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Undecidability 

Reading: Chapter 8 & 9 
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Decidability vs. Undecidability 

 There are two types of TMs (based on halting): 
(Recursive)  

 TMs that always halt, no matter accepting or non-
accepting  DECIDABLE PROBLEMS 

(Recursively enumerable)  

 TMs that are guaranteed to halt only on acceptance. If 
non-accepting, it may or may not halt (i.e., could loop 
forever). 

 

 Undecidability: 
 Undecidable problems are those that  are not 

recursive 



3 

Recursive, RE, Undecidable languages 
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(all other languages for which  

no TMs can be built) 

LBA 
TMs that always halt 

TMs that may or  

may not halt 

No TMs exist 

“Undecidable” problems 
“Decidable” problems 
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Recursive Languages & 

Recursively Enumerable (RE) 

languages 

 Any TM for a Recursive language is going to 

look like this: 

 

 

 

 Any TM for a Recursively Enumerable (RE) 

language is going to look like this: 

 

M 
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“accept” 

“reject” 

M 
w 

“accept” 
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Closure Properties of: 

- the Recursive language 

class, and   

- the Recursively Enumerable 

language class 
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Recursive Languages are closed 

under complementation 

 If L is Recursive, L is also Recursive 

M 
w 

“accept” 

“reject” “reject” 

 “accept” 

w 

M 
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Are Recursively Enumerable 

Languages closed under 

complementation?  (NO) 

 If L is RE, L need not be RE 

M 
w 

“accept” 

“reject” 

 “accept” 

w 

M 

? 

? 



Recursive Langs are closed 

under Union 

 Let Mu = TM for L1 U L2 

 Mu construction: 

1. Make 2-tapes and 

copy input w on both 

tapes 

2. Simulate M1 on tape 1  

3. Simulate M2 on tape 2 

4. If either M1 or M2 

accepts, then Mu 

accepts 

5. Otherwise, Mu rejects. 
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Recursive Langs are closed 

under Intersection 

 Let Mn = TM for L1  L2 

 Mn construction: 

1. Make 2-tapes and 

copy input w on both 

tapes 

2. Simulate M1 on tape 1  

3. Simulate M2 on tape 2 

4. If either M1 AND M2 

accepts, then Mn 

accepts 

5. Otherwise, Mn rejects. 
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Other Closure Property 

Results 

 Recursive languages are also closed under: 

 Concatenation 

 Kleene closure (star operator) 

 Homomorphism, and inverse homomorphism 

 RE languages are closed under: 

 Union, intersection, concatenation, Kleene closure 

 

 RE languages are not closed under: 

 complementation 
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“Languages” vs. “Problems” 

A “language” is a set of strings 

 

Any “problem” can be expressed as a set of all 
strings that are of the form: 

 “<input, output>” 

 

 

==> Every problem also corresponds to a 
language!! 

 Think of the language for a “problem”  == a verifier for the problem 

e.g., Problem (a+b) ≡ Language of strings of the form { “a#b, a+b” } 
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The Halting Problem 

An example of a recursive 

enumerable problem that is 

also undecidable 
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Non-RE Languages 

The Halting Problem 

x 



14 

What is the Halting Problem? 

Definition of the “halting problem”: 

 

 Does a givenTuring Machine M halt on 

a given input w? 

 
Machine 

M 

Input w 
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The Universal Turing Machine 

 Given: TM M & its input w 

 Aim: Build another TM called “H”, that will output: 

 “accept” if M accepts w, and  

 “reject” otherwise 

 

 An algorithm for H: 

 Simulate M on w 

 

 

 H(<M,w>)  =      

 

 

accept,    if M accepts w 

 

reject,    if M does does not accept w 

A Turing Machine simulator 

Question:  If M does not halt on w, what will happen to H? 

Implies: H is in RE 
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A Claim 

 Claim:  No H that is always guaranteed 

to halt, can exist! 

 Proof: (Alan Turing, 1936) 

 By contradiction, let us assume H exists 

 

 

 H 
<M,w>  

“accept” 

“reject” 
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HP Proof (step 1) 

 Let us construct a new TM D using H as a 

subroutine: 

 On input <M>: 

1. Run H on input <M, <M> >;   //(i.e., run M on M itself) 

2. Output the opposite of what H outputs; 

H 
<M> 

“accept” 

“reject” “reject” 

 “accept” 

D 

<M, “<M>” > 

Therefore, if H exists  D also should exist.  

But can such a D exist? (if not, then H also cannot exist) 
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HP Proof (step 2) 

 The notion of inputing “<M>” to M itself 

 A program can be input to itself (e.g., a compiler is a 

program that takes any program as input) 

accept,    if M does not accept <M> 

 

reject,    if M accepts <M> 

D (<M>) = 

accept,    if D does not accept <D> 

 

reject,    if D accepts <D> 

D (<D>) = 

Now, what happens if D is input to itself? 

A contradiction!!!     ==>  Neither D nor H can exist. 
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Of Paradoxes & Strange 

Loops 

A fun book for further reading: 

 “Godel, Escher, Bach: An Eternal Golden Braid”  

  by Douglas Hofstadter (Pulitzer winner, 1980) 

E.g., Barber’s paradox, Achilles & the Tortoise (Zeno’s paradox) 

 MC Escher’s paintings 
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The Diagonalization Language 

Example of a language that is  

not recursive enumerable 

 

(i.e, no TMs exist) 
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A Language about TMs & 

acceptance 

 Let L be the language of all strings 

<M,w> s.t.: 

1. M is a TM (coded in binary) with input 

alphabet also binary 

2. w is a binary string 

3. M accepts input w.  
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Enumerating all binary strings 

 Let w be a binary string 

 Then 1w  i, where i is some integer 
 E.g.,  If w=, then i=1; 

          If w=0, then i=2;  

          If w=1, then i=3; so on… 

 If 1w i, then call w as the ith word or ith binary 
string, denoted by wi. 

  ==> A canonical ordering of all binary 
strings: 
 {, 0, 1, 00, 01, 10, 11, 000, 100, 101, 110, …..} 

 {w1, w2, w3, w4, …. wi, … } 
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Any TM M can also be binary-

coded 

 M = { Q, {0,1}, , , q0,B,F } 

 
 Map all states, tape symbols and transitions to 

integers (==>binary strings) 

 (qi,Xj) = (qk,Xl,Dm) will be represented as: 
 ==> 0i1 0j1 0k1 0l1 0m 

 

 Result: Each TM can be written down as a 
long binary string 

 ==> Canonical ordering of TMs: 
 {M1, M2, M3, M4, …. Mi, … } 
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The Diagonalization Language 

 Ld = { wi | wi  L(Mi) } 
 The language of all strings whose corresponding 

machine does not accept itself (i.e., its own code) 

1 2 3 4 … 

1 0 1 0 1 … 

2 1 1 0 0 … 

3 0 1 0 1 … 

4 1 0 0 1 … 

i 

j 

…
 

. . 
. 

diagonal 

• Table: T[i,j] = 1, if Mi accepts wj 

          = 0, otherwise. 

 

(input word w) 

(TMs) 

• Make a new language called 

          Ld = {wi | T[i,i] = 0} 
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Ld is not RE (i.e., has no TM) 

 Proof (by contradiction): 

 Let M be the TM for Ld 

 ==> M has to be equal to some Mk s.t.  

  L(Mk) = Ld 

 ==> Will wk belong to L(Mk) or not? 

1. If wk  L(Mk) ==> T[k,k]=1 ==> wk Ld  

2. If wk  L(Mk) ==> T[k,k]=0 ==> wk  Ld 

 A contradiction either way!! 
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Why should there be 

languages that do not have 

TMs? 

We thought TMs can solve 

everything!! 
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Non-RE languages 
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Non-RE Languages 

How come there are languages here? 

 (e.g., diagonalization language) 
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One Explanation  

There are more languages than TMs 

 
 By pigeon hole principle: 

 ==> some languages cannot have TMs 

 

 But how do we show this? 

 

 Need a way to “count & compare” two infinite 
sets (languages and TMs) 
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How to count elements in a 

set? 

Let A be a set: 

 

 If A is finite  ==> counting is trivial 

 

 If A is infinite ==> how do we count? 

 

 And, how do we compare two infinite sets by 

their size? 
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Cantor’s definition of set “size” 

for infinite sets (1873 A.D.) 

Let N = {1,2,3,…} (all natural numbers) 

Let E = {2,4,6,…} (all even numbers)  

 

Q) Which is bigger? 

 A)  Both sets are of the same size 

 “Countably infinite” 

 Proof: Show by one-to-one, onto set correspondence from  

  N ==> E n 

1 

2 

3 

. 

. 

. 

f(n) 

2 

4 

6 

. 

. 

. 

i.e, for every element in N,  

       there is a unique element in E, 

 and vice versa. 
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Example #2 

 Let Q be the set of all rational numbers 

 Q = { m/n  |    for all m,n  N } 

 Claim: Q is also countably infinite; => |Q|=|N| 

1/1 1/2 1/3 1/4 1/5 

2/1 2/2 2/3 2/4 2/5 

3/1 3/2 3/3 3/4 3/5 

4/1 4/2 4/3 4/4 4/5 

5/1 5/2 …. 

…. 

…. 

…. 

…. 



33 

Uncountable sets 

Example:  

 Let R be the set of all real numbers 

 Claim: R is uncountable 

 
n 

1 

2 

3 

4 

. 

. 

. 

f(n) 

3 . 1 4 1 5 9 … 

5 . 5 5 5 5 5 … 

0 . 1 2 3 4 5 … 

0 . 5 1 4 3 0 … E.g. x = 0 . 2 6 4 4 … 

 Build x s.t. x cannot possibly  

    occur in the table 

Really, really big sets! 

(even bigger than countably infinite sets) 
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Therefore, some languages 

cannot have TMs… 

 The set of all TMs is countably infinite 

 

 The set of all Languages is uncountable 

 

 ==> There should be some languages 

without TMs ( by PHP) 
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Summary 

 Problems vs. languages 

 Decidability 
 Recursive 

 Undecidability 
 Recursively Enumerable 

 Not RE 

 Examples of languages  

 The diagonalization technique 

 Reducability 


