Searching Algorithms

Lecture Objectives

Learn how to implement the sequential search
algorithm

Learn how to implement the binary search algorithm

To learn how to estimate and compare the
performance of algorithms

To learn how to measure the running time of a
program

Searching Algorithms

 Necessary components to search a list of fdata

= Array containing the list
* Length of the list
* |[tem for which you are searching

« After search completed
* |f item found, report “success,” return location in array
* |f item not found, report “not found” or “failure”

Searching Algorithms (Cont’d)

* Suppose that you want to determine whether 27 is in the list

* First compare 27 with 1ist[0]; thatis, compare 27 with
35

 Because 1ist[0] # 27, you then compare 27 with
list[1]

* Because 1ist[1] # 27, you compare 27 with the next
element in the list

* Because 1ist[2] = 27, the search stops

e This search is successful!

(o] [l fz1 (31 [4] [5] [e] [7]

list EEEL] 12 -y 18 45 16 38

Figure 1: Array list with seven (07) elements

Searching Algorithms (Cont’d)

Let’s now search for 10

The search starts at the first element in the list; that
Is, at 1ist[0]

Proceeding as before, we see that this time the
search item, which is 10, is compared with every
item in the list

Eventually, no more data is left in the list to
compare with the search item; this is an
unsuccessful search

Linear Search Algorithm

The previous could be further reduced to:

public static int linSearch(int[] list, int listLength, int key) {
int loc;
boolean found = false;

for(int loc = 0; loc < listLength; loc++) {
if(list[loc] == key) {
found = true;
break;

}
}
if(found)
return loc;
else
return -1;

}

Linear Search Algorithm (Cont’d)

public static int linSearch(int[] list, int listLength, int key) {
int loc;

for(int loc = 0; loc < listLength; loc++) {
if(list[loc] == key)
return loc;
}

return -1;

}

Linear Search Algorithm (Cont’d)

* Using awhile (or a for) loop, the definition of the method
segSearch can also be written without the break statement as:

public static int linSearch(int[] list, int listLength, int key) {
int loc = 0;
boolean found = false;

while(loc < listLength && !found) {
if(list[loc] == key)
found = true;
else
loc++
}
if(found)
return loc;
else
return -1;

}

Performance of the Linear Search

» Suppose that the first element in the array list contains the
variable key, then we have performed one comparison to find
the key.

« Suppose that the second element in the array list contains the
variable key, then we have performed two comparisons to find
the key.

« Carry on the same analysis till the key is contained in the last
element of the array list. In this case, we have performed N
comparisons (N is the size of the array list) to find the key.

 Finally if the key is NOT in the array list, then we would have
performed N comparisons and the key is NOT found and we
would return -1.

Performance of the Linear Search (Cont’d)

 Therefore, the best case is: 1
 And, the worst case is: N
 The average case is:

Worst case and key found at the end of
the array /ist!

Best case

+2+3+ + N +
Average Number of _ 1+2+3+....+N h»!

Comparisons N+1
H_/

/ Worst case and key is NOT found!

Number of possible cases

Binary Search Algorithm

« Can only be performed on a sorted list !!!

» Uses divide and conquer technique to search list

Binary Search Algorithm (Cont’d)

Search item is compared with middle element of
list

If search item < middle element of list, search is
restricted to first half of the list

If search item > middle element of list, search
second half of the list

If search item = middle element, search is
complete

Binary Search Algorithm (Cont’d)

e Determine whether 75 1s in the list

(0] [11 [2] [3]

Bk 4 B8 19 25 34 39 45 4B 66

Figure 2: Array list with twelve (12) elements

s=arch list —._|

[3] [4] ([5] [s] [7] [&8] [9] [10] [11]
34 PEEN A5 48 66 75 89 95

mid

Figure 3: Search list, list[0] ... list[11]

Binary Search Algorithm (Cont’d)

gearch list—»

[2] [4] [5] [&] [T] [8] [2] [10] [11]

[1] 2
SESENEIEIENED - ¢

Figure 4: Search list, list[6] ... list[11]

Binary Search Algorithm (Cont’d)

public static int binarySearch(int[] list, int listLength, int key) {
int first = 0, last = listLength - 1;
int mid;
boolean found = false;

while (first <= last && !found) {
mid = (first + last) / 2;
if (listfmid] == key)
found = true;
else
if(list[mid] > key)
last = mid - 1;
else
first = mid + 1;
}
if (found)
return mid;
else
return -1;
} llend binarySearch

Binary Search Algorithm (Cont’d)

[0l [11 [2] 3 5 [71 [8]1 [=2]1 (101 [11]

4 8 6ée 75 88 §5

Figure 5: Sorted list for binary search

89

Iteration first last mid list[mid] Number of key comparisons
11 9 39
11 8 66
11 10 89 (found is

key

key =34

[teration first last ' list[mid] Number of key comparisons
0 11 39

19

25

34 (found is

5
2
3
4

Binary Search Algorithm (Cont’d)

[71 (2] [=] [10] [11]

66 75 8% 895

Figure 6: Sorted list for binary search

key =22
Iteration first last mid list[mid]
11 39
19

Number of key comparisons

4
4 ' 25
2

> last) unsuccesstul search

Performance of Binary Search Algorithm

[0] [1]

Figure 7: A Sorted list for binary search

key # List[499] key < List[499]

- r~mearch list

firet (1]

last 498

mid 249

Figure 8: Search list after first iteration

Performance of Binary Search Algorithm (Cont’d)

key > List[249]

Figure 9: Search list after second iteration

Performance of Binary Search Algorithm (Cont’d)

* Suppose that L 1s a list of size 1000000

e Since 1000000 = 1048576 = 220, 1t follows that the
while loop in binary search will have at most 21

iterations to determine whether an element 1s in L

* Every iteration of the while loop makes two key
(that 1s, 1item) comparisons

Performance of Binary Search Algorithm (Cont’d)

 To determine whether an element is in L, binary
search makes at most 42 item comparisons

= On the other hand, on average, a linear search will make
500,000 key (item) comparisons to determine whether an
elementisin L

* In general, if L is a sorted list of size N, to
determine whether an element is in L, the binary
search makes at most 2log2N + 2 key (item)
comparisons

Searching a Sorted Array in a Program

 The Arrays class contains a static
binarySearch () method

* The method returns either:
= The index of the element, if element is found

= Or -k -1 where k is the position before which the element
should be inserted

int[] a =
int v = 7;
int pos = Arrays.binarySearch(a, v);

// Returns -3; v should be inserted before position 2

{1, 4, 9};

Searching Real Data

 Arrays.binarySearch() sorts objects of
classes that implement Comparable interface:

public interface Comparable {
int compareTo (Object otherObject) ;

}

* The call a.compareTo (b) returns
* A negative number if a should come before b

= 0if aand b are the same
= A positive number otherwise

Searching Real Data (Cont’d)

 Several classes in Java (e.g. String and Date)
implement Comparable

* You can implement Comparable interface for your
own classes

public class Coin implements Comparable ({

public int compareTo (Object otherObject) ({
Coin other = (Coin) otherObject;
if (value < other.value) return -1;
if (value == other.value) return 0O;
return 1;

The CompareTo () Method

 The implementation must define a total ordering
relationship

= Antisymmetric:
If a.compareTo (b) = 0,thenb.compareTo(a) = 0

= Reflexive:
a.compareTo(a) = 0

The compareTo() Method (Cont’d)

 The implementation must define a total ordering
relationship

= Transitive:
If a.compareTo(b) = 0andb.compareTo (c) = 0,

then a.compareTo(c) = 0

The compareTo() Method (Cont’d)

* Once your class implements Comparable, simply
use the Arrays.binarySearch () method:

Coin[] coins = new Coin[n];
Coin aCoin = new Coin(..);

// Add coins

Arrays.binarySearch (coins, aCoin) ;

