o T TRAR A

Graphs

e vw

Contents

A Terminology

A Graphs as ADTS
A Graphs as ADTs
A Applications of Graphs

SUITSLIE AIPRA B | v&m

Terminology

A Definition:
A A set of points that are joined by lines

A Graphs also represent the relationships
| among data items

i AG ={V, E}; thatis, a graph is a set of
® vertices and edges

T A A subgraph consists of a subset of a
= graphos vertices and

BTl UFBA LS | _

Terminology

FIGURE 20-1 An ordinary line graph

- _

Terminology

(a) (b)
Dormitory Dormitory
Library Gymnasium Library
Student Union Student Union

FIGURE 20-2 (a) A campus map as a graph;
(b) a subgraph

SR — _

Terminology

g\ O @
@]
(a) (b) (c)

FIGURE 20-3 Graphs that are (a) connected,;
(b) disconnected; and (c) complete

SEIRAIE ATRA S B S L | “

Terminology

FIGURE 20-4 (a) A multigraph is not a graph;
(b) a self edge is not allowed in a graph

RLITLIP LIFRA S B b | Fl.m

Terminology

A Simple path: passes through vertex only
once

A Cycle: a path that begins and ends at same
vertex

; A Simple cycle: cycle that does not pass
B through other vertices more than once

o= A Connected graph: each pair of distinct
w Vertices has a path between them

o T RAR A

Terminology

A Complete graph: each pair of distinct
vertices has an edge between them

A Graph cannot have duplicate edges
between vertices
A Multigraph: does allow multiple edges

'8 A When labels represent numeric values,
graph is called a weighted graph

SRS — vw

Terminology

A Undirected graphs: edges do not indicate a
direction

A Directed graph, or digraph: each edge has
a direction

R [TRLIT AIFRA B S | | “
Terminology

(a)
Providence

New York

Albuquergue

Albuquergue

FIGURE 20-5 (a) A weighted graph;
(b) a directed graph

SEIRAIE ATRA S B S L | v&m
Graphs as ADTs

ADT graph operations
A Test whether graph is empty.
A Get number of vertices in a graph.
A Get number of edges in a graph.

A See whether edge exists between two given
vertices.

A Insert vertex in graph whose vertices have
di stinct valwues that d
value.

L ITRAIT AP Ba B | | H’w
Graphs as ADTs

ADT graph operations, ctd.
A Insert edge between two given vertices in graph.

A Remove specified vertex from graph and any edges
between the vertex and other vertices.

A Remove edge between two vertices in graph.
A Retrieve from graph vertex that contains given value.

" A View interface for undirected, connected graphs,

Listing 20-1 .htm code listing files
must be in the same
folder as the .ppt files
for these links to
work

Chapter20-CodeListing.html
Chapter20-CodeListing.html
Chapter20-CodeListing.html

i
=
=
-
-
s
—
_—
-
—
-
Fod
i
J—
]
F. i

Implementing Graphs

1

(b)

jj

F Q@ R 5 T

oCjJojojojojo 1 U Y

CjJoajaojojoli1 o|loj|oO
Ol a 1 ojo|Jo]Oo] O

Wilojao]o 1 oDjojao 1 0

cjJocjaojojojojojo]aolo

o PlO]O 1 ojol] ojoj]ao

2 RlojJajoa]ojO]oO 1 0l 0O

B Z|JO]0O]a ojojoOo]oO 0l 0

FIGURE 20-6 (a) A directed graph and
(b) its adjacency matrix

BTl UFBA LS | _

Implementing Graphs

(a) 0 . (b) o 1 2 3

FIGURE 20-7 (a) A weighted undirected graph and
(b) its adjacency matrix

o T TRAR A

Implementing Graphs

- III 1l f

P R
1Q X
R K
— \

W
R

FIGURE 20-8 (a) A directed graph and

(b) its adjacency list

R [TRLIT LIV B S | | _

Implementing Graphs

(a) (b)
iy = B 8 D B
B it 8 =
2 C = = B 5
3 D - = A] -/

FIGURE 20-9 (a) A weighted undirected graph and
(b) its adjacency list

SUITSLIE AIPRA B | v&m

Graph Traversals

A Visits all of the vertices that it can reach
A Happens if and only if graph is connected
A Connected component is subset of vertices

visited during traversal that begins at given
vertex

R IPRLIT LIFRAT S & | _
Depth-First Search

A Goes as far as possible from a vertex before
backing up
A Recursive algorithm

R IPRLIT LIFRAT S & | _
Depth-First Search

A lterative algorithm, using a stack

R IPRLIT LIFRAT S & | _
Depth-First Search

A lterative algorithm, using a stack, ctd.

L i T i e I R ol ol e N N N L RN L i DR el R b R T s LRl i

- Z‘In;"lrllli!’ll'-"l-l"-
Depth-First Search

FIGURE 20-10 Visitation order for (a) a depth-first
search; (b) a breadth-first search

R IPRLIT LIFRAT S b | _
Depth-First Search

Node visited

R IPRLIT LIFRAT S b | _
Depth-First Search

Stack (bottom to top)

a a
b ab
C abc
d abcd T backtack) T TR ST
g abcdg h abcdh
e abcdge (backtrack) abcd
(backtrack) abcdg (backtrack) abc
f abcdgf (backtrack) ab
(backtrack) abcdg (backtrack) 3
(backtrack) abcd i i

L S N S X e S T Ay (backtrack) a

(backtrack) (empty)

FIGURE 20-12 The results of a depth-first traversal,
beginning at vertex a , of the graph in Figure 20-11

R [TRLIT LIV TS | |

Breadth First Search

A Visits all vertices adjacent to vertex before
going forward

A See Figure 20-10b
A Breadth-first search uses a queue

gl T F il FERJ A EGE JEFEFFGEFOF FTe I I et F e e e P

R IPRLIT Al FRA TS | _
Breadth-First Search

MNode visited Queue (front to back)

a a
(empty)

b b

f b f
bfi
fi
fic

e fice
| Ce

g lceq
ceq

eqg
d egd
g d
d
(empty)
h h
(empty)

FIGURE 20-13 The results of a breadth-fi rst traversal,
beginning at vertex a, of the graph in Figure 20-11

L ITRAIT AP Ba B s | | V’“
Applications of Graphs

A Topological Sorting

% '
W, #
Y 1Y
Y, !
Y, %
4 E !

A
I
y

.
.".
Fy

@

FIGURE 20-14 A directed graph without cycles

R ITRLIT AlFBA s B E | | “
Applications of Graphs

(a) — — ——
o —
ONOJ O ONOLONO

FIGURE 20-15 The graph in Figure 20-14 arranged
according to the topological orders (a) a, g,

d,b,e,c,fand (b)a, b, g,d, e f,c

| | A ITRLIT AlFBA S B E | | _
Applications of Graphs

A Topological sorting algorithm

R ITRLIT AlFBA s B E | | _
Applications of Graphs

Graph theGraph Listalist

Remove f from theGraph;
additto alList

LD S fon 00 S b o p PGTRONG 5 Jome -t Dol AR L st p

FIGURE 20-16 A trace of topSortl for the
graph in Figure 20-14

R ITRLIT AlFBA s B E | | _
Appllcatlons of Graphs

@II R R B e e e e e e i

Remove c from theGraph;
add it to aList

\
“‘+ ": cf

Remove e from theGraph;
additto aList

P T R T W T L N N T S N P U N S W Y B &

FIGURE 20-16 A trace of topSortl for the
graph in Figure 20-14

R ITRLIT AlFBA s B E | | _
Applications of Graphs

R R N R N N Bt i Lk i L i ek i Bl S bl B e s i o e e
Remove b from theGraph;
add itto alist

N, becf
Remove d from theGraph;
add itto aList
dbecf
-/.af@_/ Fopdodt oo B o gt g st B o B g g I P | e

FIGURE 20-16 A trace of topSortl for the
graph in Figure 20-14

R ITRLIT AlFBA s B E | | “
Applications of Graphs

Remove g from theGraph;
add itto alList

gdbecf

Remaove a from theGraph;
additto alist

agdbecf

FIGURE 20-16 A trace of topSortl for the
graph in Figure 20-14

R ITRLI? AIFBA s B E | | _
Applications of Graphs

Action Stack s (bottom to top) List aLi st (beginning to end)
Push a

Push g

Push d

Push e agde c

Push ¢ agdec C

Pop ¢, add c to aList agde fc

Push f agdef efc

Popf, addfto alList agde defc
Pope, addeto alist agd gdefc
Popd, add d to aList ag gdefc
Pop g, add gto aList a bgdefc
Push b ab abgdefc
Pop b, add bto aList a

Pop a, add ato alist (empty)

FIGURE 20-17 A trace of topSort2 for the
graph in Figure 20-14

RLITLIP LIFRA S B b | Fl.m

Spanning Trees

A Tree: an undirected connected graph
without cycles

A Observations about undirected graphs

1. Connected undirected graph with n vertices
must have at leastn1 1 edges.

2. Connected undirected graph with n vertices,
exactly nT 1 edges cannot contain a cycle

3. A connected undirected graph with n vertices,
more than nT 1 edges must contain at least
one cycle

S _

Spanning Trees

The DFS spanning tree algorithm visits vertices in this
order: a, b, ¢, d, g, e, f, h, i. Numbers indicate the order
in which the algorithm marks edges.

FIGURE 20-20 The DFS spanning tree rooted at vertex
a for the graph in Figure 20-11

e _

Spanning Trees

A DFS spanning tree algorithm

S _

Spanning Trees

A BFS spanning
tree algorithm

S _

Spanning Trees

The BFS spanning tree algorithm visits vertices in this
order: a, b, f, i, ¢, e, g, d, h. Numbers indicate the order
in which the algorithm marks edges.

FIGURE 20-21 The BFS spanning tree rooted at vertex
a for the graph in Figure 20-11

o T RAR

Minimum Spanning Trees

A minimum
spanning tree of a
connected
undirected graph
has a minimal
edge-weight sum

FIGURE 20-22 A weighted, connected, undirected graph

o T RAR A

Minimum Spanning Trees

A Minimum spanning tree algorithm

o T TRAR A

Minimum Spanning Trees

ra
2) i 2 \
i \ 1
1 %
O O

W v
L \
\
\

5 o

(al Mark a, consider edges from a (b} Mark i, include edge (a, i)

(€} Mark f, include edge (3, f) (d) Mark g, include edge (f, g)

FIGURE 20-23 A trace of primsAlgorithm for the graph in
Figure 20-22 , beginning at vertex a

BTl UFBA LS | _

Minimum Spanning Trees

50

(&) Mark d, include edge (g, d) ifi Mark b include edae (d k)

FIGURE 20-23 A trace of primsAlgorithm for the graph in
Figure 20-22 , beginning at vertex a

S _

Minimum Spanning Trees

(it Mark b, include edge (3, b}

FIGURE 20-23 A trace of primsAlgorithm for the graph in
Figure 20-22 , beginning at vertex a

e e B VA TR H’“
Shortest Paths

A Shortest path between two vertices in a
weighted graph has smallest edge-weight
sum

(b)

b o w3 (s} (W%}

8 & & & 13

FIGURE 20-24 (a) A weighted directed graph
and (b) its adjacency matrix

e D A TR _
Shortest Paths

ADi j kst r a-{ahaldrihmt e s t

e [PRLIT AIFSA S S | -
Shortest Paths

weight
Step v vertexSet [0] [1] 2] 3] (4]
1 — 0 0 8 oo 9 4
2 4 0,4 0 8 5 9 4
3 2 0,42 0 7 5 8 4
4 1 0,4, 21 0 7 5 8 4
5 3 0,42,1,3 0 7 5 8 4

FIGURE 20-25 A trace of the shortest-path algorithm
applied to the graph in Figure 20-24 a

S _
Shortest Paths

Step 2. The path 0-4-2is
shorter than 0-2

(a)

Step 3. The path 0-4-2-1is

@\@ shorter than 0—1

Pad b o g g B e I s T ad g P

FIGURE 20-26 Checking Weight [u] by examining the
graph: (a) weight [2] in step 2; (b) weight [1] In step 3;

S T B A TR vw
Shortest Paths

FIGURE 20-26 Checking weight [u] by examining the
graph(c) weight [3] in step 3; (d) weight [3] In step 4

