Introduction to Trees

Objectives

Upon completion you will be able to:

e Understand and use basic tree terminology and concepts

* Recognize and define the basic attributes of a binary tree

* Process trees using depth-first and breadth-first traversals
* Parse expressions using a binary tree

* Design and implement Huffman trees

* Understand the basic use and processing of general trees

Basic Tree Concepts

= A tree consists of finite set of elements,
called nodes, and a finite set of directed
lines called branches, that connect the
nodes.

= The number of branches associated with a
node is the degree of the node.

‘ Root \

@
OXOROCID,

FIGURE 6-1 Tree

Basic Tree Concepts

= When the branch is directed toward the
node, it is indegree branch.

= When the branch is directed away from
the node, it is an outdegree branch.

= The sum of the indegree and outdegree
branches is the degree of the node.

= If the tree is not empty, the first node is
called the root.

Basic Tree Concepts

= The indegree of the root is, by definition, zero.

= With the exception of the root, all of the nodes
in a tree must have an indegree of exactly one;
that is, they may have only one predecessor.

= All nodes in the tree can have zero, one, or
more branches leaving them; that is, they may
have outdegree of zero, one, or more.

‘ Root \

@
OXOROCID,

FIGURE 6-1 Tree

Basic Tree Concepts

= A leaf is any node with an outdegree of
zero, that is, a node with no successors.

= A node that is not a root or a leaf is
known as an internal node.

= A node is a parent if it has successor
nodes; that is, if it has outdegree greater
than zero.

= A node with a predecessor is called a
child.

Basic Tree Concepts

= TWO or more nodes with the same parents
are called siblings.

= An ancestor is any node in the path from
the root to the node.

= A descendant is any node in the path
below the parent node; that is, all nodes
in the paths from a given node to a leaf
are descendants of that node.

Basic Tree Concepts

= A path is a sequence of nodes in which
each node is adjacent to the next node.

= The level of a node is its distance from the
root. The root is at level O, its children are
at level 1, etc. ...

Basic Tree Concepts

= The height of the tree is the level of the
leaf in the longest path from the root plus
1. By definition the height of any empty
tree is -1.

= A subtree is any connected structure
below the root. The first node in the
subtree is known is the root of the
subtree.

Lavel()

Levell _ _ _ _

Level2

Root: A Siblings: {B,EF},{C.D},{G H,I}
Parents: A, B, F Leaves: CDEGH,|
Children: B,E, F,C, D, G, H, | Internal nodes: B,F

FIGURE -2 Tree Nomenclature

Subtree (A

B
Root of

O @ 0O
subtree |

oVeoNVoVoVve

FIGURE 6-3 Subtrees

Recursive definition of a tree

= A tree is a set of nodes that either:
= [S empty or
= has a designated node, called the root,

from which hierarchically descend zero or
more subtrees, which are also trees.

Tree Representation

= General Tree — organization chart format

= Indented list — bill-of-materials system in
which a parts list represents the assembly
structure of an item

@@ @ e

FIGURE 6-4 Computer Parts List as a General Tree

15

Part number Description
301 Computer
301-1 Case
301-2 CPU
301-2-1 Controller
301-2-2 ALU
30129 ROM
301-3 3.5" Disk
3019 CDROM

TABLE 6-1 Computer Bill of Materials

16

Parenthetical Listing

= Parenthetical Listing — the algebraic
expression, where each open parenthesis
indicates the start of a new level and each

closing parenthesis completes the current
level and moves up one level in the tree.

17

Parenthetical Listing

‘ Root \

(A
@
OXOROCID,

AMBCDYEF(GHI))

FIGURE 6-1 Tree

ALGORITHM &-1 Convert General Tree to Parenthetical Notation

Algorithm ConvertToParen (root, output)
Convert a general tree to parenthetical notation.
Pre root 1s a polnter to a tree node
Post output contains parenthetlcal notation
1 Place root in output
2 1f (root 1s a parent)
1 Place an open parenthesis in the output
2 ConvertToParen (root's first child)
3 loop (more siblings)
I ConvertToParen (root’s next child)

continued

19

ALGORITHM 6-1 Convert General Tree to Parenthetical Notation (continued)

4 end loop

5 Place close parenthesis in the output
3 end if
4 return
end ConvertToParen

20

6-2 Binary Trees

A binary tree can have no more than two descendents. In this

section we discuss the properties of binary trees, four different
binary tree traversals

* Properties

* Binary Tree Traversals
* Expression Trees
 Huffman Code

21

Binary Trees

= A binary tree is a tree in which no node
can have more than two subtrees; the
maximum outdegree for a node is two.

= In other words, a node can have zero,
one, or two subtrees.

= These subtrees are designated as the left
subtree and the right subtree.

22

Left subtree

Right subtree

FIGURE 6-5 Binary Tree

23

A null D
tree is a
tree with > &>
no nodes (a) (b) (c) (d)
<D CAD
O CBOCCD
COCED
(e) (f)
<D §D
(B
€« «P

(9)

FIGURE 6-6 Collection of Binary Trees

24

Some Properties of Binary Trees

= The height of binary trees can be
mathematically predicted

s Given that we need to store /N nodes in a
binary tree, the maximum height is

Hmax — N

A tree with a maximum height is rare. It occurs when all of
the nodes in the entire tree have only one successor.

25

Some Properties of Binary Trees

= The minimum height of a binary tree is
determined as follows:

H_, =|[log, N|+1

For instance, if there are three nodes to be stored in the
binary tree (N=3) then H_, =2.

26

Some Properties of Binary Trees

= Given a height of the binary tree, H, the
minimum number of nodes in the tree is given
as follows:

N . =H

min

Some Properties of Binary Trees

m [he

formula for the maximum number of

nodes is derived from the fact that each node

can
heig

nave only two descendents. Given a
Nt of the binary tree, H, the maximum

number of nodes in the tree is given as

follo

WS.

28

Some Properties of Binary Trees

= The children of any node in a tree can be accessed by
following only one branch path, the one that leads to
the desired node.

= The nodes at level 1, which are children of the root,
can be accessed by following only one branch; the
nodes of level 2 of a tree can be accessed by
following only two branches from the root, etc.

= The balance factor of a binary tree is the difference in
height between its left and right subtrees:

B=H,—-H,

29

Balance of
the tree

=0 B=0
(a) (b) (c) (d)
<D CAD
O CBOC
B=0 (O CE) B=1
(e) (f)
CAD §D
ey OB B=2
<D <«

(9)

FIGURE 6-6 Collection of Binary Trees

30

Some Properties of Binary Trees

= In the balanced binary tree (definition of
Russian mathematicians Adelson-Velskii and
Landis) the height of its subtrees differs by no
more than one (its balance factor is -1, 0, or
1), and its subtrees are also balanced.

31

Complete and nearly complete
binary trees

= A complete tree has the maximum number
of entries for its height. The maximum

number is reached when the last level is
full.

= A tree is considered nearly complete if it
has the minimum height for its nodes and

all nodes in the last level are found on the
left

32

(a) Complete trees (at levels 0, 1, and 2)

(b) Nearly complete trees (at level 2)

FIGURE 67 Complete and Nearly Complete Trees

33

Binary Tree Traversal

= A binary tree traversal requires that each
node of the tree be processed once and
only once in a predetermined sequence.

= In the depth-first traversal processing
process along a path from the root
through one child to the most distant
descendant of that first child before
processing a second child.

&

Left Right
subtree subtree

(a) Preorder traversal

(V

1 3

Left Right
subtree subtree

(b) Inorder traversal

O
1 2

Left Right
subtree subtree

(c) Postorder traversal

FIGURE 6-8 Binary Tree Traversals

35

FIGURE 6-9 Binary Tree for Traversals

36

ALGORITHM 6-2 Preorder Traversal of a Binary Tree

Algorithm preOrder (root)

Traverse a binary tree in node-left-right sequence.
Pre root is the entry node of a tree or subtree
Post each node has been processed in order

1 1f (root 1s not null)

1 process (root)
2 prelrder (leftSubtree)
3 preOrder (rightSubtree)
2 end 1if
end preQrder

37

(a) Processing order

(b) “Walking” order

FIGURE 6-10 Preorder Traversal—AB CDEF

38

FIGURE 6-11

C F
(a) Process tree A

DD

(e) Process tree E (f) Process tree F

Algorithmic Traversal of Binary Tree

39

ALGORITHM 6-3

HDI'CIEI' TI'EI‘JEI'EEI' DI: d Bil"l[ll')f TI'EE!

Algorithm inQOrder (root)

Traverse a binary tree in left-node-right sequence.
Pre root is the entry node of a tree or subtree
Post each node has been processed in order

1 if (root 1s not null)

1 1inOrder (leftSubTree)
2 process (root)
3 1nOrder (rightSubTree)

2 end 1if

end inOrder

40

clslo

A

el

(a) Processing order

(b) “Walking™ orcler

FIGURE 6-12 Inorder Traversa—CB D AEF

41

ALGORITHM 6-4

Postordler Traversal of a Binary Tree

Algorithm postOrder (root)

Traverse a binary tree in left-right-node sequence.
Pre root is the entry node of a tree or subtree
Post each node has been processed in order

1 if (root is not null)
1 postOrder (left subtree)
2 postOrder (right subtree)
3 process (root)

2 end if

end postOrder

42

cllole] |LJFle A

(a) Processing order (b) “Walking” orcler

FIGURE 613 Postorder Traversa—C DB F E A

ALGORITHM 6-5 Breadth-first Tree Traversdl

Algorithm breadthFirst (root)
Process tree using breadth-first traversal.
Pre root 1s node to be processed
Post tree has been processed
1 set currentNode to root
createQueue (bfQueue)
3 loop (currentNode not null)
1 process (currentNode)
2 1f (left subtree not null)
1 engueue (bfQueue, left subtree)
3 end if
4 if (right subtree not null)
1 enqueue (bfQueue, right subtree)
5 end if
6 1f (not emptyQueue(bfQueue))
1 set currentNode to dequeue (bfQueue)

7 else
1 set currentNode to null
8 end if
4 end loop

5 destroyQueue (bfQueue)
end breadthFirst

(a) Processing order

(b) “Walking” order

FIGURE 6-14 Breadth-first Traversal

45

ax(b+:::)+d|

FIGURE 6-15 Infix Expression and lts Expression Tree

46

‘((ax(h+ﬂ))+d] \

p

l W%/j\

+

FIGURE 6-16 Infix Traversal of an Expression Tree

47

ALGORITHM 6-6

nfix Expression Tree Traverscl

Algorithm infix (tree)

Print the infix expression for an expression tree,
Pre tree is a pointer to an expression tree
Post the infix expression has been printed

1 if (tree not empty)

1 if (tree token is an operand)
1 print (tree-token)
2 else
1 print (open parenthesis)
2 infix (tree left subtree)
3 print (tree token)
4 infix (tree right subtree)
5 print (close parenthesis)
3 end if
2 end if
end infix

48

ALGORITHM 67 Postfix Traversal of an Expression Tree

Algorithm postfix (tree)

Print the postfix expression for an expression tree,
Pre tree is & pointer to an expression tree
Post the postfix expression has been printed

] 1f (tree not empty)

conlinted

49

ALGORITHM 6-7

Postlix Traversal of an Expression Tree (confinue

l postfix (tree left subtree)
2 postflx (tree right subtree)
3 print (tree token)

2 end 1f

end postfix

50

ALGORITHM 6-8

Prefix Traversal of an Expression Tree

Algorithm prefix (tree)

Print the prefix expression for an expression tree.
Pre tree 1s a polnter to an expression tree
Post the prefix expression has been printed

1 1f (tree not empty)

1 print (tree token)
2 prefix (tree left subtree)
3 prefix (tree right subtree)
2 end if
end prefix

51

