
Graphs

Contents

ÅTerminology

ÅGraphs as ADTs

ÅGraphs as ADTs

ÅApplications of Graphs

Terminology

ÅDefinition:

ÁA set of points that are joined by lines

ÅGraphs also represent the relationships

among data items

ÅG = { V , E }; that is, a graph is a set of

vertices and edges

ÅA subgraph consists of a subset of a

graphôs vertices and a subset of its edges

Terminology

FIGURE 20-1 An ordinary line graph

Terminology

FIGURE 20-2 (a) A campus map as a graph;

(b) a subgraph

Terminology

FIGURE 20-3 Graphs that are (a) connected;

(b) disconnected; and (c) complete

Terminology

FIGURE 20-4 (a) A multigraph is not a graph;

(b) a self edge is not allowed in a graph

Terminology

ÅSimple path: passes through vertex only

once

ÅCycle: a path that begins and ends at same

vertex

ÅSimple cycle: cycle that does not pass

through other vertices more than once

ÅConnected graph: each pair of distinct

vertices has a path between them

Terminology

ÅComplete graph: each pair of distinct

vertices has an edge between them

ÅGraph cannot have duplicate edges

between vertices

ÁMultigraph: does allow multiple edges

ÅWhen labels represent numeric values,

graph is called a weighted graph

Terminology

ÅUndirected graphs: edges do not indicate a

direction

ÅDirected graph, or digraph: each edge has

a direction

Terminology

FIGURE 20-5 (a) A weighted graph;

(b) a directed graph

Graphs as ADTs

ADT graph operations

ÁTest whether graph is empty.

ÁGet number of vertices in a graph.

ÁGet number of edges in a graph.

ÁSee whether edge exists between two given

vertices.

ÁInsert vertex in graph whose vertices have

distinct values that differ from new vertexôs

value.

Graphs as ADTs

ADT graph operations, ctd.

ÁInsert edge between two given vertices in graph.

ÁRemove specified vertex from graph and any edges

between the vertex and other vertices.

ÁRemove edge between two vertices in graph.

ÁRetrieve from graph vertex that contains given value.

ÅView interface for undirected, connected graphs,

Listing 20-1 .htm code listing files

must be in the same

folder as the . files

.htm code listing files

must be in the same

folder as the .ppt files

for these links to

work

Chapter20-CodeListing.html
Chapter20-CodeListing.html
Chapter20-CodeListing.html

Implementing Graphs

FIGURE 20-6 (a) A directed graph and

(b) its adjacency matrix

Implementing Graphs

FIGURE 20-7 (a) A weighted undirected graph and

(b) its adjacency matrix

Implementing Graphs

FIGURE 20-8 (a) A directed graph and

(b) its adjacency list

Implementing Graphs

FIGURE 20-9 (a) A weighted undirected graph and

(b) its adjacency list

Graph Traversals

ÅVisits all of the vertices that it can reach

ÁHappens if and only if graph is connected

ÅConnected component is subset of vertices

visited during traversal that begins at given

vertex

Depth-First Search

ÅGoes as far as possible from a vertex before

backing up

ÅRecursive algorithm

Depth-First Search

ÅIterative algorithm, using a stack

Depth-First Search

ÅIterative algorithm, using a stack, ctd.

Depth-First Search

FIGURE 20-10 Visitation order for (a) a depth-first

search; (b) a breadth-first search

Depth-First Search

FIGURE 20-11 A connected graph with cycles

Depth-First Search

FIGURE 20-12 The results of a depth-first traversal,

beginning at vertex a , of the graph in Figure 20-11

Breadth-First Search

ÅVisits all vertices adjacent to vertex before

going forward

ÁSee Figure 20-10b

ÅBreadth-first search uses a queue

Breadth-First Search

FIGURE 20-13 The results of a breadth-fi rst traversal,

beginning at vertex a, of the graph in Figure 20-11

Applications of Graphs

FIGURE 20-14 A directed graph without cycles

ÅTopological Sorting

Applications of Graphs

FIGURE 20-15 The graph in Figure 20-14 arranged

according to the topological orders (a) a, g,

d, b, e, c, f and (b) a, b, g, d, e, f, c

Applications of Graphs

ÅTopological sorting algorithm

Applications of Graphs

FIGURE 20-16 A trace of topSort1 for the

graph in Figure 20-14

Applications of Graphs

FIGURE 20-16 A trace of topSort1 for the

graph in Figure 20-14

Applications of Graphs

FIGURE 20-16 A trace of topSort1 for the

graph in Figure 20-14

Applications of Graphs

FIGURE 20-16 A trace of topSort1 for the

graph in Figure 20-14

Applications of Graphs

FIGURE 20-17 A trace of topSort2 for the

graph in Figure 20-14

Spanning Trees

ÅTree: an undirected connected graph

without cycles

ÅObservations about undirected graphs

1. Connected undirected graph with n vertices

must have at least n ï 1 edges.

2. Connected undirected graph with n vertices,

exactly n ï 1 edges cannot contain a cycle

3. A connected undirected graph with n vertices,

more than n ï 1 edges must contain at least

one cycle

Spanning Trees

FIGURE 20-20 The DFS spanning tree rooted at vertex

a for the graph in Figure 20-11

Spanning Trees

ÅDFS spanning tree algorithm

Spanning Trees

ÅBFS spanning

tree algorithm

Spanning Trees

FIGURE 20-21 The BFS spanning tree rooted at vertex

a for the graph in Figure 20-11

Minimum Spanning Trees

FIGURE 20-22 A weighted, connected, undirected graph

Minimum Spanning Trees

ÅMinimum spanning tree algorithm

Minimum Spanning Trees

FIGURE 20-23 A trace of primsAlgorithm for the graph in

Figure 20-22 , beginning at vertex a

Minimum Spanning Trees

FIGURE 20-23 A trace of primsAlgorithm for the graph in

Figure 20-22 , beginning at vertex a

Minimum Spanning Trees

FIGURE 20-23 A trace of primsAlgorithm for the graph in

Figure 20-22 , beginning at vertex a

Shortest Paths

ÅShortest path between two vertices in a

weighted graph has smallest edge-weight

sum

FIGURE 20-24 (a) A weighted directed graph

and (b) its adjacency matrix

Shortest Paths

ÅDijkstraôs shortest-path algorithm

Shortest Paths

FIGURE 20-25 A trace of the shortest-path algorithm

applied to the graph in Figure 20-24 a

Shortest Paths

FIGURE 20-26 Checking weight [u] by examining the

graph: (a) weight [2] in step 2; (b) weight [1] in step 3;

Shortest Paths

FIGURE 20-26 Checking weight [u] by examining the

graph(c) weight [3] in step 3; (d) weight [3] in step 4

