Data Structures

Trees

Chapter 5 Trees: Outline

Introduction
= Representation Of Trees

Binary Trees

Binary Tree Traversals

Additional Binary Tree Operations
Threaded Binary Trees

Heaps

Binary Search Trees

Selection Trees

Forests

Introduction (1/8)

= A tree structure means that the data are organized
so that items of information are related by branches

= Examples:

Honey Bear
Brunhilde Terry Coyote

Gill Tansey Tweed Zoe Crocus Primrose Nous
(a) Pediqree

Proto Indo—European

Italic Hellenic
North
Osco—Umbrian Latin i

Osco Umbrian Spanish French Italian Icelandic Noruwegian Swedish Low High Yiddish

(b) Lineal

Figure 5.1: Two types of genealogical charts

Introduction (2/8)

= Definition (recursively): A tree is a finite set of
one or more nodes such that

= There is a specially designated node called root.

* The remaining nodes are partitioned into n>=0 disjoint
set T,,...,T,, where each of these sets is a tree.
T,,...,T, are called the subtrees of the root.

= Every node in the tree is the root of some

subtree

Introduction (3/8)

= Some Terminology

* node: the item of information plus the branches to each
node.

= degree: the number of subtrees of a node

» degree of a tree: the maximum of the degree of the
nodes in the tree.

» terminal nodes (or /leaf): nodes that have degree zero

= nonterminal nodes: nodes that don’t belong to terminal
nodes.

= children: the roots of the subtrees of a node X are the
children of X

= parent. X is the parent of its children.

Introduction (4/8)

= Some Terminology (cont'd)
= siblings: children of the same parent are said to be
siblings.
= Ancestors of a node: all the nodes along the path
from the root to that node.

* The level of a node: defined by letting the root be at
level one. If a node is at level /, then it children are at
level [+1.

= Height (or depth): the maximum level of any node in
the tree

Introduction (5/8)

= Example
is the node P . _
roperty: S) = s)-1

is the of D and E perty) ()

IS the of B

and are the of B

are . or
are
The of is Level
The of the tree is
The of node is 1
The of the tree is
The of node is 5
The of node is
3

Introduction (6/8)

= Representation Of Trees

» |List Representation

= we can write of Figure 5.2 as a list in which each of the
subtrees is also a list

(A(B(E(K/ L) F)C(G),D(H(M)IJ)))

" The root comes first,
followed by a list of sub-trees

daa [Gk 7] k2 | | fikn

Figure 5.3: Possible list representation for trees

Figure 5.2: A sample tree

Introduction (7/8)

= Representation Of

Trees (cont'd)
= |eft Child-
Right Sibling
Representation

Figure 5.4: Left child-right sibling node structure

Figure 5.5: Left child-right sibling represéntation of a tree

Introduction (8/8)

= Representation Of Trees (cont'd)

= Representation
As A Degree
Two Tree

Figure 5.6: Left child-right child tree representation of a tree

Binary Trees (1/9)

Binary trees are characterized by the fact that
any node can have at most two branches
Definition (recursive):

= A binary tree is a finite set of nodes that is either
empty or consists of a root and two disjoint binary
trees called the left subtree and the right subtree

Thus the left subtree and the right subtree are
distinguished

Any tree can be transformed into binary tree
= by left child-right sibling representation

Binary Trees (2/9)

= The abstract data type of binary tree

structure Binary_Tree (abbreviated BinTree) is
objects: a finite set of nodes either empty or consisting of a root node, left
Binary_Tree, and right Binary_Tree.
functions:
for all bt,bt1,b12 € BinTree, item € element

BinTree Create() = creates an empty binary tree
Boolean IsEmpty(bt) o if (bt == empty binary tree)
return TRUE else return FALSE
BinTree MakeBT(bt1, item, bt2) :: return a binary tree whose left
subtree is brl, whose right
subtree is hr2, and whose root
node contains the data item.
BinTree Lchild(bt) “3 if (ISEmpty(bt)) return error else
return the left subtree of br.
element Data(bt) 5 if (IsEmpty(bt)) return error else
return the data in the root node of br.
BinTree Rchild(br) 2 if (IsSEmpty(bt)) return error else
return the right subtree of bz.

Structure 5.1: Abstract data type Binary_Tree

Binary Trees (3/9)

= Two special kinds of binary trees:
(a) skewed tree, (b) complete binary tree

* The all leaf nodes of these trees are on two adjacent levels

Figure 5.9: Skewed and complete binary trees

Binary Trees (4/9)

= Properties of binary trees
* Lemma 5.1 [Maximum number of nodes]:

1. The maximum number of nodes on level i of a binary
tree is 21, i >1.

2. The maximum number of nodes in a binary tree of
depth kis 21, k>1.

* Lemma 5.2 [Relation between number of leaf
nodes and degree-2 nodes]:

For any nonempty binary tree, T, if ny is the number
of leaf nodes and n, is the number of nodes of
degree 2, then ny=n, + 1.
= These lemmas allow us to define full and
complete binary trees

Binary Trees (5/9)

= Definition:
= A full binary tree of depth k is a binary tree of death k
having 2%-1 nodes, k > 0.

= A binary tree with n nodes and depth k is complete iff its
nodes correspond to the nodes numbered from 1 to n in
the full binary tree of depth k.

= From Lemma 5.1, the
height of a complete
binary tree with n nodes
is [log,(n+1)]|

Figure 5.10: Full binary tree of depth 4 with sequential node numbers

Binary Trees (6/9)

= Binary tree representations (using array)

= Lemma 5.3: If a complete binary tree with n nodes
IS represented sequentially, then for any node with
iIndex /, 1 <i < n, we have
1. parent(i)is atLi/2]ifi=1.
If i =1, iis at the root and has no parent.
2. LeftChild(i) is at 2i if 2i < n.
If 2i > n, then / has no left child.
3. RightChild(i) is at 2i+1 if 2i+1 < n.
If 2i +1 > n, then i has no left child
(1] (2] (3] [4] [S] [6] [7]
A|/B|C|—|D|—|E

)\ /)
Y

T N
Level 1

Level 2 Level 3

SMEIWANCERRLS)

= Binary tree representations (using array)

= Waste spaces: in the worst case, a skewed tree of depth
k requires 2*-1 spaces. Of these, only k spaces will be
occupied

= |nsertion or deletion
of nodes from the
middle of a tree
requires the
movement of
potentially many nodes
to reflect the change in
the level of these nodes

Figure 5.11: Array representation of binary trees of Figure 5.9

Binary Trees (8/9)

= Binary tree representations (using link)

typedef struct node *tree_pointer;
typedef struct node {
int data;
tree_pointer left_child, right—child;

| ¥

left_child right_child

Figure 5.12: Node representation for binary trees

left_child right_child

Binary Trees (9/9)

= Binary tree representations (using link)

/

/

]
f

NULL NULL

L
{

Figure 5.13: Linked representation for the binary trees of Figure 5.9

Binary Tree Traversals (1/9)

= How to traverse a tree or visit each node in the

tree exactly once?

* There are six possible combinations of traversal

LVR, LRV, VLR, VRL, RVL, RLV

= Adopt convention that we traverse left before
right, only 3 traversals remain

L R (order), LR (order), LR (order)
left_child | data| right_child
N I
: moving left : . moving right
visiting

node

Binary Tree Traversals (2/9)

= Arithmetic Expression using binary tree
" inorder traversal
A/B*C*D+E
= preorder traversal
+ **/ABCDE
= postorder traversal

AB/C*D*E+
= |evel order traversal
+*E*D/CAB

Figure 5.15: Binary tree with arithmetic expression

Binary Tree Traversals (3/9)
" |norder traversal (LVR) (recursive version)

output: A/ B*C*D+E

void inorder (tree_pointer ptr)
/* inorder tree traversal */

1L (BrE)| {

inorder (ptr—>left_child) ;l
printf ("%d",ptr—>data) ;I
inorder(ptr—>riqhtﬁchild);F—————

Figure 5.15: Binary tree with arithmetic expression

Binary Tree Traversals (4/9)

= Preorder traversal (VLR) (recursive version)
output: +** /ABCDE

volid preorder (tree—pointer ptr)
/* preorder tree traversal */
{
if (pEr) [
printf ("%d",ptr—>data) ; <
preorder (ptr—>left_child)

preorder (ptr—>right_child);e—— R
}
}

Program 5.2: Preorder traversal of a binary tree

Figure 5.15: Binary tree with arithmetic expression

Binary Tree Traversals (5/9)

= Postorder traversal (LRV) (recursive version)
output: AB/C*D*E +

vold postorder (tree_pointer ptr)
/* postorder tree traversal */
{
if (ptr) {
postorder (ptr—>left_child) &
postorder (ptr—>right_—child) e——
printf ("%d",ptr—>data)
}
1

Program 5.3: Postorder traversal of a binary tree

Figure 5.15: Binary tree with arithmetic expression

SIEIWANCERICVEICEIRRGE)

= |terative inorder traversal
= we use a stack to simulate recursion

void iter—inorder (tree_pointer node)
{
int top = ; /* initialize stack */
tree—pointer stack[MAX_STACK-SIZE];
TeE (33l 4
[for (; node; node = node—>left-child}«
[add (&top, node)] /* add to stack */e—
lhode = delete(&top)] /* delete from stack *
L1f (Tnode)|[break; /* empty stack */
pprintf ("%d", node—>data) }e
hode = node—>right_child;le

}

Program 5.4: Iterative inorder traversal

5

——8

\
output: A/B*C*D +E "‘7- 9‘ ;w

Figure 5.15: Binary tree with arithmetic expression

Binary Tree Traversals (7/9)

= Analysis of inorder2 (Non-recursive Inorder
traversal)
= Let n be the number of nodes in the tree
= Time complexity: O(n)

= Every node of the tree is placed on and removed
from the stack exactly once

= Space complexity: O(n)

= equal to the depth of the tree which
(skewed tree is the worst case)

Binary Tree Traversals (8/9)

= | evel-order traversal

= method:

= We visit the root first, then the root’s left child, followed by the
root’s right child.

= We continue in this manner, visiting the nodes at each new
level from the leftmost node to the rightmost nodes

»= This traversal requires a queue to implement

SIEIWANCERICVEICEIRRCE)
= | evel-order traversal (using queue)

void level_order (tree_pointer ptr) Output- +*E*D/C AB

/* level order tree traversal */

{

int front = rear = 0; 2 17 3 14 4 11 5 8
tree—pointer gueue[MAX_QUEUE_SIZE] ; * El* DI/ ICIAIB
if {lptr) return: /[* cipbty tree ¥/

addg (front, &rear, ptr);

feE Lrp) o

ptr = deleteq(&front, rear);

if (ptr)| {

~ rintf ("%d",ptr—>data) |
EElpbr=sleft-child)

FIFO < laddg (front, &rear,ptr—>left_child) i
if (ptr—>right-child

L pddq(front,&rear,ptr—>right_child)ﬂ

}

else break]

}

Program 5.5: Level order traversal of a binary tree

