
Trees 



Parts of a binary tree 

• A binary tree is composed of zero or more nodes 
• Each node contains: 

– A value (some sort of data item) 
– A reference or pointer to a left child (may be null), and 
– A reference or pointer to a right child (may be null) 

• A binary tree may be empty (contain no nodes) 
• If not empty, a binary tree has a root node 

– Every node in the binary tree is reachable from the 
root node by a unique path 

• A node with neither a left child nor a right child is 
called a leaf 
– In some binary trees, only the leaves contain a value 



Picture of a binary tree 
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Size and depth 
• The size of a binary tree is 

the number of nodes in it 
– This tree has size 12 

• The depth of a node is its 
distance from the root 
– a is at depth zero 
– e is at depth 2 

• The depth of a binary tree 
is the depth of its deepest 
node 
– This tree has depth 4 
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Balance 

• A binary tree is balanced if every level above the lowest is “full” 
(contains 2n nodes) 

• In most applications, a reasonably balanced binary tree is desirable 
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Binary search in an array 

• Look at array location (lo + hi)/2 

2 3 5 7 11 13 17 

   0      1     2      3      4     5      6 

Searching for 5: 
(0+6)/2 = 3 

hi = 2; 
(0 + 2)/2 = 1 lo = 2; 

(2+2)/2=2 
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Binary Search Trees 



Binary Trees 

• Recursive definition 

1. An empty tree is a binary tree 

2. A node with two child subtrees is a binary tree 

3. Only what you get from 1 by a finite number of 
applications of 2 is a binary tree. 

 

Is this a binary tree? 
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Binary Search Trees 
• View today as data structures that can support  

dynamic set operations. 

– Search, Minimum, Maximum, Predecessor, 
Successor, Insert, and Delete. 

• Can be used to build 

– Dictionaries. 

– Priority Queues. 

• Basic operations take time proportional to the 
height of the tree – O(h). 

 



BST – Representation  
• Represented by a linked data structure of 

nodes. 

• root(T) points to the root of tree T. 

• Each node contains fields:   

– key 

– left – pointer to left child: root of left subtree. 

– right – pointer to right child : root of right subtree. 

– p – pointer to parent. p[root[T]] = NIL (optional). 



Binary Search Tree Property 

• Stored keys must satisfy 
the binary search tree 
property. 

–  y in left subtree of x, 
then key[y]  key[x]. 

–  y in right subtree of x, 
then key[y]  key[x]. 
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Inorder Traversal 

Inorder-Tree-Walk (x) 

1.  

2.     

3.              print 

4.              Inorder

Inorder-Tree-Walk (x) 

1.  if x  NIL 

2.     then Inorder-Tree-Walk(left[p]) 

3.              print key[x] 

4.              Inorder-Tree-Walk(right[p]) 

 How long does the walk take? 

 Can you prove its correctness? 

The binary-search-tree property allows the keys of a binary search 

tree to be printed, in (monotonically increasing) order,  recursively. 
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Correctness of Inorder-Walk 
• Must prove that it prints all elements, in order, 

and that it terminates. 

• By induction on size of tree.  Size=0: Easy. 

• Size >1: 

– Prints left subtree in order by induction. 

– Prints root, which comes after all elements in left 
subtree (still in order). 

– Prints right subtree in order (all elements come after 
root, so still in order). 



Querying a Binary Search Tree 
• All dynamic-set search operations can be supported in 

O(h) time. 

• h = (lg n) for a balanced binary tree (and for an 
average tree built by adding nodes in random order.) 

• h = (n) for an unbalanced tree that resembles a 
linear chain of n nodes in the worst case. 



Tree Search 
Tree-Search(x, k) 

1.  

2.     

3.  

4.     

5.     

 

Tree-Search(x, k) 

1.  if x = NIL or k = key[x] 

2.     then return x  

3.  if k < key[x] 

4.     then return Tree-Search(left[x], k) 

5.     else return Tree-Search(right[x], k) 

 

Running time: O(h) 

 

Aside: tail-recursion 
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Iterative Tree Search 

Iterative-Tree-Search(x, k) 

1.  

2.     

3.          

4.          

5.  

 

Iterative-Tree-Search(x, k) 

1.  while x  NIL and k  key[x] 

2.     do if k < key[x] 

3.          then x  left[x] 

4.          else x  right[x] 

5.  return x  

 

The iterative tree search is more efficient on most computers. 

The recursive tree search is more straightforward. 
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Finding Min & Max 

Tree-Minimum(x)           Tree-Maximum(x) 

1.  

2.     

3.  

Tree-Minimum(x)           Tree-Maximum(x) 

1.  while left[x]  NIL         1.  while right[x]  NIL  

2.     do x  left[x]          2.         do x  right[x] 

3.  return x            3.  return x 

Q:  How long do they take? 

The binary-search-tree property guarantees that: 

» The minimum is located at the left-most node. 

» The maximum is located at the right-most node. 

 

 



Predecessor and Successor 
• Successor of node x is the node y such that key[y] is the 

smallest key greater than key[x]. 

• The successor of the largest key is NIL. 

• Search consists of two cases. 

– If node x has a non-empty right subtree, then x’s successor is 
the minimum in the right subtree of x. 

– If node x has an empty right subtree, then: 
• As long as we move to the left up the tree (move up through right 

children), we are visiting smaller keys. 

• x’s successor y is the node that x is the predecessor of (x is the 
maximum in y’s left subtree). 

• In other words, x’s successor y, is the lowest ancestor of x whose left 
child is also an ancestor of x. 

 



Pseudo-code for Successor 
Tree-Successor(x) 

•

2.           

3.     y

4.     

5.     

6.          

7.     

 

Tree-Successor(x) 

•  if right[x]  NIL  

2.          then return Tree-Minimum(right[x])  

3.     y  p[x]  

4.     while y  NIL and x = right[y] 

5.     do x  y 

6.          y  p[y] 

7.     return y 

 

Code for predecessor is symmetric. 

 

Running time: O(h) 
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BST Insertion – Pseudocode  
Tree-Insert(T, z) 
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Tree-Insert(T, z) 
1. y  NIL 
2. x  root[T] 
3. while x  NIL 
4.     do y  x 
5.          if key[z] < key[x] 
6.               then x  left[x] 
7.               else x  right[x] 
8. p[z]  y 
9. if y = NIL 
10.     then root[t]  z 
11.     else if key[z] < key[y] 
12.           then  left[y]  z 
13.           else right[y]  z 

• Change the dynamic set 
represented by a BST. 

• Ensure the binary-
search-tree property 
holds after change. 

• Insertion is easier than 
deletion. 
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Analysis of Insertion 

• Initialization: O(1) 
 

• While loop in lines 3-7 
searches for place to 
insert z, maintaining 
parent y. 
This takes O(h) time. 

 

• Lines 8-13 insert the 
value: O(1)  

 

 TOTAL: O(h) time to 
insert a node. 

Tree-Insert(T, z) 

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Tree-Insert(T, z) 

1. y  NIL 

2. x  root[T] 

3. while x  NIL 

4.     do y  x 

5.          if key[z] < key[x] 

6.               then x  left[x] 

7.               else x  right[x] 

8. p[z]  y 

9. if y = NIL 

10.     then root[t]  z 

11.     else if key[z] < key[y] 

12.           then  left[y]  z 

13.           else right[y]  z 



Exercise: Sorting Using BSTs 
Sort (A) 

 for i  1 to n 

        do tree-insert(A[i]) 

   inorder-tree-walk(root) 

 
– What are the worst case and best case running 

times? 

– In practice, how would this compare to other 
sorting algorithms? 



Tree-Delete (T, x) 
if x has no children                    case 0 

   then remove x 

if x has one child    case 1 

 then make p[x] point to child 

if x has two children (subtrees)   case 2 

   then swap x with its successor 

            perform case 0 or case 1 to delete it 
 

 TOTAL: O(h) time to delete a node 



Deletion – Pseudocode  
Tree-Delete(T, z) 
/* 

•

•

•

/* 
4.
5.
6.
/* 

7.
8.
/* Continued on next slide */

Tree-Delete(T, z) 
/* Determine which node to splice out: either z or z’s successor. 

*/ 
•  if left[z] = NIL or right[z] = NIL 
•      then y  z 
•      else y  Tree-Successor[z] 
/* Set x to a non-NIL child of x, or to NIL if y has no children. */ 
4. if  left[y]  NIL 
5.       then x  left[y]  
6.       else x  right[y] 
/* y is removed from the tree by manipulating pointers of  p[y] 

and x */ 
7. if x  NIL 
8.     then p[x]  p[y] 
/* Continued on next slide */ 



Deletion – Pseudocode  

Tree-Delete(T, z) (Contd. from previous slide) 

9.

10.

11.

12.

13.

/* If 

14.

15.

16.

17.

Tree-Delete(T, z) (Contd. from previous slide) 

9.  if p[y] = NIL 

10.      then root[T]  x 

11.      else if  y  left[p[i]] 

12.             then left[p[y]]  x 

13.             else right[p[y]]  x 

/* If z’s successor was spliced out, copy its data into z */ 

14. if y  z  

15.      then  key[z]  key[y] 

16.                copy y’s satellite data into z. 

17. return y 



Correctness of Tree-Delete 
• How do we know case 2 should go to case 0 or case 

1 instead of back to case 2?  

– Because when x has 2 children, its successor is 
the minimum in its right subtree, and that 
successor has no left child (hence 0 or 1 child). 
 

• Equivalently, we could swap with predecessor 
instead of successor.  It might be good to alternate 
to avoid creating lopsided tree. 



Binary Search Trees 
• View today as data structures that can support  

dynamic set operations. 

– Search, Minimum, Maximum, Predecessor, 
Successor, Insert, and Delete. 

• Can be used to build 

– Dictionaries. 

– Priority Queues. 

• Basic operations take time proportional to the 
height of the tree – O(h). 

 



Tree traversals 

• A binary tree is defined recursively: it consists of a root, a 
left subtree, and a right subtree 

• To traverse (or walk) the binary tree is to visit each node in 
the binary tree exactly once 

• Tree traversals are naturally recursive 

• Since a binary tree has three “parts,” there are six possible 
ways to traverse the binary tree: 

– root, left, right 

– left, root, right 

– left, right, root 

 

– root, right, left 

– right, root, left 

– right, left, root 



Preorder traversal 

• In preorder, the root is visited first 

• Here’s a preorder traversal to print out all 
the elements in the binary tree: 
 

 public void preorderPrint(BinaryTree bt) { 
     if (bt == null) return; 
     System.out.println(bt.value); 
     preorderPrint(bt.leftChild); 
     preorderPrint(bt.rightChild); 
} 



Inorder traversal 

• In inorder, the root is visited in the middle 

• Here’s an inorder traversal to print out all 
the elements in the binary tree: 
 

 public void inorderPrint(BinaryTree bt) { 
     if (bt == null) return;  
     inorderPrint(bt.leftChild); 
     System.out.println(bt.value); 
     inorderPrint(bt.rightChild); 
} 



Postorder traversal 

• In postorder, the root is visited last 

• Here’s a postorder traversal to print out all 
the elements in the binary tree: 
 

 public void postorderPrint(BinaryTree bt) { 
     if (bt == null) return;  
     postorderPrint(bt.leftChild); 
     postorderPrint(bt.rightChild); 
     System.out.println(bt.value); 
} 



Tree traversals using “flags” 
• The order in which the nodes are visited during a tree 

traversal can be easily determined by imagining there is a 
“flag” attached to each node, as follows: 

• To traverse the tree, collect the flags: 

preorder inorder postorder 

A 

B C 

D E F G 

A 

B C 

D E F G 

A 

B C 

D E F G 

A B D E C F G D B E A F C G D E B F G C A 



Copying a binary tree 

• In postorder, the root is visited last 

• Here’s a postorder traversal to make a 
complete copy of a given binary tree: 
 

 public BinaryTree copyTree(BinaryTree bt) { 
     if (bt == null) return null;  
     BinaryTree left = copyTree(bt.leftChild); 
     BinaryTree right = copyTree(bt.rightChild); 
     return new BinaryTree(bt.value, left, right); 
} 



Other traversals 

• The other traversals are the reverse of these 
three standard ones 
– That is, the right subtree is traversed before the 

left subtree is traversed 

• Reverse preorder: root, right subtree, left 
subtree 

• Reverse inorder: right subtree, root, left 
subtree 

• Reverse postorder: right subtree, left subtree, 
root 


