Turing Machines

Reading: Chapter 8

Turing Machines are...

- Very powerful (abstract) machines that could simulate any modern day computer (although very, very slowly!)
- Why design such a machine? | $\substack{\text { For even input, } \\ \text { answer YES or no }}$ |
| :---: |
- If a problem cannot be "solved" even using a TM, then it implies that the problem is undecidable
- Computability vs. Decidability

A Turing Machine (TM)

- $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$

Infinite tape with tape symbols

This is like the CPU \& program counter

Tape is the memory

B: blank symbol (special symbol reserved to indicate data boundary)

Transition function

\leftarrow for L

- One move (denoted by |---) in a TM does the following:
- $\delta(q, X)=(p, Y, D)$

- q is the current state
- X is the current tape symbol pointed by tape head
- State changes from q to p
- After the move:
- X is replaced with symbol Y
- If $D=$ "L", the tape head moves "left" by one position.
Alternatively, if $D=$ " R " the tape head moves "right" by one position.

ID of a TM

- Instantaneous Description or ID:
- $X_{1} X_{2} \ldots X_{i-1} 9 X_{i} X_{i+1} \ldots X_{n}$ means:
- q is the current state
- Tape head is pointing to X_{i}
- $X_{1} X_{2} \ldots X_{i-1} X_{i} X_{i+1} \ldots X_{n}$ are the current tape symbols
- $\delta\left(q, X_{i}\right)=(p, Y, R)$ is same as:

$$
X_{1} \ldots X_{i-1} q X_{i} \ldots X_{n} \quad \mid-\ldots X_{1} \ldots X_{i-1} Y p X_{i+1} \ldots X_{n}
$$

- $\delta\left(q, X_{i}\right)=(p, Y, L)$ is same as:
$X_{1} \ldots X_{i-1} q X_{i} \ldots X_{n} \mid---X_{1} \ldots p X_{i-1} Y X_{i+1} \ldots X_{n}$

Way to check for Membership

- Is a string w accepted by a TM?
- Initial condition:
- The (whole) input string w is present in TM, preceded and followed by infinite blank symbols
- Final acceptance:
- Accept w if TM enters final state and halts
- If TM halts and not final state, then reject

Example: $L=\left\{0^{n 1}{ }^{n} \mid n \geq 1\right\}$

- Strategy:
$w=000111$

Accept

TM for $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$

1. Mark next unread 0 with X and move right
2. Move to the right all the way to the first unread 1, and mark it with Y
3. Move back (to the left) all the way to the last marked X , and then move one position to the right
4. If the next position is 0 , then goto step 1.
Else move all the way to the right to ensure there are no excess 1s. If not move right to the next blank symbol and stop \& accept.
*state diagram representation preferred

TM for $\left\{0^{n 1 n} \mid n \geq 1\right\}$

	Next Tape Symbol					
Curr. State	0	1	X	Y	B	
$\rightarrow \mathrm{q}_{0}$	$\left(\mathrm{q}_{1}, \mathrm{X}, \mathrm{R}\right)$	-	-	$\left(\mathrm{q}_{3}, \mathrm{Y}, \mathrm{R}\right)$	-	
q_{1}	$\left(\mathrm{q}_{1}, 0, \mathrm{R}\right)$	$\left(\mathrm{q}_{2}, \mathrm{Y}, \mathrm{L}\right)$	-	$\left(\mathrm{q}_{1}, \mathrm{Y}, \mathrm{R}\right)$	-	
q_{2}	$\left(\mathrm{q}_{2}, 0, \mathrm{~L}\right)$	-	$\left(\mathrm{q}_{0}, \mathrm{X}, \mathrm{R}\right)$	$\left(\mathrm{q}_{2}, \mathrm{Y}, \mathrm{L}\right)$	-	
q_{3}	-	-	-	$\left(\mathrm{q}_{3}, \mathrm{Y}, \mathrm{R}\right)$	$\left(\mathrm{q}_{4}, \mathrm{~B}, \mathrm{R}\right)$	
${ }^{*} \mathrm{q}_{4}$	-	--	-	-	-	

Table representation of the state diagram

TMs for calculations

- TMs can also be used for calculating values
- Like arithmetic computations
- Eg., addition, subtraction, multiplication, etc.

Example 2: monus subtraction

$$
\begin{aligned}
& " m-n^{\prime \prime}=\max \{m-n, 0\} \\
& 0^{m} 10^{n} \rightarrow \quad \begin{array}{l}
\text {..B } 0^{m-n} \text { B.. (if } m>n \text {) } \\
\\
\\
\\
\end{array} \text {..BB...B.. (otherwise) }
\end{aligned}
$$

1. For every 0 on the left (mark X), mark off a 0 on the right (mark Y)
2. Repeat process, until one of the following happens:
3. // No more 0 s remaining on the left of 1

Answer is 0 , so flip all excess 0 s on the right of 1 to Bs (and the 1 itself) and halt
2. $/ /$ No more $0 s$ remaining on the right of 1

Answer is m-n, so simply halt after making 1 to B

Example 3: Multiplication

- $0^{m} 10^{\mathrm{n}} 1$ (input), $\quad 0^{\mathrm{mn}} 1$ (output)
- Pseudocode:

Give state diagram

1. Move tape head back \& forth such that for every 0 seen in 0^{m}, write n 0 s to the right of the last delimiting 1
2. Once written, that zero is changed to B to get marked as finished
3. After completing on all m 0 s , make the remaining n 0 s and 1 s also as Bs

Calculations vs. Languages

A "calculation" is one
that takes an input
and outputs a value
(or values)

The "language" for a certain calculation is the set of strings of the form "<input, output>", where the output corresponds to a valid calculated value for the input

A "language" is a set of strings that meet certain criteria
E.g., The language $L_{\text {add }}$ for the addition operation

$$
\begin{aligned}
& "<0 \# 0,0>" \\
& "<0 \# 1,1>" \\
& \ldots \\
& \text { "<2\#4,6>" }
\end{aligned}
$$

Membership question == verifying a solution e.g., is "<15\#12,27>" a member of $L_{\text {add }}$?

Language of the Turing Machines

- Recursive Enumerable (RE) Ianguage

Variations of Turing Machines

Generic description

Will work for both $\mathrm{a}=0$ and $\mathrm{a}=1$

TMs with storage

- E.g., TM for $01^{*}+10^{*}$

Are the standard TMs
equivalent to TMs with storage?

Yes

Multi-track Turing Machines

- TM with multiple tracks, but just one unified tape head

Multi-Track TMs

- TM with multiple "tracks" but just one head

E.g., TM for $\left\{w c w \mid w \in\{0,1\}^{*}\right\}$ but w/o modifying original input string

Second track mainly used as a scratch space for marking

Multi-tape Turing Machines

- TM with multiple tapes, each tape with a separate head
- Each head can move independently of the others

Tape 1
Tape 2
Tape k

Non-deterministic TMs \equiv Deterministic TMs

Non-deterministic TMs

- A TM can have non-deterministic moves:
- $\delta(\mathrm{q}, \mathrm{X})=\left\{\left(\mathrm{q}_{1}, \mathrm{Y}_{1}, \mathrm{D}_{1}\right),\left(\mathrm{q}_{2}, \mathrm{Y}_{2}, \mathrm{D}_{2}\right), \ldots\right\}$
- Simulation using a multitape deterministic

Summary

- TMs == Recursively Enumerable languages
- TMs can be used as both:
- Language recognizers
- Calculators/computers
- Basic TM is equivalent to all the below:

1. $T M+$ storage
2. Multi-track TM
3. Multi-tape TM
4. Non-deterministic TM

- TMs are like universal computing machines with unbounded storage

