Introduction to Trees

Objectives

Upon completion you will be able to:

e Understand and use basic tree terminology and concepts

* Recognize and define the basic attributes of a binary tree

* Process trees using depth-first and breadth-first traversals
* Parse expressions using a binary tree

* Design and implement Huffman trees

* Understand the basic use and processing of general trees



Basic Tree Concepts

= A tree consists of finite set of elements,
called nodes, and a finite set of directed
lines called branches, that connect the
nodes.

= The number of branches associated with a
node is the degree of the node.



‘ Root \

@
OXOROCID,

FIGURE 6-1 Tree



Basic Tree Concepts

= When the branch is directed toward the
node, it is indegree branch.

= When the branch is directed away from
the node, it is an outdegree branch.

= The sum of the indegree and outdegree
branches is the degree of the node.

= If the tree is not empty, the first node is
called the root.



Basic Tree Concepts

= The indegree of the root is, by definition, zero.

= With the exception of the root, all of the nodes
in a tree must have an indegree of exactly one;
that is, they may have only one predecessor.

= All nodes in the tree can have zero, one, or
more branches leaving them; that is, they may
have outdegree of zero, one, or more.
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Basic Tree Concepts

= A leaf is any node with an outdegree of
zero, that is, a node with no successors.

= A node that is not a root or a leaf is
known as an internal node.

= A node is a parent if it has successor
nodes; that is, if it has outdegree greater
than zero.

= A node with a predecessor is called a
child.



Basic Tree Concepts

= TWO or more nodes with the same parents
are called siblings.

= An ancestor is any node in the path from
the root to the node.

= A descendant is any node in the path
below the parent node; that is, all nodes
in the paths from a given node to a leaf
are descendants of that node.



Basic Tree Concepts

= A path is a sequence of nodes in which
each node is adjacent to the next node.

= The level of a node is its distance from the
root. The root is at level O, its children are
at level 1, etc. ...



Basic Tree Concepts

= The height of the tree is the level of the
leaf in the longest path from the root plus
1. By definition the height of any empty
tree is -1.

= A subtree is any connected structure
below the root. The first node in the
subtree is known is the root of the
subtree.
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FIGURE -2 Tree Nomenclature
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Recursive definition of a tree

= A tree is a set of nodes that either:
= [S empty or
= has a designated node, called the root,

from which hierarchically descend zero or
more subtrees, which are also trees.



Tree Representation

= General Tree — organization chart format

= Indented list — bill-of-materials system in
which a parts list represents the assembly
structure of an item
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FIGURE 6-4 Computer Parts List as a General Tree
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Part number Description
301 Computer
301-1 Case
301-2 CPU
301-2-1 Controller
301-2-2 ALU
30129 ROM
301-3 3.5" Disk
3019 CDROM

TABLE 6-1 Computer Bill of Materials
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Parenthetical Listing

= Parenthetical Listing — the algebraic
expression, where each open parenthesis
indicates the start of a new level and each

closing parenthesis completes the current
level and moves up one level in the tree.
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Parenthetical Listing
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ALGORITHM &-1 Convert General Tree to Parenthetical Notation

Algorithm ConvertToParen (root, output)
Convert a general tree to parenthetical notation.
Pre root 1s a polnter to a tree node
Post output contains parenthetlcal notation
1 Place root in output
2 1f (root 1s a parent)
1 Place an open parenthesis in the output
2 ConvertToParen (root's first child)
3 loop (more siblings)
I ConvertToParen (root’s next child)

continued
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ALGORITHM 6-1  Convert General Tree to Parenthetical Notation (continued)

4 end loop

5 Place close parenthesis in the output
3 end if
4 return
end ConvertToParen
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6-2 Binary Trees

A binary tree can have no more than two descendents. In this

section we discuss the properties of binary trees, four different
binary tree traversals

* Properties

* Binary Tree Traversals
* Expression Trees
 Huffman Code

21



Binary Trees

= A binary tree is a tree in which no node
can have more than two subtrees; the
maximum outdegree for a node is two.

= In other words, a node can have zero,
one, or two subtrees.

= These subtrees are designated as the left
subtree and the right subtree.
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FIGURE 6-5 Binary Tree
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FIGURE 6-6 Collection of Binary Trees
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Some Properties of Binary Trees

= The height of binary trees can be
mathematically predicted

s Given that we need to store /N nodes in a
binary tree, the maximum height is

Hmax — N

A tree with a maximum height is rare. It occurs when all of
the nodes in the entire tree have only one successor.
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Some Properties of Binary Trees

= The minimum height of a binary tree is
determined as follows:

H_, =|[log, N|+1

For instance, if there are three nodes to be stored in the
binary tree (N=3) then H_, =2.
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Some Properties of Binary Trees

= Given a height of the binary tree, H, the
minimum number of nodes in the tree is given
as follows:

N . =H

min
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Some Properties of Binary Trees

= The children of any node in a tree can be accessed by
following only one branch path, the one that leads to
the desired node.

= The nodes at level 1, which are children of the root,
can be accessed by following only one branch; the
nodes of level 2 of a tree can be accessed by
following only two branches from the root, etc.

= The balance factor of a binary tree is the difference in
height between its left and right subtrees:

B=H,—-H,
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Some Properties of Binary Trees

= In the balanced binary tree (definition of
Russian mathematicians Adelson-Velskii and
Landis) the height of its subtrees differs by no
more than one (its balance factor is -1, 0, or
1), and its subtrees are also balanced.
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Complete and nearly complete
binary trees

= A complete tree has the maximum number
of entries for its height. The maximum

number is reached when the last level is
full.

= A tree is considered nearly complete if it
has the minimum height for its nodes and

all nodes in the last level are found on the
left
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(a) Complete trees (at levels 0, 1, and 2)

(b) Nearly complete trees (at level 2)

FIGURE 67 Complete and Nearly Complete Trees
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Binary Tree Traversal

= A binary tree traversal requires that each
node of the tree be processed once and
only once in a predetermined sequence.

= In the depth-first traversal processing
process along a path from the root
through one child to the most distant
descendant of that first child before
processing a second child.
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FIGURE 6-8 Binary Tree Traversals
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FIGURE 6-9 Binary Tree for Traversals
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ALGORITHM 6-2 Preorder Traversal of a Binary Tree

Algorithm preOrder (root)

Traverse a binary tree in node-left-right sequence.
Pre root is the entry node of a tree or subtree
Post each node has been processed in order

1 1f (root 1s not null)

1 process (root)
2 prelrder (leftSubtree)
3 preOrder (rightSubtree)
2 end 1if
end preQrder
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(a) Processing order

(b) “Walking” order

FIGURE 6-10 Preorder Traversal—AB CDEF
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FIGURE 6-11
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Algorithmic Traversal of Binary Tree
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ALGORITHM 6-3
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Algorithm inQOrder (root)

Traverse a binary tree in left-node-right sequence.
Pre root is the entry node of a tree or subtree
Post each node has been processed in order

1 if (root 1s not null)

1 1inOrder (leftSubTree)
2 process (root)
3 1nOrder (rightSubTree)

2 end 1if

end inOrder
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ALGORITHM 6-4

Postordler Traversal of a Binary Tree

Algorithm postOrder (root)

Traverse a binary tree in left-right-node sequence.
Pre root is the entry node of a tree or subtree
Post each node has been processed in order

1 if (root is not null)
1 postOrder (left subtree)
2 postOrder (right subtree)
3 process (root)

2 end if

end postOrder
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ALGORITHM 6-5 Breadth-first Tree Traversdl

Algorithm breadthFirst (root)
Process tree using breadth-first traversal.
Pre root 1s node to be processed
Post tree has been processed
1 set currentNode to root
createQueue (bfQueue)
3 loop (currentNode not null)
1 process (currentNode)
2 1f (left subtree not null)
1 engueue (bfQueue, left subtree)
3 end if
4 if (right subtree not null)
1 enqueue (bfQueue, right subtree)
5 end if
6 1f (not emptyQueue(bfQueue))
1 set currentNode to dequeue (bfQueue)

7 else
1 set currentNode to null
8 end if
4 end loop

5 destroyQueue (bfQueue)
end breadthFirst




(a) Processing order

(b) “Walking” order

FIGURE 6-14 Breadth-first Traversal
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FIGURE 6-16  Infix Traversal of an Expression Tree
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ALGORITHM 6-6

nfix Expression Tree Traverscl

Algorithm infix (tree)

Print the infix expression for an expression tree,
Pre tree is a pointer to an expression tree
Post the infix expression has been printed

1 if (tree not empty)

1 if (tree token is an operand)
1 print (tree-token)
2 else
1 print (open parenthesis)
2 infix (tree left subtree)
3 print (tree token)
4 infix (tree right subtree)
5 print (close parenthesis)
3 end if
2 end if
end infix
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ALGORITHM 67 Postfix Traversal of an Expression Tree

Algorithm postfix (tree)

Print the postfix expression for an expression tree,
Pre tree is & pointer to an expression tree
Post the postfix expression has been printed

] 1f (tree not empty)

conlinted
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ALGORITHM 6-7

Postlix Traversal of an Expression Tree (confinue

l postfix (tree left subtree)
2 postflx (tree right subtree)
3 print (tree token)

2 end 1f

end postfix
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ALGORITHM 6-8

Prefix Traversal of an Expression Tree

Algorithm prefix (tree)

Print the prefix expression for an expression tree.
Pre tree 1s a polnter to an expression tree
Post the prefix expression has been printed

1 1f (tree not empty)

1 print (tree token)
2 prefix (tree left subtree)
3 prefix (tree right subtree)
2 end if
end prefix
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