
Searching Algorithms

Lecture Objectives

• Learn how to implement the sequential search

algorithm

• Learn how to implement the binary search algorithm

• To learn how to estimate and compare the

performance of algorithms

• To learn how to measure the running time of a

program

Searching Algorithms

• Necessary components to search a list of fdata
 Array containing the list

 Length of the list

 Item for which you are searching

• After search completed
 If item found, report “success,” return location in array

 If item not found, report “not found” or “failure”

• Suppose that you want to determine whether 27 is in the list

• First compare 27 with list[0]; that is, compare 27 with

35

• Because list[0] ≠ 27, you then compare 27 with

list[1]

• Because list[1] ≠ 27, you compare 27 with the next

element in the list

• Because list[2] = 27, the search stops

• This search is successful!

Searching Algorithms (Cont’d)

Figure 1: Array list with seven (07) elements

• Let’s now search for 10
• The search starts at the first element in the list; that

is, at list[0]
• Proceeding as before, we see that this time the

search item, which is 10, is compared with every
item in the list

• Eventually, no more data is left in the list to
compare with the search item; this is an
unsuccessful search

Searching Algorithms (Cont’d)

Linear Search Algorithm

public static int linSearch(int[] list, int listLength, int key) {

 int loc;

 boolean found = false;

 for(int loc = 0; loc < listLength; loc++) {

 if(list[loc] == key) {

 found = true;

 break;

 }

 }

 if(found)

 return loc;

 else

 return -1;

}

The previous could be further reduced to:

Linear Search Algorithm (Cont’d)

public static int linSearch(int[] list, int listLength, int key) {

 int loc;

 for(int loc = 0; loc < listLength; loc++) {

 if(list[loc] == key)

 return loc;

 }

 return -1;

}

• Using a while (or a for) loop, the definition of the method

seqSearch can also be written without the break statement as:

Linear Search Algorithm (Cont’d)

public static int linSearch(int[] list, int listLength, int key) {

 int loc = 0;

 boolean found = false;

 while(loc < listLength && !found) {

 if(list[loc] == key)

 found = true;

 else

 loc++

 }

 if(found)

 return loc;

 else

 return -1;

}

• Suppose that the first element in the array list contains the

variable key, then we have performed one comparison to find

the key.

• Suppose that the second element in the array list contains the

variable key, then we have performed two comparisons to find

the key.

• Carry on the same analysis till the key is contained in the last

element of the array list. In this case, we have performed N

comparisons (N is the size of the array list) to find the key.

• Finally if the key is NOT in the array list, then we would have

performed N comparisons and the key is NOT found and we

would return -1.

Performance of the Linear Search

• Therefore, the best case is: 1

• And, the worst case is: N

• The average case is:

Performance of the Linear Search (Cont’d)

1 + 2 + 3 + …..+ N + N

N+1

Average Number of

Comparisons

Best case

Worst case and key found at the end of

the array list!

Worst case and key is NOT found!

=

Number of possible cases

• Can only be performed on a sorted list !!!

• Uses divide and conquer technique to search list

Binary Search Algorithm

• Search item is compared with middle element of

list

• If search item < middle element of list, search is

restricted to first half of the list

• If search item > middle element of list, search

second half of the list

• If search item = middle element, search is

complete

Binary Search Algorithm (Cont’d)

• Determine whether 75 is in the list

Binary Search Algorithm (Cont’d)

Figure 2: Array list with twelve (12) elements

Figure 3: Search list, list[0] … list[11]

Binary Search Algorithm (Cont’d)

Figure 4: Search list, list[6] … list[11]

Binary Search Algorithm (Cont’d)

public static int binarySearch(int[] list, int listLength, int key) {

 int first = 0, last = listLength - 1;

 int mid;

 boolean found = false;

 while (first <= last && !found) {

 mid = (first + last) / 2;

 if (list[mid] == key)

 found = true;

 else

 if(list[mid] > key)

 last = mid - 1;

 else

 first = mid + 1;

 }

 if (found)

 return mid;

 else

 return –1;

} //end binarySearch

Binary Search Algorithm (Cont’d)

Figure 5: Sorted list for binary search

key = 89

key = 34

Binary Search Algorithm (Cont’d)

key = 22

Figure 6: Sorted list for binary search

Performance of Binary Search Algorithm

Figure 7: A Sorted list for binary search

key ≠ List[499] key < List[499]

Figure 8: Search list after first iteration

Performance of Binary Search Algorithm (Cont’d)

Figure 9: Search list after second iteration

key > List[249]

• Suppose that L is a list of size 1000000

• Since 1000000 1048576 = 220, it follows that the
while loop in binary search will have at most 21

iterations to determine whether an element is in L

• Every iteration of the while loop makes two key

(that is, item) comparisons

Performance of Binary Search Algorithm (Cont’d)

• To determine whether an element is in L, binary
search makes at most 42 item comparisons

 On the other hand, on average, a linear search will make
500,000 key (item) comparisons to determine whether an
element is in L

• In general, if L is a sorted list of size N, to
determine whether an element is in L, the binary
search makes at most 2log2N + 2 key (item)
comparisons

Performance of Binary Search Algorithm (Cont’d)

Searching a Sorted Array in a Program

• The Arrays class contains a static

binarySearch() method

• The method returns either:

 The index of the element, if element is found

 Or -k - 1 where k is the position before which the element

should be inserted

int[] a = {1, 4, 9};

int v = 7;

int pos = Arrays.binarySearch(a, v);

 // Returns -3; v should be inserted before position 2

Searching Real Data

• Arrays.binarySearch() sorts objects of

classes that implement Comparable interface:

• The call a.compareTo(b) returns

 A negative number if a should come before b

 0 if a and b are the same

 A positive number otherwise

public interface Comparable {

 int compareTo(Object otherObject);

}

• Several classes in Java (e.g. String and Date)

implement Comparable

• You can implement Comparable interface for your

own classes

public class Coin implements Comparable {

 . . .

 public int compareTo(Object otherObject) {

 Coin other = (Coin) otherObject;

 if (value < other.value) return -1;

 if (value == other.value) return 0;

 return 1;

 }

 . . .

}

Searching Real Data (Cont’d)

The CompareTo() Method

• The implementation must define a total ordering

relationship

 Antisymmetric:
If a.compareTo(b) = 0, then b.compareTo(a) = 0

 Reflexive:
a.compareTo(a) = 0

• The implementation must define a total ordering

relationship

 Transitive:
If a.compareTo(b) = 0 and b.compareTo(c) = 0,

then a.compareTo(c) = 0

The compareTo() Method (Cont’d)

• Once your class implements Comparable, simply

use the Arrays.binarySearch() method:

Coin[] coins = new Coin[n];

Coin aCoin = new Coin(…);

// Add coins

. . .

Arrays.binarySearch(coins, aCoin);

The compareTo() Method (Cont’d)

