST(T) = { (x,y) | x *T y } 

Theorem: Let M be any TM. If the halting problem for M is 
undecidable, then  WST(T(M)) is undecidable. 

Pf: since H(M) (Halting Problem for M)  is reducible to 
WST(T(M)). 

Corollary: There are semi-Thue systems whose word problem 
are undeciable. In particular, WST(T(UTM)) is undeciable. 
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The PCP Problem 

 [Post correspondence system] 

   Let C = [(x1,y1),...,(xk,yk)] : a finite list of pairs of strings over S 

   A sequence j1,j2,...jn of numbers in [1,k]  (n > 0) is called a 

solution index (and xj1 xj2 ... xjn a solution) of the system C iff  

xj1 xj2 ... xjn = yj1 yj2 ...  yjn.  

 

 

Ex: Let S = {0,1} and C= [(1,101),(10,00),(011,11)]. Does C has 

any solution? 

Ans: yes. the sequence 1 3 2 3 is a solution index 

  since x1 x3 x2 x3  = 1 011 10  011  = 101 11 00 11 = y1 y3 y2 y3. 



Undecidable problems 
about CFLs 

  Transparency No. P3C3-24 

The PCP Problem 

 [Post correspondence problem:] Given any correspondence 

system C, determine if C has a solution ? 

I.e. PCP =def  {“C” | C = [(x1,y1),…,(xk,yk)], k > 0,  is a list of pairs 

of strings and C has a solution. } 

 

Theorem: PCP is undecidable. 

pf: Since the word problem WST(T)  of some particular 

undecidable semi-Thue system T is reducible to PCP. 
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Undecidability of the PCP Problem 

 Let T = (S , P) be a semi-Thue system with alphabet {0,1} 

whose word problem is undecidable. 

 For each pair of string x, y ∈ S*, we construct a PCS C(x,y) as 

follows:  

 C(x,y) has alphabet S = {0,1, *, 0, 1, *, [, ]} 

 if z = a1a2… ak is a string over {0,1,*}, then let z denote 

a1a2…ak. 

 wlog, let 00, 11 ∈ P. 

 C(x,y) = {    (a,b),(a,b)    | a b ∈ P}  U 

               {    ([x*, [), (*, *), (*,*), (], *y]) } 

 

 

 

0 0 1 1 * * a a … [x* ] 

0 0 1 1 * * b b … [ *y] 
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Example 

Ex: Let T = { 11  1, 000, 10  01 } 

      Problem x = 1100 *T y = 01 ? 

Then 

C(x,y) = { (11, 1), (11, 1), (00,0), (00, 0), (10,01) (10,01) 

  (1,1), (1,1),(0,0),(0,0), (*,*), (*,*) }   U 

  ([1100*, [), (], *01]  } 
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Derivation vs solution 

The derivation : 1100  100  10  01  01  
 can be used to get a solution and vice versa. 
 
 
 
 
 
Def: u,v : two strings. We say u matches v if there are common index 

sequence j1,j2,…,jm(m > 0) s.t. u = yj1yj2…yjm and v = xj1xj2…xjm 
 
Facts :Let x and y be any bit strings, then 
   1.  x T y implies  x* matches y* and x* matches y*, 
   2.  x* matches y* (or x* matches y*) implies x *T y. 
 
Theorem:  x *T y iff C(x,y) has a solution 
 
Corollary: PCP is undecidable. 
 

[1100* 1   0 0  * 1  0  * 01 * 01   ] 

[ 11 0 0 * 1 00  * 10 * 01 *01] 
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Theorem:  x *T y iff C(x,y) has a solution 

 Only-if part: a direct result of the following lemma: 

 Lemma1: If x = x0 x1  x2 …  x2k = y is a derivation of y from x, then  

                   a =  [x* x1* x2 * x3* … x 2k-1 * x2k]    

   is a solution of C(x,y). 

pf: The arrange of a as a sequence of  strings from the 1st (and 2nd) components of 

C(x,y) is given as follows:  

 

 

 

 

 

 

 

 Note since xj  x j+1, by previous facts,  (xj+1* , xj*) and (xj+1*, xj* ) match 
(corresponding to the same index). 

 It is thus easy to verify that both sequences correspond to the same solution 
index, and a hence is a solution. 

 

 

x2k-2* 

x2k-1* 

…… 

……. 

* x2k ] x2k-1 x2 * x1  * x0 * [ 

  ] x2k x3 * x2  * x1  * [x0* 

copy 
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Theorem:  x *T y iff C(x,y) has a solution 

 if-part:  Let a solution U of C(x,y)  be arranged as follows: 

 

 

 

 

 

 

 Then (U,V) must begin with: 

 ( [x*  ,     [  )           and must end with     ( ]     ,  *y]  ) 

 => the solution must be of the form:  [x* w *y] 

if w contains ] => can be rewritten as [x*z*y] v*y]     ==> U = [x*z*y] = V is also a solu. 

 To equal  [x* , V must begin with [  x*   

 To match x*  , U must proceeds with  [x* x1*            x=x0  x1 (since x match x1) 

 

   To equal [x* x1*  ,V must proceeds with [x* x1*  

   To match [x* x1*  ,U must proceeds with [x* x1*  x2*        x1  X2  

 …  x=x0 x1  … xk-1   with U = [x*… x2k-2* x2k-1*     and V = [x*… x2k-2*  

   To equal U = [x*… x2k-2* x2k-1* ,V proceeds with [x*… x2k-2* x2k-1 

   To match V = [x*… x2k-2* x2k-1,U must proceeds with U = [x*… x2k-2* x2k-1 *x2k  

 x*y   finally to close the game V proceeds with [x*… x2k-2* x2k-1*x2k] and U 
proceeds with [x*… x2k-2* x2k-1*x2k]  

x2k-2* 

x2k-1* 

…… 

……. 

* x2k ] x2k-1 x2 * x1  * x0 * [ 

  ] x2k x3 * x2  * x1  * [x0* 

copy U 

V 
match 

derive 
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Decidable and undecidable problems about CFLs  

 The empty CFG problem: 

    Input:   a CFG G = (N, S, P, S) 

 Output:   “yes” if L(G) = {}; “no” if L(G) is not empty. 

 There exists efficient algorithm to solve this problem. 

    Alg empty-CFG(G) 

  1. Mark all symbols in S. 

  2. Repeat until there in no new (nonterminal) symbols marked 

    for each rule A -> X1 X2 … Xm  in P do 

      if ALL Xi’s are marked then mark A 

  3. If S is not marked then return(“yes”) else return(“no”). 

 The alg can be implemented to run in time O(n2). 

 Similar problems existing efficient algorithms: 

 1. L(G) is infinite    2. L(G) is finite    

 3. L(G) contains e (or any specific string)  

 4. Membership ( if a given input string x in L(G) ) 
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Undecidable problems about CFL 

 But how about the problem: 

 Whether L(G) = S*, the universal language ?  

 Relations between L, ~L and their recursiveness  

 If  L is recursive, ~L is recursive. 

 If  L and ~L are r.e., then both are recursive. 

 If  L  is r.e. but not recursive, then ~L is not r.e. 

 If  L is not r.e., then ~L is not recursive(but may be r.e.).   

 

non-r.e 
recursive re 



Undecidable problems 
about CFLs 

  Transparency No. P3C3-32 

Undecidable problems for CFGs 

 Theorem : there is no algorithm that can determine whether the languages 

of two CFGs are not disjoint (overlap). 

 (i.e., the set NDCFG = { “(G1,G2)” | G1 and G2 are CFGs and L(G1) L(G2) is 

not empty } is undecidable (but it is r.e (why ?) => its complementation is 

not r.e.). 

Pf: Reduce PCP to NDCFG. 

Let C = (Sc, { (x1,y1), …, (xn,yn)  ) be a PCS. 

Let Gz = (Nz, Sz, Sz, Pz), where z = x or y, 

  Nz = {Sz}              Sz = Sc U {1,2,…, n} 

   Pz = { Sz  zi Sz i     ,     Sz    zi i   | i = 1..n } 

Lemma1: Sz * w iff there is seq jk…j1 in [1,n]* with  

     w = zj1 zj2 … zjk jk jk-1 … j1. 

Lemma2: C has a solution iff L(Gx)  L(Gy)   

 pf: C  has a solution w’ iff w’ = xj1 xj2 … xjk = yj1 yj2 … yjk  for some j1 j2 … jk 

   iff Sx * w’ jk jk-1 … j1. and Sy * w’ jk jk-1 … j1 iff L(Gx)  L(Gy)   

corollary: NDCFG is undecidable. 

 pf: since PCP is reducible to NDCFG. 
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Example 

Ex: Let S = {a,b} and C= [(a,aba),(ab,bb),(baa,aa)].  

 Gx :  Sx  a1 | ab2 | baa3  

                  | a Sx 1 | ab Sx 2 | baa Sx 3 

 Gy : Sy    aba 1 | bb 2 | aa 3 

                 |   aba Sy 1 | bb Sy 2 | aa Sy 3 

 

L(Gx) and L(Gy) has a common member 

 a baa ab  baa 3231 (Gx). 

 aba aa bb aa 3231 (Gy) 
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Whether L(G) = S* is undecidable for CFGs  

 The set UCFG = { “G” | G is a CFG and L(G) = S* } is 

undecidable. 

Pf: 1. For the previous grammar Gx and Gy, it can be shown that 

     ~L(Gx) and ~L(Gy) are both context-free languages.   

Hence the set A =def ~(L(Gx)  L(Gy) )  = ~L(Gx) U ~L(Gy) is 

context-free. Now let GC be the CFG for A. 

By previous lemma :  

   C has no solution iff L(Gx)  L(Gy) =  = ~A  

                                   iff A = S*   

                                   iff GC  UCFG. 

Hence any program deciding UCFG could be used to decide 

~PCP, 

but we know ~PCP is undecidable (indeed not r.e.), UCFG thus 

is undecidable (not r.e.). 
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~L(Gz) is context-free 

  a  L(Gz) iff 

 1. a is not of the form Sz
+ {1,…,n}+  (I.e., a  ~ Sz

+ {1,…,n}+ ) or 

 2. a is one of the form:      where k > 0, 

  2.1    zjk … zj1  j1  j2 … jk {1,…n}+  or 

  2.2     Sc
+ zjk … zj1  j1  j2 … jk or 

     2.3     ~(Sc
* zjk )  zk-1 … zj1  j1  j2 …j k-1 jk {1,…n}* 

 

 2.1 : G1 : S1  Sz A;         A  1 | 2 … | n | 1A | 2A | … | nA 

 2.2 : G2 : S2  B Sz;         B  a | b … | Ba | Bb | … 

 2.3 : G3 : S3     Nk Sz k A’  |  Nk k A’  for all k = 1.. n, where 

 Nk is the start symbol of the linear grammar  for the reg expr 

         ~(Sc
* zjk ) , 

 A’  A | e  
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Ambiguity of CFGs is undecidable 

 The set AMBCFG = {“G” | G is an ambiguous CFG } is 

undecidable. 

 

Pf: reduce PCP to AMBCFG. 

 Let Gx, Gy be the two grammars as given previously. 

 let G be the CFG with 

 N = {S, Sx, Sy},  

 SG = S 

 P = Px U Py U {S  Sx, SSy } 
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Lemma: C has a solution iff L(Gx) and L(Gy) are not 
disjoint iff G is ambiguous. 

 pf: 1.  C has a solution w   

 => w = xj1 xj2 … xjk = yj1 yj2 … yjk  for some J= jk jk-1 … j1 

 => S  Sx * wJ and S  Sy * wJ  

 => G is ambiguous. 

  2. G ambiguous  

=> there exist two distinct derivations D1 and D2 for a 
certain string a=wJ => D1 and D2 must have distinct 
1st steps (since Gx and Gy are deterministic)  

=> C has a solution w with solution index J. 

Corollary: AMBCFG is undecidable. 
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The Chomsky Hierarchy 

 Relationship of Languages, Grammars and machines 

Language recognition model generation model 

Regular languages 

(type 3) languages 

Finite automata 

(DFA, NFA) 

regular expressions 

linear grammars 

CFL ( type 2, Context 

Free ) languages 

Pushdown automata CFG ; type 2 ( context 

free) grammars 

CSL (type 1, Context 

sensitive) Languages  

LBA (Linear Bound 

Automata) 

CSG (Context 

sensitive, type 1 

Grammars) 

Recursive Languages Total Turing machines - 

R.E. (Recursively 

enumerative, type 0) 

Languages 

Turing machines GPSG(type 0, general 

phrase-structure, 

unrestricted) grammar 
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The Chomsky Hierarchy 

type 3 

(regular langs) 

CFLs (type 2 langs) 

CSLs (type 1 Langs) 

Recursive Languages 

Recursively Enumerable(type 0) languages  

All Languages 
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Phrase-structure grammar 

Def.: A phrase-structure grammar G is a tuple G=(N, S, S, P) 

where 

 N, S, and S are the same as for CFG, and 

 P, a finite  subset of (NUS)* N (NUS)* x (NUS)* , is a set of 

production rules of the form: 

         a  b where 

   a ∈ (NUS)* N (NUS)*  is a string over (NUS)* containing at 

least on nonterminal. 

  b ∈ (NUS)* is a string over (NUS)*. 

Def: G is of type 

 2  => a ∈ N. 

 3 (right linear)=>  A  a B or A  a (a ≠ e) or S  e. 

 1 => S  e or |a| ≤ |b|. 
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Derivations 

 Derivation G ⊆ (NUS)* x (NUS)* is the least set of pairs such 

that :  

   ∀ x,y ∈ (S UN)*, a  b ∈ P,   xay G xby. 

 

 Let *G be the ref. and tran. closure of G. 

 L(G) : the languages generated by grammar G is the set: 

 

     L(G) =def {x ∈ S* | S *G x } 
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Example 

 Design  CSG to generate the language L={0n1n2n | n ≥ 0 }, 

which is known to be not context free. 

Sol: 

Consider the CSG G1 with the following productions: 

S e ,       S  0SA2  2A  A2,   

0A01  1A11 

For G1 we have 

 S  0SAB …0k(A2)k * 0kAk2k 0k1k2k ∴ L ⊆ L(G1). 

Also note that   

 if S * a ==> #0(a) = #(A|1)(a) = #(2)(a). 

 if S* a ∈ {0,1,2}*  => ak = 0 ==> aj = 0 for all j < k. 

  ak = 1 => aj = 1 or 0 for all j < k. 

 Hence a  must be of the form 0*1*2* => a ∈ L.  QED 
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 Lemma 1 : if S * a ∈ S*, then it must be the case that 

 

    S * 0* S (A + 2)* 0* (A+2)* * 0*1 (A+2)* * 0*1*2*. 

     


