
1

Undecidability

Reading: Chapter 8 & 9

2

Decidability vs. Undecidability

 There are two types of TMs (based on halting):
(Recursive)

 TMs that always halt, no matter accepting or non-
accepting DECIDABLE PROBLEMS

(Recursively enumerable)

 TMs that are guaranteed to halt only on acceptance. If
non-accepting, it may or may not halt (i.e., could loop
forever).

 Undecidability:
 Undecidable problems are those that are not

recursive

3

Recursive, RE, Undecidable languages

Regular

(DFA)
Context-

free

(PDA) C
o

n
te

x
t

s
e

n
s
it
iv

e

R
e

c
u

rs
iv

e

R
e

c
u

rs
iv

e
ly

E
n

u
m

e
ra

b
le

 (
R

E
)

Non-RE Languages

(all other languages for which

no TMs can be built)

LBA
TMs that always halt

TMs that may or

may not halt

No TMs exist

“Undecidable” problems
“Decidable” problems

4

Recursive Languages &

Recursively Enumerable (RE)

languages

 Any TM for a Recursive language is going to

look like this:

 Any TM for a Recursively Enumerable (RE)

language is going to look like this:

M
w

“accept”

“reject”

M
w

“accept”

5

Closure Properties of:

- the Recursive language

class, and

- the Recursively Enumerable

language class

6

Recursive Languages are closed

under complementation

 If L is Recursive, L is also Recursive

M
w

“accept”

“reject” “reject”

 “accept”

w

M

7

Are Recursively Enumerable

Languages closed under

complementation? (NO)

 If L is RE, L need not be RE

M
w

“accept”

“reject”

 “accept”

w

M

?

?

Recursive Langs are closed

under Union

 Let Mu = TM for L1 U L2

 Mu construction:

1. Make 2-tapes and

copy input w on both

tapes

2. Simulate M1 on tape 1

3. Simulate M2 on tape 2

4. If either M1 or M2

accepts, then Mu

accepts

5. Otherwise, Mu rejects.

8

w

M1

M2

accept

reject

accept

reject

OR

Mu

Recursive Langs are closed

under Intersection

 Let Mn = TM for L1 L2

 Mn construction:

1. Make 2-tapes and

copy input w on both

tapes

2. Simulate M1 on tape 1

3. Simulate M2 on tape 2

4. If either M1 AND M2

accepts, then Mn

accepts

5. Otherwise, Mn rejects.

9

w

M1

M2

accept

reject

accept

reject

Mn

AND AND

10

Other Closure Property

Results

 Recursive languages are also closed under:

 Concatenation

 Kleene closure (star operator)

 Homomorphism, and inverse homomorphism

 RE languages are closed under:

 Union, intersection, concatenation, Kleene closure

 RE languages are not closed under:

 complementation

11

“Languages” vs. “Problems”

A “language” is a set of strings

Any “problem” can be expressed as a set of all
strings that are of the form:

 “<input, output>”

==> Every problem also corresponds to a
language!!

 Think of the language for a “problem” == a verifier for the problem

e.g., Problem (a+b) ≡ Language of strings of the form { “a#b, a+b” }

12

The Halting Problem

An example of a recursive

enumerable problem that is

also undecidable

13

Regular

(DFA)
Context-

free

(PDA) C
o

n
te

x
t

s
e

n
s
it
iv

e

R
e

c
u

rs
iv

e

R
e

c
u

rs
iv

e
ly

E
n

u
m

e
ra

b
le

 (
R

E
)

Non-RE Languages

The Halting Problem

x

14

What is the Halting Problem?

Definition of the “halting problem”:

 Does a givenTuring Machine M halt on

a given input w?

Machine

M

Input w

15

The Universal Turing Machine

 Given: TM M & its input w

 Aim: Build another TM called “H”, that will output:

 “accept” if M accepts w, and

 “reject” otherwise

 An algorithm for H:

 Simulate M on w

 H(<M,w>) =

accept, if M accepts w

reject, if M does does not accept w

A Turing Machine simulator

Question: If M does not halt on w, what will happen to H?

Implies: H is in RE

16

A Claim

 Claim: No H that is always guaranteed

to halt, can exist!

 Proof: (Alan Turing, 1936)

 By contradiction, let us assume H exists

 H
<M,w>

“accept”

“reject”

17

HP Proof (step 1)

 Let us construct a new TM D using H as a

subroutine:

 On input <M>:

1. Run H on input <M, <M> >; //(i.e., run M on M itself)

2. Output the opposite of what H outputs;

H
<M>

“accept”

“reject” “reject”

 “accept”

D

<M, “<M>” >

Therefore, if H exists D also should exist.

But can such a D exist? (if not, then H also cannot exist)

18

HP Proof (step 2)

 The notion of inputing “<M>” to M itself

 A program can be input to itself (e.g., a compiler is a

program that takes any program as input)

accept, if M does not accept <M>

reject, if M accepts <M>

D (<M>) =

accept, if D does not accept <D>

reject, if D accepts <D>

D (<D>) =

Now, what happens if D is input to itself?

A contradiction!!! ==> Neither D nor H can exist.

19

Of Paradoxes & Strange

Loops

A fun book for further reading:

 “Godel, Escher, Bach: An Eternal Golden Braid”

 by Douglas Hofstadter (Pulitzer winner, 1980)

E.g., Barber’s paradox, Achilles & the Tortoise (Zeno’s paradox)

 MC Escher’s paintings

20

The Diagonalization Language

Example of a language that is

not recursive enumerable

(i.e, no TMs exist)

21

Regular

(DFA)
Context-

free

(PDA) C
o

n
te

x
t

s
e

n
s
it
iv

e

R
e

c
u

rs
iv

e

R
e

c
u

rs
iv

e
ly

E
n

u
m

e
ra

b
le

 (
R

E
)

Non-RE Languages

The Halting Problem

The Diagonalization language

x

x

22

A Language about TMs &

acceptance

 Let L be the language of all strings

<M,w> s.t.:

1. M is a TM (coded in binary) with input

alphabet also binary

2. w is a binary string

3. M accepts input w.

23

Enumerating all binary strings

 Let w be a binary string

 Then 1w i, where i is some integer
 E.g., If w=, then i=1;

 If w=0, then i=2;

 If w=1, then i=3; so on…

 If 1w i, then call w as the ith word or ith binary
string, denoted by wi.

 ==> A canonical ordering of all binary
strings:
 {, 0, 1, 00, 01, 10, 11, 000, 100, 101, 110, …..}

 {w1, w2, w3, w4, …. wi, … }

24

Any TM M can also be binary-

coded

 M = { Q, {0,1}, , , q0,B,F }

 Map all states, tape symbols and transitions to

integers (==>binary strings)

 (qi,Xj) = (qk,Xl,Dm) will be represented as:
 ==> 0i1 0j1 0k1 0l1 0m

 Result: Each TM can be written down as a
long binary string

 ==> Canonical ordering of TMs:
 {M1, M2, M3, M4, …. Mi, … }

25

The Diagonalization Language

 Ld = { wi | wi L(Mi) }
 The language of all strings whose corresponding

machine does not accept itself (i.e., its own code)

1 2 3 4 …

1 0 1 0 1 …

2 1 1 0 0 …

3 0 1 0 1 …

4 1 0 0 1 …

i

j

…

. .
.

diagonal

• Table: T[i,j] = 1, if Mi accepts wj

 = 0, otherwise.

(input word w)

(TMs)

• Make a new language called

 Ld = {wi | T[i,i] = 0}

26

Ld is not RE (i.e., has no TM)

 Proof (by contradiction):

 Let M be the TM for Ld

 ==> M has to be equal to some Mk s.t.

 L(Mk) = Ld

 ==> Will wk belong to L(Mk) or not?

1. If wk L(Mk) ==> T[k,k]=1 ==> wk Ld

2. If wk L(Mk) ==> T[k,k]=0 ==> wk Ld

 A contradiction either way!!

27

Why should there be

languages that do not have

TMs?

We thought TMs can solve

everything!!

28

Non-RE languages

Regular

(DFA)
Context-

free

(PDA) C
o

n
te

x
t

s
e

n
s
it
iv

e

R
e

c
u

rs
iv

e

R
e

c
u

rs
iv

e
ly

E
n

u
m

e
ra

b
le

 (
R

E
)

Non-RE Languages

How come there are languages here?

 (e.g., diagonalization language)

29

One Explanation

There are more languages than TMs

 By pigeon hole principle:

 ==> some languages cannot have TMs

 But how do we show this?

 Need a way to “count & compare” two infinite
sets (languages and TMs)

30

How to count elements in a

set?

Let A be a set:

 If A is finite ==> counting is trivial

 If A is infinite ==> how do we count?

 And, how do we compare two infinite sets by

their size?

31

Cantor’s definition of set “size”

for infinite sets (1873 A.D.)

Let N = {1,2,3,…} (all natural numbers)

Let E = {2,4,6,…} (all even numbers)

Q) Which is bigger?

 A) Both sets are of the same size

 “Countably infinite”

 Proof: Show by one-to-one, onto set correspondence from

 N ==> E n

1

2

3

.

.

.

f(n)

2

4

6

.

.

.

i.e, for every element in N,

 there is a unique element in E,

 and vice versa.

32

Example #2

 Let Q be the set of all rational numbers

 Q = { m/n | for all m,n N }

 Claim: Q is also countably infinite; => |Q|=|N|

1/1 1/2 1/3 1/4 1/5

2/1 2/2 2/3 2/4 2/5

3/1 3/2 3/3 3/4 3/5

4/1 4/2 4/3 4/4 4/5

5/1 5/2 ….

….

….

….

….

33

Uncountable sets

Example:

 Let R be the set of all real numbers

 Claim: R is uncountable

n

1

2

3

4

.

.

.

f(n)

3 . 1 4 1 5 9 …

5 . 5 5 5 5 5 …

0 . 1 2 3 4 5 …

0 . 5 1 4 3 0 … E.g. x = 0 . 2 6 4 4 …

 Build x s.t. x cannot possibly

 occur in the table

Really, really big sets!

(even bigger than countably infinite sets)

34

Therefore, some languages

cannot have TMs…

 The set of all TMs is countably infinite

 The set of all Languages is uncountable

 ==> There should be some languages

without TMs (by PHP)

41

Summary

 Problems vs. languages

 Decidability
 Recursive

 Undecidability
 Recursively Enumerable

 Not RE

 Examples of languages

 The diagonalization technique

 Reducability

