Undecidability

Reading: Chapter 8 & 9

Decidability vs. Undecidability

 There are two types of TMs (based on halting): (*Recursive*)

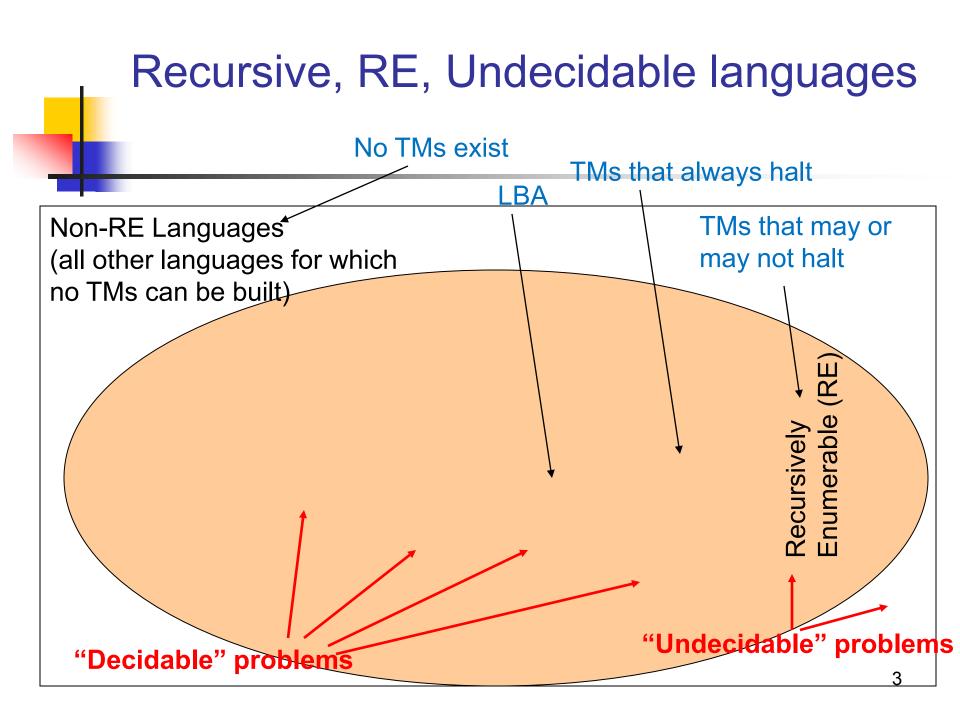
> **TMs that** *always* halt, no matter accepting or nonaccepting = **DECIDABLE** PROBLEMS

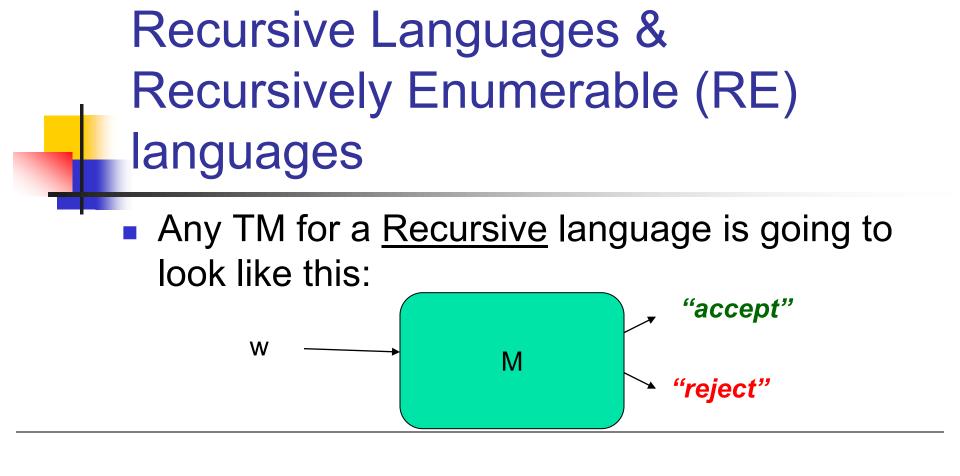
(Recursively enumerable)

TMs that *are guaranteed to halt* **only on acceptance**. If non-accepting, it may or may not halt (i.e., could loop forever).

Undecidability:

Undecidable problems are those that are <u>not</u> recursive





 Any TM for a <u>Recursively Enumerable</u> (RE) language is going to look like this:
 w ______M "accept" **Closure Properties of:**

- the Recursive language
 - class, and

- the Recursively Enumerable

language class

Recursive Languages are closed under complementation

If L is Recursive, L is also Recursive

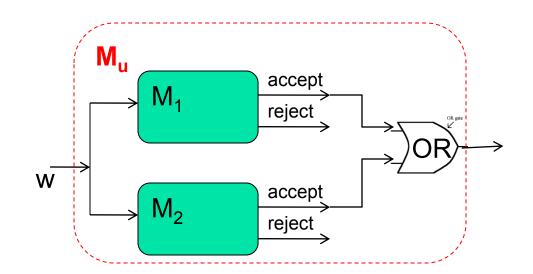
Are Recursively Enumerable Languages closed under <u>complementation</u>? (NO)

If L is RE, L need not be RE



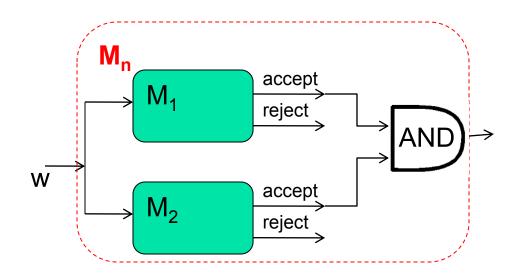
Recursive Langs are closed under Union

- Let $M_u = TM$ for $L_1 U L_2$
 - M_u construction:
 - Make 2-tapes and copy input w on both tapes
 - 2. Simulate M₁ on tape 1
 - 3. Simulate M₂ on tape 2
 - If either M₁ or M₂ accepts, then M_u accepts
 - 5. Otherwise, M_u rejects.



Recursive Langs are closed under Intersection

- Let $M_n = TM$ for $L_1 \cap L_2$
 - M_n construction:
 - Make 2-tapes and copy input w on both tapes
 - 2. Simulate M₁ on tape 1
 - 3. Simulate M₂ on tape 2
 - If either M₁ AND M₂ accepts, then M_n accepts
 - 5. Otherwise, M_n rejects.



Other Closure Property Results

- Recursive languages are also closed under:
 - Concatenation
 - Kleene closure (star operator)
 - Homomorphism, and inverse homomorphism
- RE languages are closed under:
 - Union, intersection, concatenation, Kleene closure
- RE languages are *not* closed under:
 - complementation

"Languages" vs. "Problems"

A "language" is a set of strings

Any "problem" can be expressed as a set of all strings that are of the form:

"<input, output>"

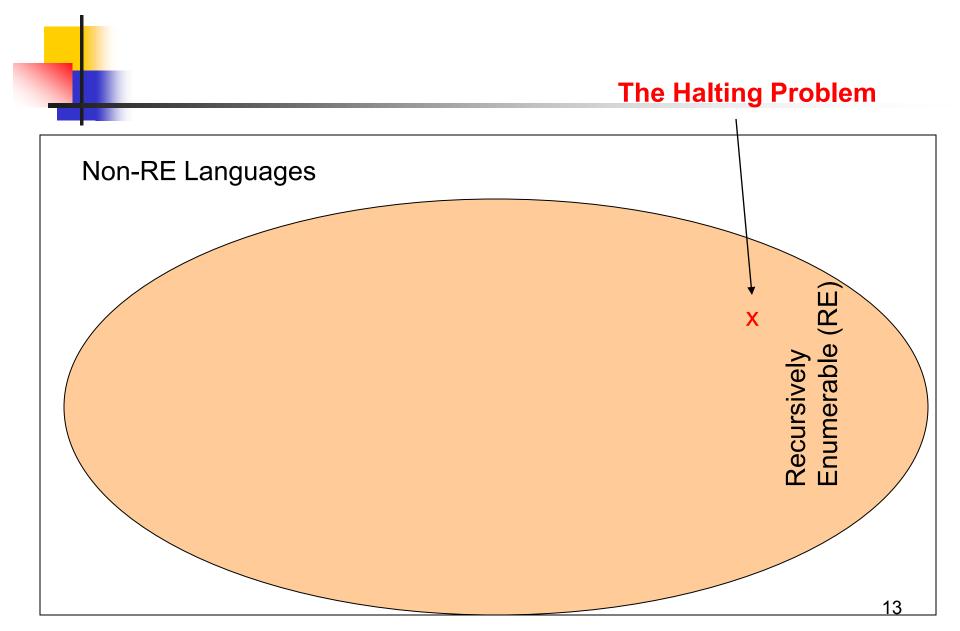
e.g., Problem (a+b) = Language of strings of the form { "a#b, a+b" }

==> Every problem also corresponds to a language!!

Think of the language for a "problem" == a *verifier* for the problem

The Halting Problem

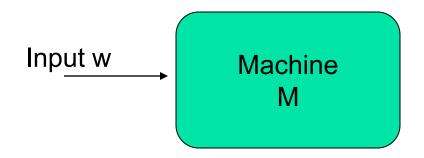
An example of a <u>recursive</u> <u>enumerable</u> problem that is also <u>undecidable</u>



What is the Halting Problem?

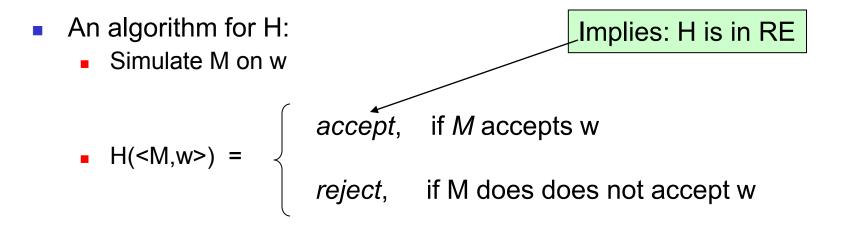
Definition of the "halting problem":

Does a givenTuring Machine M halt on a given input w?



The Universal Turing Machine

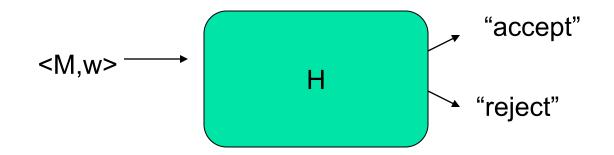
- Given: TM M & its input w
- Aim: Build another TM called "H", that will output:
 - "accept" if M accepts w, and
 - "reject" otherwise



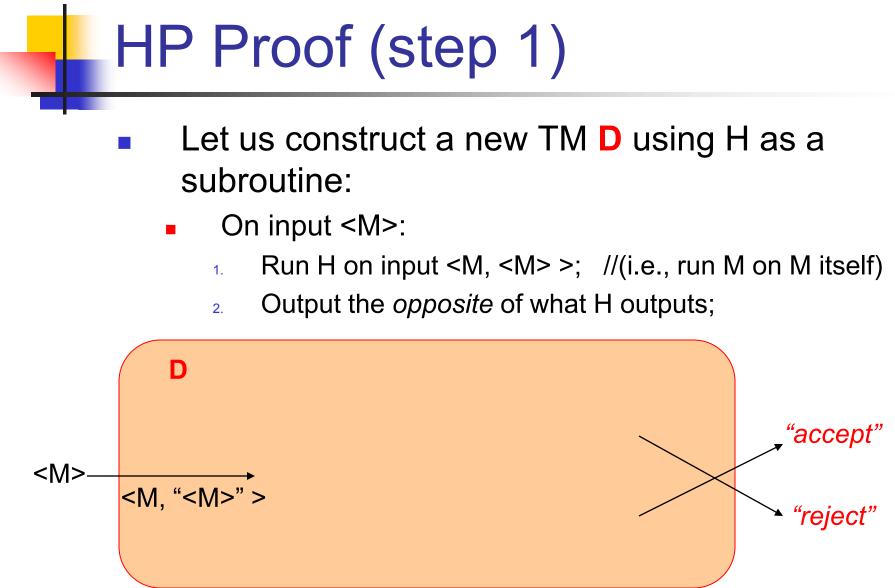
Question: If M does *not* halt on w, what will happen to H?

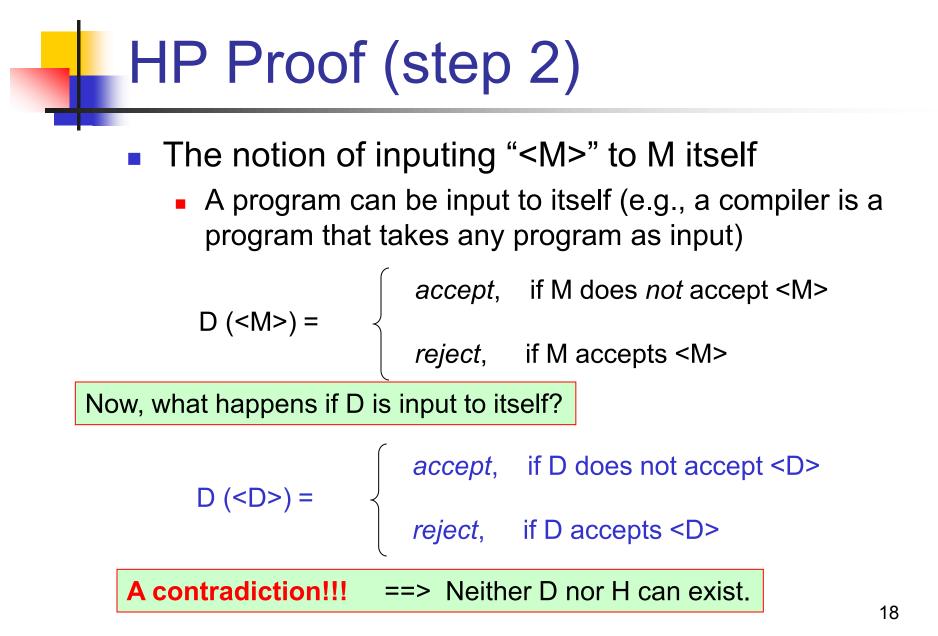
A Claim

- Claim: No H that is always guaranteed to halt, can exist!
- Proof: (Alan Turing, 1936)
 - By contradiction, let us assume H exists



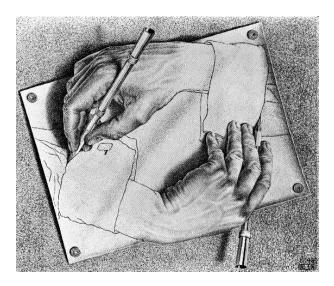
Therefore, if H exists \rightarrow D also should exist. <u>But can such a D exist?</u> (if not, then H also cannot exist)





Of Paradoxes & Strange Loops

E.g., Barber's paradox, Achilles & the Tortoise (Zeno's paradox) MC Escher's paintings

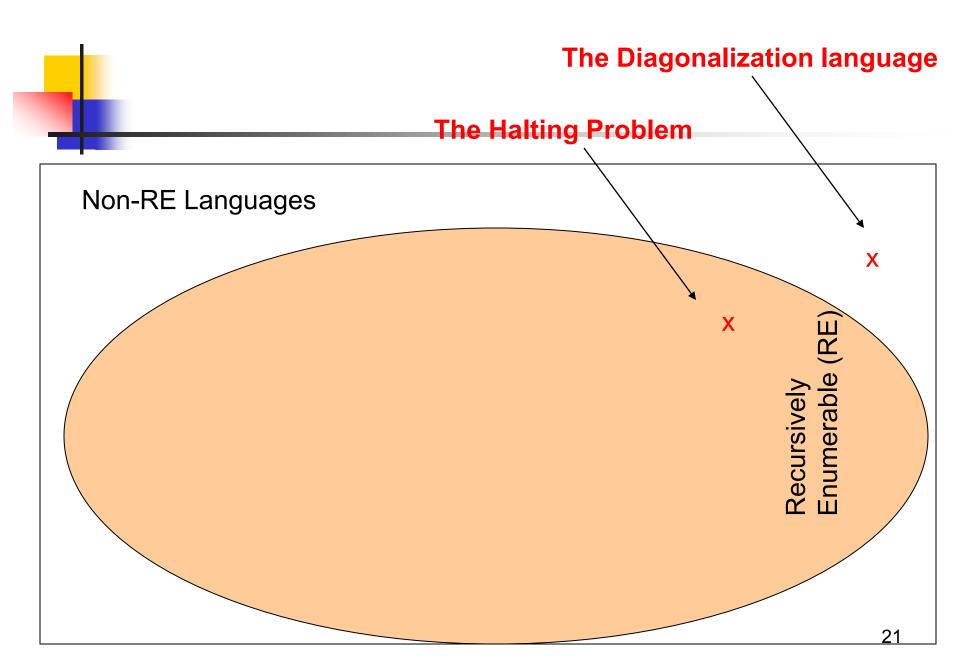


A fun book for further reading: **"Godel, Escher, Bach: An Eternal Golden Braid" by Douglas Hofstadter (Pulitzer winner, 1980)**

The Diagonalization Language

Example of a language that is not recursive enumerable

(i.e, no TMs exist)



A Language about TMs & acceptance

- Let L be the language of all strings <M,w> s.t.:
 - 1. M is a TM (coded in binary) with input alphabet also binary
 - 2. w is a binary string
 - 3. M accepts input w.

Enumerating all binary strings

- Let w be a binary string
- Then $1w \equiv i$, where i is some integer
 - E.g., If $w = \varepsilon$, then i=1;

- If w=1, then i=3; so on...
- If 1w≡ i, then call w as the ith word or ith binary string, denoted by w_i.
- ==> A <u>canonical ordering</u> of all binary strings:
 - *ε*, 0, 1, 00, 01, 10, 11, 000, 100, 101, 110,}
 - { W_1 , W_2 , W_3 , W_4 , W_i , ... }

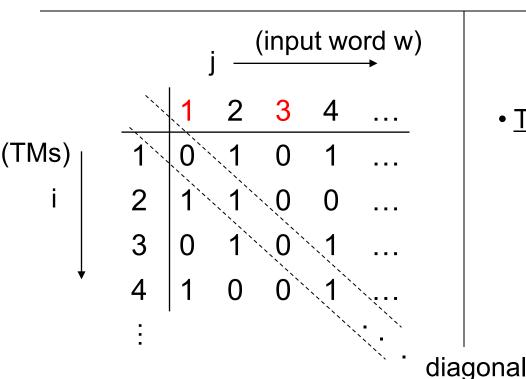
Any TM M can also be binarycoded

- M = { Q, {0,1}, Γ, δ, q₀,B,F }
 - Map all states, tape symbols and transitions to integers (==>binary strings)
 - δ(q_i,X_j) = (q_k,X_l,D_m) will be represented as:
 => 0ⁱ1 0^j1 0^k1 0^l1 0^m
- <u>Result</u>: Each TM can be written down as a long binary string
- ==> Canonical ordering of TMs:
 - { M_1 , M_2 , M_3 , M_4 , ..., M_i , ... }

The Diagonalization Language

 $L_d = \{ w_i \mid w_i \notin L(M_i) \}$

 The language of all strings whose corresponding machine does not accept itself (i.e., its own code)



• <u>Table:</u> T[i,j] = 1, if M_i accepts $w_j = 0$, otherwise.

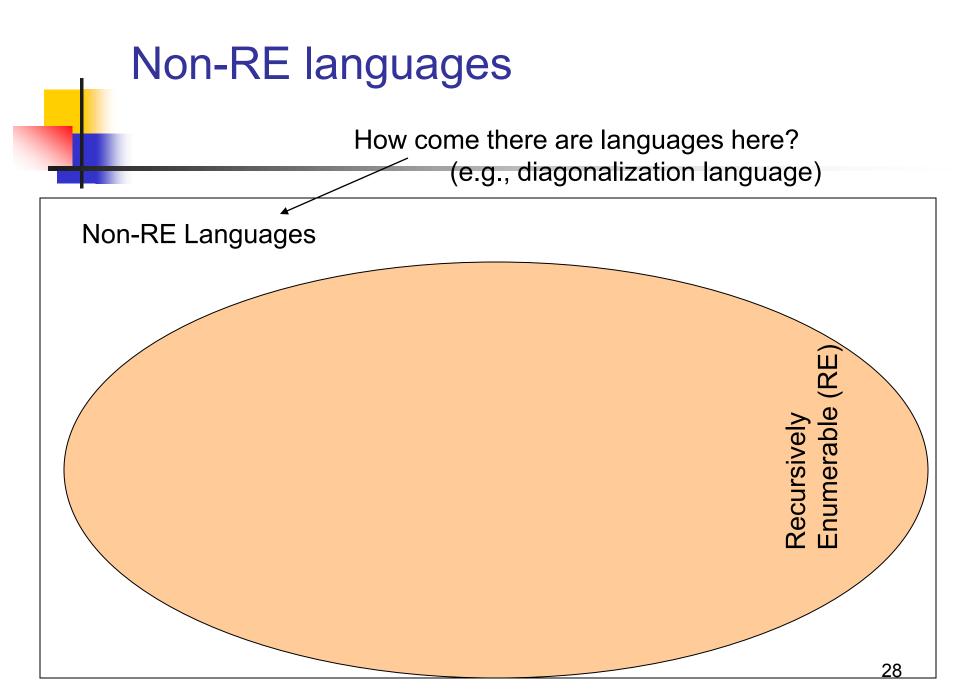
Make a new language called
 L_d = {w_i | T[i,i] = 0}

L_d is not RE (i.e., has no TM)

- Proof (by contradiction):
- Let M be the TM for L_d
- ==> M has to be equal to some M_k s.t. L(M_k) = L_d
- ==> Will w_k belong to $L(M_k)$ or not?
 - 1. If $w_k \in L(M_k) \Longrightarrow T[k,k] = 1 \Longrightarrow w_k \notin L_d$
 - 2. If $w_k \notin L(M_k) ==> T[k,k]=0 ==> w_k \in L_d$
- A contradiction either way!!

Why should there be languages that do not have TMs?

We thought TMs can solve everything!!



One Explanation

There are more languages than TMs

- By pigeon hole principle:
- ==> some languages cannot have TMs
- But how do we show this?
- Need a way to "count & compare" two infinite sets (languages and TMs)

How to count elements in a set?

Let A be a set:

- If A is finite ==> counting is trivial
- If A is infinite ==> how do we count?
- And, how do we compare two infinite sets by their size?

Cantor's definition of set "size" for infinite sets (1873 A.D.)

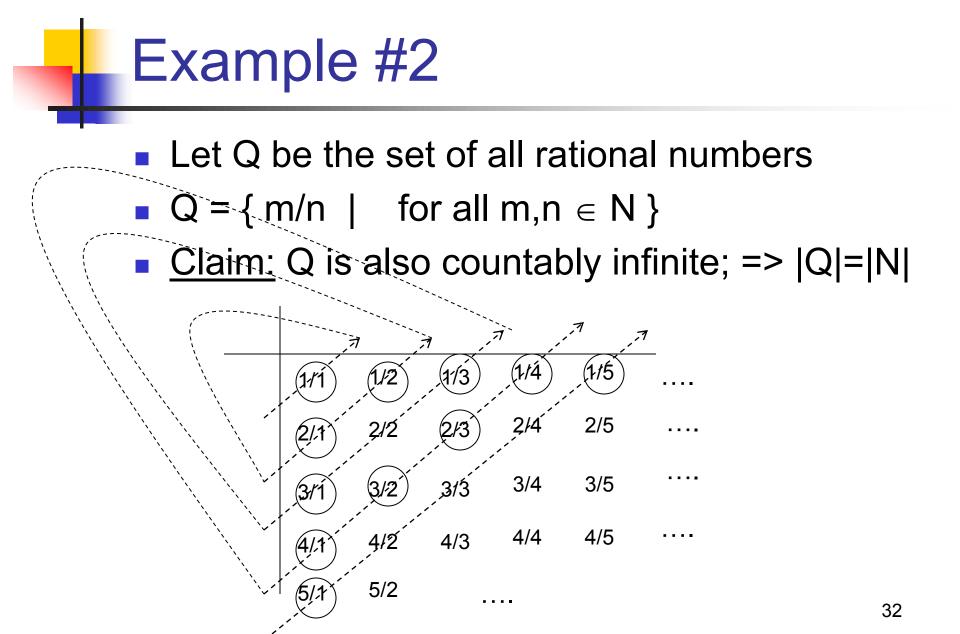
Let N = $\{1,2,3,...\}$ (all natural numbers) Let E = $\{2,4,6,...\}$ (all even numbers)

Q) Which is bigger?

A) Both sets are of the same size

- "Countably infinite"
- <u>Proof:</u> Show by one-to-one, onto set correspondence from

N ==> E	n	f(n)
	1	2
i.e, for every element in N,	2	4
there is a unique element in E,	3	6
and vice versa.	•	-



Really, really big sets! (even bigger than countably infinite sets)

Uncountable sets

Example:

- Let R be the set of all real numbers
- Claim: R is uncountable

n 1 2 3 4	<i>f(n)</i> 3 . <u>1</u> 4 1 5 9 5 . 5 <u>5</u> 5 5 5 5 0 . 1 2 <u>3</u> 4 5 0 . 5 1 4 <u>3</u> 0	Build x s.t. x cannot possibly occur in the table E.g. x = 0 . 2 6 4 4
•		33

Therefore, some languages cannot have TMs...

The set of all TMs is countably infinite

The set of all Languages is uncountable

==> There should be some languages without TMs (by PHP)

Summary

- Problems vs. languages
- Decidability
 - Recursive
- Undecidability
 - Recursively Enumerable
 - Not RE
 - Examples of languages
- The diagonalization technique
- Reducability