Part III

Turing Machines and Effective Computability

Formal Language

 and Automata Theory
PART III Chapter 3

Undecidable Problems

L : any of your favorite programming languages (C, C++, Java, BASIC, TuringLang, etc.)
[Assumption: Every L-program P has a source representation(string?) "P" that can be used as an input of L-programs.
— If P accepts a string as input, we can invoke P with its source " P " to get the result P (" P "). Note This is always true provided L is a general purpose language.
Problem: Design an L-program HALT(String, String) :boolean such that, when invoked with the source "P" of any L-program $\mathrm{P}(-)$ and a string X as input,

HALT("P", X), will

\square return true if $P(X)$ halt, and
\square return false if $P(X)$ does not halt.
\square Note: we don't care about the returned value if the first input is not passed the source of a program which requires a string input.
The problem of , given (the source "P" of) an (L-)program P and a data X , determining if P will halt on input X is called the halting problem [for L].
\square It can be shown that the halting problem is undecidable (or unsolvable) [i.e.,An L-program HALT(.,.) with the above behavior does not exist!!]
－Ideas leading to the proof：
Problem1 ：What about the truth value of the sentences：
1．L：What＂L＂describes is false
2．I am lying．
Problem 2 ：Let $S=\{X \mid X \notin X\}$ ．Then does S belong to S or not？
The analysis：$S \in S=>S \notin S ; S \notin S=>S \in S$ ．
Problem 3：矛盾說：1．我的矛無盾不穿 2．我的盾可抵擋所有茅結論：1．2．不可同時為真。

Problem 4：萬能上帝：萬能上帝無所不能＝＞可創造一個不服從他的子民 ＝＞萬能上帝無法使所有子民服從 $=>$ 萬能上帝不是萬能．結論：萬能上帝不存在。

Conclusion：
［ 1．S is a class（，which could not be a member of any class／set，）but not a set！！
－2．If a language is too powerful，it may produce expressions that is meaningless or can not be realized．
－Question：If HALT（P，X）can be programmed，will it incur any absurd result like the case of S？
Ans：yes！！

- Assume HALT(String,String) does exist (i.e, can be written as an L-program).
- Now construct a new program Diag(String) with HALT() as a subroutine as follows: For any input string S , $\operatorname{Diag}(S)\left\{\quad \mathrm{L}_{1}:\right.$ if $\operatorname{HALT}(\mathrm{S}, \mathrm{S})$ then goto L_{1}; // while(HALT(S,S)); L_{2} : end. \}
- Properties of Diag():
\square 1. Diag(S) halts iff HALT(S,S) returns false.
- 2. Hence if $S=$ " P " is the source of a program $P==>$
[Diag("P") halts iff HALT("P","P") returns false
— iff P does not halt on "P" (i.e., P("P") does not halt).
- The absurd result: Will Diag() halt on input "diag" ? Diag("Diag") halts <=> Diag("Diag") does not halt. --- by(2) a contradiction!! Hence both Diag and HALT could not be implemented as an L-program.

Analysis of diag("p") and HALT("p","p")

1. Let p_{1}, p_{2}, \ldots be the set of all programs accepting one string input.
2. cell $(m, n)=1 / 0$ means $m(n)$ halts/does not halt.
3. The diagonal row diag(.) corresponds to the complement of $p(" p ")$.
4. if the diagonal row could be decided by the program HALT("p","p") then the diag() program would exist (= p_{m} for some m).
5. Property of diag($\left.{ }^{\prime} p_{j} "\right)$: $p_{j}\left(" p_{j}\right.$ ") halts iff diag(" p_{j} ") does not halt.
6. There is a logical contradiction in(diag,"diag") as to it is 0 or 1 .
7. Hence neither diag() nor HALT() exist. "

	$" p_{1} "$	$" p_{2} "$	$" p_{3} "$	\ldots	$" p_{k} "$	"diag"	\ldots	\ldots
p_{1}	0							
p_{2}		1						
p_{3}			1					
\ldots				\ldots				
p_{k}					1			
diag	1	0	0	\ldots	0	$x \sim x$	0	\ldots
\ldots							1	
\ldots								\ldots

- $H={ }_{\text {def }}\{$ " M " " w " |STM M halts on input $w\}$

$$
\subseteq \Sigma_{0}^{*}=\{a, q, 0,1,(,), \quad,\}^{*}
$$

- Notes:

1. By Turing-Church Thesis, any computable function or language can be realized by a [standard] Turing machine; hence H represents all instances of program-data pairs (P,D) s.t. program P halts on input D.
2. Hence to say $\operatorname{HALT}(P, X)$ does not exist is equivalent to say that there is no (total) Turing machine that can decide the language H (i.e., H is not recursive.)
Theorem: H is r.e. but not recursive.
Pf: (1) H is r.e. since H can be accepted by modifying the universal TM U so that it accepts no matter it would accept or reject in the original UTM.
(2) H is not recursive: the proof is analog to previous proof. Assume H is recursive $=>H=L(M)$ for some total $T M M_{0}$.

Now design a new TM M* with Σ_{0} as input alphabet as follows:

- On input "M" :

1. Assume " M " $\in \Sigma_{0}{ }^{*}$ is a string over input alphabet of M.
2. Append a further encoding e("M") of the TL program "M" to the input program " M ".
\square Note: "M" $\in \Sigma_{0}{ }^{*}=\{a, q, 0,1,(,), \text {, }\}^{*}$. Hence if "M" = aq 01 () then e("M") = a10 a11 a000 a001 a010 a011 ...
3. Call and execute $M_{0}\left(\right.$ " M " e("M")) // M_{0} uses alphabet Σ_{0} 2.1 if M_{0} accepts $\left(t_{0}\right)=>M^{*}$ loop and does not halt. 2.2 if M_{0} rejects $\left(r_{0}\right)=>$ goto accept state t^{*} of M^{*} and halt.

Properties of \mathbf{M}^{*} :
0 . M^{*} and M_{0} use input alphabet Σ_{0}.

1. M_{0} is to HALT what M^{*} is to Diag.
2. If M uses input alphabet Σ_{0} (ex: M^{*} and M_{0}), then
M^{*} (" M ") halts iff M_{0} (" M " $e(" M$ ")) rejects iff M does not halt on input "M".
Absurd result: Will M*("M*") halt ?
By (2), $\mathrm{M}^{*}\left(" \mathrm{M}^{* ")}\right.$) halts iff M^{*} does not halt on input " $\mathrm{M}^{* "}$, a contradiction!!
Hence \mathbf{M}^{*} and \mathbf{M}_{0} does not exist.

Corollary: The class of recursive languages is a proper subclass of the class of r.e. languages.
pf: H is r.e. but not recursive.

Theorem: The following problems about TMs are undecidable.

1. [General Halting Problem; GHP] Given a TM M and input w, does \mathbf{M} halt on input w.
2. [Empty input Halting Problem; EHP] Given a TM M, does M halt on the empty input string ε ?
3. Given a TM M, does M halt on any input?
4. Given a TM M, does M halt on all inputs ?
5. Given two TMs M1 and M2, do they halt on the same inputs?
6. Given a TM M, Is the set $h(M)=\{x \mid M$ halts on $x\}$ recursive ? Ex: $h\left(U^{\prime}\right)=\left\{x \mid U^{\prime}(x)\right.$ halts, where U^{\prime} is like UTM U but loops if x is not of form "M" "w" $\}=\{" M "$ " $w " \mid$ TM M halts on input $w\}=H$ is not recursive. \rightarrow on input U', the answer is false.
7. [Halting problem for some fixed TM] Is there a TM M, the halting problem for which is undecidable (i.e., $h(M)$ is not recursive) ? pf: (1) has been shown at slide 7; for (7) the UTM U is just one of such machines. (2) $\sim(6)$ can be proved by the technique of problem reduction and (1).

Problem Reduction

- L_{1}, L_{2} : two languages over Σ_{1} and Σ_{2} respectively.
- A reduction from L_{1} to L_{2} is a computable function $f: \Sigma_{1}{ }^{*}$--> $\Sigma_{2}{ }^{*}$ s.t. $f\left(L_{1}\right) \subseteq L_{2}$ and $f\left(\sim L_{2}\right) \subseteq \sim L_{2}$.
l.e., for all string $x \in \Sigma_{1}{ }^{*}, \quad x \in L_{1}$ iff $f(x) \in L_{2}$.

$$
\Sigma_{1}{ }^{*}
$$

$\Sigma_{2}{ }^{*}$

- We use $L_{1} L_{f} L_{2}$ to mean f is a reduction from L_{1} to L_{2}. We use $L_{1} \angle L_{2}$ to mean there is a reduction from L_{1} to L_{2}. If $L_{1} \angle L_{2}$ we say L_{1} is reducible to L_{2}.
- $L_{1} \angle L_{2}$ implies that L_{1} is simpler than L_{2} in the sense that we can use any program deciding L_{2} (as a subroutine) to decide L_{1}. Hence

1. if L_{2} is decidable then so is L_{1} and
2. If L_{1} is undecidable, then so is L_{2}.

Theorem: If $L_{1} \angle L_{2}$ and L_{2} is decidable(or semidecidable, respectively), then so is L_{1}.
Pf: Let $L_{2}=L(M)$ and T is the TM computing the reduction f from L_{1} to L_{2}. Now let M* be the machine: on input x

1. call T, save the result $f(x)$ on input tape
2. Call M // let \mathbf{M}^{*} accept (or reject) if \mathbf{M} accepts (or rejects).
$\Rightarrow=>M^{*}$ can decide (or semidecide) L_{1}. QED

- Let f be the function s.t.

$$
f(x)=\text { " } W_{w} M " \text { if } x=\text { " } M " \text { " } w " ; \text { o/w let } f(x)=\text { " } N " .
$$

where W_{w} is a TM which always writes the string w on the input tape, go back to left-end and then exits. And let \mathbf{N} is a specific constant machine which never halts.
Lemma: f is a reduction from H to EHP. (namely $\mathrm{H} \angle_{\mathrm{f}} \mathrm{EHP}$)
pf: 1. f is computable. (OK!)
2. for any input x if $x \in H=>x=$ " M "" w " for some TM M and input w and M halts on input w
$=>W_{w} M$ halts on empty input $=>f(x)=$ " $W_{w} M$ " \in EHP.
3. for any input x if $x \notin H=>f(x)=$ " N " or $x=" M ">" w$ " for someTM M and input w and $M(w)$ does not halt
$=>N$ or $W_{w} M$ does not halt on empty input => $f(x)=$ "N" or "W $W_{w} M$ " \notin EHP.
Corollary: $\mathrm{H} \angle \mathrm{EHP}$ and EHP is undecidable.

- input: $x=$ " M " "abcd"
=> $f(x)=$ "R aR bR cR dL LLL M"
$\Rightarrow \quad="\left(\mathrm{n}_{0},\left[, \mathrm{n}_{1}, \mathrm{R}\right)\right.$,
$\left(\mathrm{n}_{1}, \square, \mathrm{n}_{2}, \mathrm{a}\right),\left(\mathrm{n}_{2}, \mathrm{a}, \mathrm{n}_{3}, \mathrm{R}\right)$
$\left(n_{3}, \square, n_{4}, b\right),\left(n_{4}, b, n_{5}, R\right)$
$\left(n_{5}, \square, n_{6}, b\right),\left(n_{6}, b, n_{7}, R\right)$
$\left(\mathrm{n}_{7}, \square, \mathrm{n}_{8}, \mathrm{~d}\right),\left(\mathrm{n}_{8}, \mathrm{~d}, \mathrm{n}_{9}, \mathrm{~L}\right)$,
(n_{9}, x, n_{9}, L), where $x=c$ or b or a
f("M""w") = "Ww w"
$\mathrm{M}(\mathrm{w})$ halts iff $\mathrm{W}_{\mathrm{w}} \mathrm{M}(\varepsilon)$ halts
$\left(n_{9},\left[, s_{0}, R\right)\right.$, where s_{0} is the initial state of "M"
" + "M"

f("M") = "E M"
- $M(\varepsilon)$ halts iff EM(x) halts for all/some x.
pf: 1. f is computable.
 and go back to the left end.
Lemma: f is a reduction from EHP to (3) and(4).

2. for any TM M, "M" $\in E H P<=>M$ halts on empty input <=> (ERASE M) halts on some/all inputs <=> "ERASE M" \in (3),(4). QED
Corollary: (3) and(4) are undecidable.
(5): (4) is reducible to (5). hint: M halts on all inputs iff M and T halt on same inputs, where T is any TM that always halts.
6.1. Given a TM M, Is the set $h(M)=_{\text {def }}\{x \mid M$ halts on $x\}$ recursive ?
6.2. Given a TM M, Is the set $h(M)$ context free ?
6.3. Given a TM M, Is the set $h(M)$ regular?
pf: we show that \sim EHP (non-halting problem on empty input) \angle (6.1, 6.2 and 6.3). note: EHP is not recursive implies ~EPH is neither recursive nor r.e..

For any input machine M, construct a new 2-tape machine :
$M^{\prime}(y)=C(y) \cdot M(\varepsilon) \cdot U(y)$. On input $y, M^{\prime}(y)$ behaves as follows

1. $C(y)$: Move input y from $1^{\text {st }}$ tape to $2^{\text {nd }}$ tape.
2. $M(\varepsilon)$: run M as a subroutine with empty input on $1^{\text {st }}$ tape.
3. $U(y)$: if M halts, then run (1-tape $U T M$) U with $2^{\text {nd }}$ tape as input.
analysis:
M halts on empty input => M' behaves the same as $U=>h\left(M^{\prime}\right)=h(U)=H$ is not recursive (and neither context free nor regular).
M loops on empty input => M' loops on all inputs $=>h\left(M^{\prime}\right)=\{ \}$ is regular (and context-free and recursive as well).
Obviously M' can be computed given M, Hence ~EHP \angle (6.1, 6.2 and 6.3). Note: This means all 3 problems are even not semidecidable.

All TMs (or All programs)

All languages

The reduction f of NonEmptyHaltingProblem to target Problems

All TMs (or All programs)
All languages

- A semi-Thue system is a pair $\mathrm{T}=(\Sigma, \mathrm{P})$ where
$\square \Sigma$ is an alphabet and
$\square \mathbf{P}$ is a finite set of rules of the form:
$\square \alpha \rightarrow \beta$ where $\alpha \in \Sigma^{+}$and $\beta \in \Sigma^{*}$.
- The derivation relation induced by a semi-Thue system T :

$$
\rightarrow_{\mathrm{T}}={ }_{\mathrm{def}}\left\{(\mathrm{x} \alpha \mathrm{y}, \mathrm{x} \beta \mathrm{y}) \mid \mathrm{x}, \mathrm{y} \in \Sigma^{*}, \alpha \rightarrow \beta \in \mathrm{P}\right\}
$$

let $\rightarrow^{*}{ }_{T}$ be the ref. and trans. closure of \rightarrow_{T}.

- The word-problem for semi-Thue system:

Given a semi-Thue system T and two words x and y, determine if $x \rightarrow{ }^{*} \mathrm{~T} y$?
Ex: If $P=\{110 \rightarrow 01,10 \rightarrow 011\}$, Then $10010 \rightarrow * 0001$?
Theorem: the word problem for Semi-Thue system (WST) is undecidable. I.e., WST $=_{\text {def }}\left\{\right.$ " (T, x, y) " $\left.\mid x \rightarrow^{*} \boldsymbol{y}\right\}$ is undecidable.

- We reduce the halting problem H to WST.
\square TM configuration: $(q, x y, n) \rightarrow$ ' $x q y$ ' where $|x|=n-1$.
$\square \quad$ TM instruction \rightarrow SemiThue system rules
- Let M be a STM. we construct a semi-Thue system $T(M)$ with alphabet $\left.\Sigma_{M}=Q \cup \Gamma \cup\{], q_{f}, q_{g}\right\}$. The rule set P_{M} of $T(M)$ is defined as follows: Where $\mathbf{a}, \mathrm{b} \in \Gamma, p, q \in \mathbf{Q}$,
$\square \mathrm{pa} \rightarrow \mathrm{qb} \quad$ if $\delta(p, a)=(q, b)$,
$\square \mathrm{pa} \rightarrow \mathrm{aq} \quad$ if $\delta(\mathrm{p}, \mathrm{a})=(\mathrm{q}, \mathrm{R}),+\mathrm{p}] \rightarrow \square \mathrm{q}]$ if $\mathrm{a}=\square$,
\square bpa \rightarrow qba if $\delta(p, a)=(q, L)$
$\square p \rightarrow q_{f}$ if $p \in\{t, r\} \quad / /$ halt $=>$ enter q_{f}, ready to eliminate all tape symbols left to current position.
$\square \mathrm{xq}_{\mathrm{f}} \rightarrow \mathrm{q}_{\mathrm{f}} \quad$ where $\mathrm{x} \in \Gamma \backslash\{[\}$
$\square \mathbf{q}_{\mathrm{f}}\left[\rightarrow\left[\mathrm{q}_{\mathrm{f}}\right.\right.$
$\square\left[q_{f} \rightarrow\left[q_{g}\right.\right.$, // ready to eliminate all remaining tape symbols
$\square\left[q_{g} x \rightarrow\left[q_{g}\right.\right.$ where $\left.x \in \Gamma \backslash\{]\right\}$.
- Lemma: (s, $[x, 0) \mid-{ }^{*}{ }_{M}(h, y, n)$ iff $s[x] \rightarrow{ }^{*}{ }_{T(M)}\left[q_{g}\right]$.

Sol: note: h means t or r. Let $\left(s,[x, 0)=C_{0}\left|-m C_{1}\right|-\ldots \mid-m C_{m}=\right.$ (h, y, n) be the derivation.
consider the mapping: $f\left(\left(p,\left[z_{,} i\right)\right)=\left[z_{1 . . i-1} p z_{i . . \mid z]}\right]\right.$, we have $\left.C\right|_{-M} D \Leftrightarrow f(C) \rightarrow_{T(M)} f(D)$ for all configuration $C, D(* *)$. This can be proved by the definition of $T(M)$.
Hence $f\left(C_{0}\right)=s[x] \rightarrow^{*}{ }_{T(M)} f\left(C_{m}\right)=\left[y_{1 . . n-1} h y_{n . .|y|}\right]$

$$
\begin{array}{ll}
\rightarrow^{*}\left[y_{1 . n-1} q_{f} y_{n .|y|}\right] & \rightarrow^{*}\left[q_{f} y_{n . .|y|}\right] \\
\rightarrow^{*}\left[q_{g} y_{n . .|y|}\right] & \rightarrow^{*}\left[q_{g}\right]
\end{array}
$$

Conversely, if $s[x] \rightarrow^{*}\left[q_{g}\right]$, there must exist intermediate cfgs s.t. $s[x] \rightarrow^{*}[y h z] \rightarrow^{*}\left[y q_{f} z\right] \rightarrow^{*}\left[q_{g} z\right] \rightarrow^{*}\left[q_{g}\right]$.

Hence (s, $[x, 0) \mid-{ }_{M}(h, y z,|y|)$ and M halts on input x.

Corollary: H is reduciable to WST.
Sol: for any TM M and input x, M halts on x iff ($s,[x, 0) \mid-{ }^{-*}{ }_{m}$ (h, y, n) for some $y, n \quad$ iff $s[x] \rightarrow_{T(M)}\left[q_{g}\right]$.
I.e., "(M, x)" $\in H$ iff " $\left(T(M), s[x],\left[q_{g}\right]\right)$ " \in WST, for all TM M and input x. Hence H is reducible to WST.
Theorem: WST is undecidable.
[word problem for semi-Thue system T]: Given a semi-Thue system T, the word problem for T is the problem of, given two input strings x, y, determining if $x \rightarrow^{*}{ }_{T} y$.
Define WST $(T)=\left\{(x, y) \mid x \rightarrow{ }^{*} T y\right\}$
Theorem: Let \mathbf{M} be any TM. If the halting problem for M is undecidable, then WST(T(M)) is undecidable.
Pf: since $\mathbf{H}(\mathbf{M})$ (Halting Problem for M) is reducible to WST(T(M)).
Corollary: There are semi-Thue systems whose word problem are undeciable. In particular, WST(T(UTM)) is undeciable.

- [Post correspondence system]

Let $C=\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right]$: a finite list of pairs of strings over Σ A sequence $j 1, j 2, \ldots . j n$ of numbers in $[1, k](n>0)$ is called a solution index (and $\mathrm{x}_{\mathrm{j} 1} \mathrm{x}_{\mathrm{j} 2} \ldots \mathrm{x}_{\mathrm{jn}}$ a solution) of the system C iff $x_{j 1} x_{j 2} \ldots x_{j n}=y_{j 1} y_{j 2} \ldots y_{j n}$.

Ex: Let $\Sigma=\{0,1\}$ and $C=[(1,101),(10,00),(011,11)]$. Does C has any solution?
Ans: yes. the sequence 1323 is a solution index since $x_{1} x_{3} x_{2} x_{3}=101110011=101110011=y_{1} y_{3} y_{2} y_{3}$.

- [Post correspondence problem:] Given any correspondence system C, determine if C has a solution?
l.e. $P C P={ }_{\text {def }}\left\{" C\right.$ " $\mid C=\left[\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right], k>0$, is a list of pairs of strings and C has a solution. \}

Theorem: PCP is undecidable.
pf: Since the word problem WST(T) of some particular undecidable semi-Thue system T is reducible to PCP.

- Let T = (Σ, P) be a semi-Thue system with alphabet $\{0,1\}$ whose word problem is undecidable.
- For each pair of string $x, y \in \Sigma^{*}$, we construct a PCS $C(x, y)$ as follows:
— C(x,y) has alphabet $\Sigma=\left\{0,1,{ }^{*}, \underline{0}, \underline{1},{ }_{-}^{*},[],\right\}$
\square if $z=a_{1} a_{2} \ldots a_{k}$ is a string over $\left\{0,1,{ }^{*}\right\}$, then let \underline{z} denote $\underline{a}_{1} a_{2} \ldots a_{k}$.
\square wlog, let $0 \rightarrow 0,1 \rightarrow 1 \in P$.
$\square \mathbf{C}(x, y)=\{\quad(\alpha, \beta),(\alpha, \beta) \quad \mid \alpha \rightarrow \beta \in P\} \quad U$

$\underline{0}$	0	$\underline{1}$	1	$\stackrel{*}{*}$	$*$	$\underline{\alpha}$	α	\cdots	$\left[x^{*}\right.$	$]$	
0	$\underline{0}$	1	$\underline{1}$	$*$	$\underline{*}$	β	$\underline{\beta}$	\cdots	$[$	$\left.{ }^{*} y\right]$	

Example

Ex: Let $T=\{11 \rightarrow 1,00 \rightarrow 0,10 \rightarrow 01\}$
Problem $x=1100 \rightarrow^{*}{ }_{\mathrm{T}} \mathrm{y}=01$?
Then
$\mathrm{C}(\mathrm{x}, \mathrm{y})=\{(11, \underline{1}),(\underline{11}, \mathbf{1}),(\underline{00}, 0),(\mathbf{0 0}, \underline{0}),(\underline{10,01})(10, \underline{01})$

([1100*, [), (], *01] \}

The derivation : $1100 \rightarrow 100 \rightarrow 10 \rightarrow 01 \rightarrow 01$ can be used to get a solution and vice versa.

| $\left[1100^{*}\right.$ | $\underline{1} \underline{0} \underline{0}_{-}^{*}$ | 100^{*} | $\underline{01}$ * | 01 | $]$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $[$ | 1100 * | $\underline{1} 0 \underline{00}_{-}^{*}$ | 10 * | $\underline{01}$ | $\left.{ }_{-}^{*} 01\right]$ | | | | |

Def: u, v : two strings. We say u matches v if there are common index sequence $j 1, j 2, \ldots, j m(m>0)$ s.t. $u=y_{j 1} y_{j 2} \ldots y_{j m}$ and $v=x_{j 1} x_{j 2} \ldots x_{j m}$

Facts :Let x and y be any bit strings, then

1. $x \rightarrow_{T} y$ implies x^{*} matches y^{*} and x^{*} matches y^{*},
2. x^{*} matches y^{*} (or \underline{x}^{*} matches y^{*}) implies $x \rightarrow{ }_{T} y$.

Theorem: $x \rightarrow^{*} \mathrm{y}$ y iff $\mathrm{C}(\mathrm{x}, \mathrm{y})$ has a solution
Corollary: PCP is undecidable.

Theorem: $x \rightarrow^{*} \underline{I} y$ iff $C(x, y)$ has a solution

- Only-if part: a direct result of the following lemma:
- Lemma1: If $x=x_{0} \rightarrow x_{1} \rightarrow x_{2} \ldots \rightarrow x_{2 k}=y$ is a derivation of y from x, then

$$
\alpha=\left[x^{*} \underline{\mathbf{x}}_{1-}{ }^{*} \mathrm{X}_{2}{ }^{*} \underline{\mathbf{x}}_{3}{ }^{*} \cdots \underline{\mathbf{x}}_{2 \mathrm{k}-1}{ }^{*} \mathrm{x}_{2 \mathrm{k}}\right]
$$

is a solution of $C(x, y)$.
pf: The arrange of α as a sequence of strings from the $1^{\text {st }}$ (and $2^{\text {nd }}$) components of $C(x, y)$ is given as follows:

- Note since $\mathrm{x}_{\mathrm{i}} \rightarrow \mathbf{x}_{\mathrm{j}+1}$, by previous facts, $\left(\mathrm{x}_{\mathrm{j}+11_{-}}{ }^{*}, \mathrm{x}_{\mathrm{j}}{ }^{*}\right)$ and $\left(\mathrm{x}_{\mathrm{j}+1}{ }^{*}, \underline{x}_{\mathrm{j}}{ }^{*}\right)$ match (corresponding to the same index).
- It is thus easy to verify that both sequences correspond to the same solution index, and α hence is a solution.
- if-part: Let a solution U of $C(x, y)$ be arranged as follows:

- Then (U,V) must begin with:
— ([x*, [) and must end with (] , $\left.{ }^{*} y\right]$)
- => the solution must be of the form: [x^{*} w *y]
if w contains] => can be rewritten as $\left.\left[x^{*} z_{-}^{*} y\right] v_{-}^{*} y\right] \quad==>U=\left[x^{*} z^{*} y\right]=V$ is also a solu.
\Rightarrow To equal [x^{*}, V must begin with [x^{*}
\Rightarrow To match x^{*}, U must proceeds with $\left[\mathrm{x}^{*} \underline{\mathrm{x}}_{1}{ }_{-}^{*} \quad \rightarrow \mathrm{x}=\mathrm{x}_{0} \rightarrow \mathrm{x}_{1}\right.$ (since x match \underline{x}_{1})
To equal [$\mathrm{x}^{*} \underline{\mathrm{x}}_{1}{ }_{-}^{*}$,V must proceeds with [$\mathrm{x}{ }^{*} \underline{\mathrm{x}}_{1}{ }_{-}$
To match [$\mathrm{x}^{*} \underline{\mathrm{x}}_{1}{ }^{*}$, U must proceeds with [$\mathrm{x}^{*} \underline{\mathrm{x}}_{1}{ }_{-}^{*} \mathrm{X}_{2}{ }^{*} \quad \rightarrow \mathrm{X}_{1} \rightarrow \mathrm{X}_{2}$
$\Rightarrow \ldots \rightarrow \mathrm{x}_{\mathrm{x}} \mathbf{0} \rightarrow \mathrm{x}_{1} \rightarrow \ldots \rightarrow \mathrm{x}_{\mathrm{k}-1}$ with U = [x*$\ldots \mathrm{x}_{2 \mathrm{k}-2}{ }^{*} \mathrm{x}_{2 \mathrm{k}-1}{ }^{*} \quad$ and $\mathrm{V}=\left[\mathrm{x}^{*} \ldots \mathrm{x}_{2 \mathrm{k}-2}{ }^{*}\right.$
To equal $\mathrm{U}=\left[\mathrm{x}^{*} \ldots \mathrm{x}_{2 \mathrm{k}-2}{ }^{*} \mathrm{x}_{2 \mathrm{k}-1}{ }^{*}, \mathrm{~V}\right.$ proceeds with $\left[\mathrm{x}^{*} \ldots \mathrm{x}_{2 \mathrm{k}-2}{ }^{*} \mathrm{X}_{2 \mathrm{k}-1}\right.$
To match $\mathrm{V}=\left[\mathrm{x}^{*} \ldots \mathrm{x}_{2 \mathrm{k}-2}{ }^{*} \mathrm{x}_{2 \mathrm{k}-1}, \mathrm{U}\right.$ must proceeds with $\mathrm{U}=\left[\mathrm{x}^{*} \ldots \mathrm{x}_{2 \mathrm{k}-2}{ }^{*} \mathrm{X}_{2 \mathrm{k}-1}{ }^{*} \mathrm{x}_{2 \mathrm{k}}\right.$
$x \rightarrow{ }^{*} y$ finally to close the game V proceeds with $\left[x^{*} \ldots x_{2 k-2}{ }^{*} x_{2 k-1}{ }^{*} x 2 k\right]$ and U proceeds with $\left[x^{*} \ldots x_{2 k-2}{ }^{*} x_{2 k-1}{ }^{*} x_{2 k}\right]$

Decidable and undecidable problems about CFLs

- The empty CFG problem: Input: a CFG G $=(\mathbf{N}, \Sigma, \mathrm{P}, \mathrm{S})$
Output: "yes" if $L(G)=\{ \}$; "no" if $L(G)$ is not empty.
- There exists efficient algorithm to solve this problem.

Alg empty-CFG(G)

1. Mark all symbols in Σ.
2. Repeat until there in no new (nonterminal) symbols marked for each rule $A->X_{1} X_{2} \ldots X_{m}$ in P do if ALL X_{i} 's are marked then mark A
3. If S is not marked then return("yes") else return("no").

- The alg can be implemented to run in time $O\left(n^{2}\right)$.
- Similar problems existing efficient algorithms:
\square 1. $L(G)$ is infinite $2 . L(G)$ is finite
\square 3. $L(G)$ contains ε (or any specific string)
— 4. Membership (if a given input string x in $L(G)$)

Undecidable problems about CFL

- But how about the problem:
\square Whether $L(G)=\Sigma^{*}$, the universal language?
- Relations between $L, \sim L$ and their recursiveness
\square If L is recursive, $\sim L$ is recursive.
\square If L and $\sim L$ are r.e., then both are recursive.
\square If L is r.e. but not recursive, then $\sim L$ is not r.e.
\square If L is not r.e., then $\sim L$ is not recursive(but may be r.e.).

Undecidable problems for CFGs

- Theorem : there is no algorithm that can determine whether the languages of two CFGs are not disjoint (overlap).
(i.e., the set NDCFG $=\{$ "(G1,G2)" | G1 and G2 are CFGs and $L(G 1) \cap L(G 2)$ is not empty \} is undecidable (but it is r.e (why ?) => its complementation is not r.e.).
Pf: Reduce PCP to NDCFG.
Let $C=\left(\Sigma_{c},\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)\right.$ be a PCS.
Let $G_{z}=\left(N_{z}, \Sigma_{z}, S_{z}, P_{z}\right)$, where $z=x$ or y,
($\quad N_{z}=\left\{S_{z}\right\} \quad \Sigma_{z}=\Sigma_{c} U\{1,2, \ldots, n\}$
($P_{z}=\left\{S_{z} \rightarrow z_{i} S_{z} i \quad, \quad S_{z} \rightarrow z_{i} i \mid i=1 . . n\right\}$
Lemma1: $S_{z} \rightarrow^{*} w$ iff there is seq $j_{k} \ldots j_{1}$ in $[1, n]^{*}$ with

$$
w=z_{j 1} z_{j 2} \ldots z_{j k} j_{k} j_{k-1} \ldots j_{1}
$$

Lemma2: C has a solution iff $L\left(G_{x}\right) \cap L\left(G_{y}\right) \neq \varnothing$
pf: C has a solution w^{\prime} iff $w^{\prime}=x_{j 1} x_{j 2} \ldots x_{j k}=y_{j 1} y_{j 2} \ldots y_{j k}$ for some $j_{1} j_{2} \ldots j_{k}$ iff $S_{x} \rightarrow^{*} w^{\prime} j_{k} j_{k-1} \ldots j_{1}$. and $S_{y} \rightarrow^{*} w^{\prime} j_{k} j_{k-1} \ldots j_{1}$ iff $L\left(G_{x}\right) \cap L\left(G_{y}\right) \neq \varnothing$
corollary: NDCFG is undecidable.
Yf: since PCP is reducible to NDCFG.

Example

Ex: Let $\Sigma=\{a, b\}$ and $C=[(a, a b a),(a b, b b),(b a a, a a)]$. $\Rightarrow \mathbf{G}_{\mathrm{x}}: \mathrm{S}_{\mathrm{x}} \rightarrow \mathrm{a} 1|\mathrm{ab} 2|$ baa3
$\Rightarrow \quad\left|a S_{x} 1\right|$ ab $_{\mathrm{x}} 2 \mid$ baa $\mathbf{S}_{\mathrm{x}} 3$
$\Rightarrow \mathrm{G}_{\mathrm{y}}: \mathrm{S}_{\mathrm{y}} \rightarrow$ aba $1|\mathrm{bb} 2|$ aa 3
$\Rightarrow \quad \mid$ aba $S_{y} 1\left|b b S_{y} 2\right|$ aa $S_{y} 3$
$L\left(G_{x}\right)$ and $L\left(G_{y}\right)$ has a common member
\Rightarrow a baa ab baa 3231 (Gx).
\Rightarrow aba aa bb aa 3231 (Gy)

- The set UCFG $=\left\{\right.$ " G " | G is a CFG and $\left.L(G)=\Sigma^{*}\right\}$ is undecidable.
Pf: 1. For the previous grammar G_{x} and G_{y}, it can be shown that
$\sim L\left(G_{x}\right)$ and $\sim L\left(G_{y}\right)$ are both context-free languages.
Hence the set $A=_{\text {def }} \sim\left(L\left(G_{x}\right) \cap L\left(G_{y}\right)\right)=\sim L\left(G_{x}\right) U \sim L\left(G_{y}\right)$ is context-free. Now let G_{C} be the CFG for A.
By previous lemma :
C has no solution iff $L\left(G_{x}\right) \cap L\left(G_{y}\right)=\varnothing=\sim A$

$$
\begin{aligned}
& \text { iff } A=\Sigma^{*} \\
& \text { iff } G_{c} \in U C F G .
\end{aligned}
$$

Hence any program deciding UCFG could be used to decide ~PCP,
but we know ~PCP is undecidable (indeed not r.e.), UCFG thus is undecidable (not r.e.).

- $\alpha \notin L\left(G_{z}\right)$ iff

1. α is not of the form $\Sigma_{z}^{+}\{1, \ldots, n\}^{+}$(I.e., $\alpha \in \sim \Sigma_{z}^{+}\{1, \ldots, n\}^{+}$) or
2. α is one of the form: where $k>0$,
$2.1 \quad z_{j k} \ldots z_{j 1} j_{1} j_{2} \ldots j_{k}\{1, \ldots n\}^{+}$or
$2.2 \quad \Sigma_{\mathrm{c}}{ }^{+} \mathrm{z}_{\mathrm{jk}} \ldots \mathrm{z}_{\mathrm{j} 1} \mathrm{j}_{1} \mathrm{j}_{2} \ldots \mathrm{j}_{\mathrm{k}}$ or
$2.3 \sim\left(\Sigma_{\mathrm{c}}{ }^{*} \mathrm{z}_{\mathrm{jk}}\right) \mathrm{z}_{\mathrm{k}-1} \ldots \mathrm{z}_{\mathrm{j} 1} \mathrm{j}_{1} \mathrm{j}_{2} \ldots \mathrm{j}_{\mathrm{k}-1} \mathrm{j}_{\mathrm{k}}\{1, \ldots \mathrm{n}\}^{*}$
2.1: $G_{1}: S_{1} \rightarrow S_{z} A ; \quad A \rightarrow 1|2 \ldots| n|1 A| 2 A|\ldots| n A$
2.2: $\mathrm{G}_{2}: \mathrm{S}_{2} \rightarrow \mathrm{BS}_{\mathrm{z}} ; \quad \mathrm{B} \rightarrow \mathrm{a}|\mathrm{b} \ldots| \mathrm{Ba}|\mathrm{Bb}| \ldots$
2.3: $G_{3}: S_{3} \rightarrow N_{k} S_{z} k A^{\prime} \mid N_{k} k A^{\prime}$ for all $k=1 . . n$, where
$\square \mathrm{N}_{\mathrm{k}}$ is the start symbol of the linear grammar for the reg expr $\sim\left(\Sigma_{\mathrm{c}}{ }^{*} \mathrm{z}_{\mathrm{jk}}\right)$,
$\square A^{\prime} \rightarrow \mathbf{A} \mid \varepsilon$

- The set $\mathrm{AMBCFG}=\{$ " G " $\mid \mathrm{G}$ is an ambiguous CFG$\}$ is undecidable.

Pf: reduce PCP to AMBCFG.
Let G_{x}, G_{y} be the two grammars as given previously. let G be the CFG with
$\square \mathbf{N}=\left\{\mathbf{S}, \mathbf{S}_{\mathrm{x}}, \mathbf{S}_{\mathbf{y}}\right\}$,
$\square S_{G}=S$
$\square P=P_{x} \cup P_{y} \cup\left\{S \rightarrow S_{x}, S \rightarrow S_{y}\right\}$

Lemma: C has a solution iff $L\left(G_{x}\right)$ and $L\left(G_{y}\right)$ are not disjoint iff G is ambiguous.
pf: 1. C has a solution w
$\Rightarrow w^{m}=x_{j 1} x_{j 2} \ldots x_{j k}=y_{j 1} y_{j 2} \ldots y_{j k}$ for some $J=j_{k} j_{k-1} \ldots j_{1}$
$=>S \rightarrow S_{x} \rightarrow^{*}$ wJ and $S \rightarrow S_{y} \rightarrow^{*}$ wJ
=> G is ambiguous.
2. G ambiguous
$=>$ there exist two distinct derivations Δ_{1} and Δ_{2} for a certain string $\alpha=w J=>\Delta_{1}$ and Δ_{2} must have distinct $1^{\text {st }}$ steps (since G_{x} and G_{y} are deterministic)
=> C has a solution w with solution index J.
Corollary: AMBCFG is undecidable.

- Relationship of Languages, Grammars and machines

Language	recognition model	generation model
Regular languages (type 3) languages	Finite automata (DFA, NFA)	regular expressions linear grammars
CFL (type 2, Context Free) languages	Pushdown automata	CFG; type 2 (context free) grammars
CSL (type 1, Context sensitive) Languages	LBA (Linear Bound Automata)	CSG (Context sensitive, type 1 Grammars)
Recursive Languages	Total Turing machines	-
R.E. (Recursively enumerative, type 0) Languages	Turing machines	GPSG(type 0, general phrase-structure, unrestricted) grammar

The Chomsky Hierarchy

All Languages

Def.: A phrase-structure grammar G is a tuple $\mathbf{G}=(\mathbf{N}, \Sigma, \mathrm{S}, \mathrm{P})$ where
$\square \mathrm{N}, \Sigma$, and S are the same as for CFG, and
\square P, a finite subset of ($\mathrm{NU} \Sigma)^{*} \mathbf{N}(\mathrm{NU} \Sigma)^{*} \mathbf{x}(\mathrm{NU} \Sigma)^{*}$, is a set of production rules of the form:
] $\quad \alpha \rightarrow \beta$ where
] $\alpha \in(N U \Sigma)^{*} N(N U \Sigma)^{*}$ is a string over (NUS)* containing at least on nonterminal.
$\square \beta \in(N U \Sigma)^{*}$ is a string over (NU $\left.\Sigma\right)^{*}$.
Def: \mathbf{G} is of type
[$2=>\alpha \in N$.
$\square 3$ (right linear)=> $A \rightarrow a B$ or $A \rightarrow a(a \neq \varepsilon)$ or $S \rightarrow \varepsilon$.

- $1=>S \rightarrow \varepsilon$ or $|\alpha| \leq|\beta|$.
- Derivation $\rightarrow_{\mathrm{G}} \subseteq(\mathrm{NU} \mathrm{\Sigma})^{*} \mathrm{x}(\mathrm{NU} \mathrm{\Sigma})^{*}$ is the least set of pairs such that:
$\forall x, y \in(\Sigma U N)^{*}, \alpha \rightarrow \beta \in P, \quad x \alpha y \rightarrow_{G} x \beta y$.
- Let $\rightarrow^{*}{ }_{G}$ be the ref. and tran. closure of \rightarrow_{G}.
- $L(G)$: the languages generated by grammar G is the set:

$$
L(G)==_{\text {def }}\left\{x \in \Sigma^{*} \mid S \rightarrow_{G}^{*} x\right\}
$$

- Design CSG to generate the language $L=\left\{0^{n 1 n} 2^{n} \mid n \geq 0\right\}$, which is known to be not context free.
Sol:
Consider the CSG G_{1} with the following productions:
$\mathrm{S} \rightarrow \varepsilon, \quad \mathrm{S} \rightarrow$ 0SA2 $\quad 2 \mathrm{~A} \rightarrow \mathrm{~A} 2$,
$0 A \rightarrow 01$ $1 \mathrm{~A} \rightarrow 11$
For G_{1} we have

$$
S \rightarrow 0 S A B \rightarrow \ldots \rightarrow 0^{k}(A 2)^{k} \rightarrow^{*} 0^{k} A^{k} 2^{k} \rightarrow 0^{k} 1^{k} 2^{k}: L \subseteq L(G 1) .
$$

Also note that
\square if $S \rightarrow{ }^{*} \alpha==>\# 0(\alpha)=\#(A \mid 1)(\alpha)=\#(2)(\alpha)$.
\square if $S \rightarrow^{*} \alpha \in\{0,1,2\}^{*}=>\alpha_{k}=0==>\alpha_{j}=0$ for all $j<k$.

- $\alpha_{k}=1=>\alpha_{j}=1$ or 0 for all $j<k$.
\square Hence α must be of the form $0^{*} 1^{*} 2^{*}=>\alpha \in \operatorname{L}$. QED
- Lemma 1 : if $S \rightarrow^{*} \alpha \in \Sigma^{*}$, then it must be the case that

$$
S \rightarrow \rightarrow^{*} 0^{*} S(A+2)^{*} \rightarrow 0^{*}(A+2)^{*} \rightarrow^{*} 0^{* 1}(A+2)^{*} \rightarrow * 0^{* 1 *} 2^{*}
$$

