
Trees

Parts of a binary tree

• A binary tree is composed of zero or more nodes
• Each node contains:

– A value (some sort of data item)
– A reference or pointer to a left child (may be null), and
– A reference or pointer to a right child (may be null)

• A binary tree may be empty (contain no nodes)
• If not empty, a binary tree has a root node

– Every node in the binary tree is reachable from the
root node by a unique path

• A node with neither a left child nor a right child is
called a leaf
– In some binary trees, only the leaves contain a value

Picture of a binary tree

a

b c

d e

g h i

l

f

j k

Size and depth
• The size of a binary tree is

the number of nodes in it
– This tree has size 12

• The depth of a node is its
distance from the root
– a is at depth zero
– e is at depth 2

• The depth of a binary tree
is the depth of its deepest
node
– This tree has depth 4

a

b c

d e f

g h i j k

l

Balance

• A binary tree is balanced if every level above the lowest is “full”
(contains 2n nodes)

• In most applications, a reasonably balanced binary tree is desirable

a

b c

d e f g

h i j

A balanced binary tree

a

b

c

d

e

f

g h

i j

An unbalanced binary tree

Binary search in an array

• Look at array location (lo + hi)/2

2 3 5 7 11 13 17

 0 1 2 3 4 5 6

Searching for 5:
(0+6)/2 = 3

hi = 2;
(0 + 2)/2 = 1 lo = 2;

(2+2)/2=2
7

3 13

2 5 11 17

Using a binary

search tree

Binary Search Trees

Binary Trees

• Recursive definition

1. An empty tree is a binary tree

2. A node with two child subtrees is a binary tree

3. Only what you get from 1 by a finite number of
applications of 2 is a binary tree.

Is this a binary tree?

56

26 200

18 28 190 213

12 24 27

Binary Search Trees
• View today as data structures that can support

dynamic set operations.

– Search, Minimum, Maximum, Predecessor,
Successor, Insert, and Delete.

• Can be used to build

– Dictionaries.

– Priority Queues.

• Basic operations take time proportional to the
height of the tree – O(h).

BST – Representation
• Represented by a linked data structure of

nodes.

• root(T) points to the root of tree T.

• Each node contains fields:

– key

– left – pointer to left child: root of left subtree.

– right – pointer to right child : root of right subtree.

– p – pointer to parent. p[root[T]] = NIL (optional).

Binary Search Tree Property

• Stored keys must satisfy
the binary search tree
property.

–  y in left subtree of x,
then key[y]  key[x].

–  y in right subtree of x,
then key[y]  key[x].

56

26 200

18 28 190 213

12 24 27

Inorder Traversal

Inorder-Tree-Walk (x)

1.

2.

3. print

4. Inorder

Inorder-Tree-Walk (x)

1. if x  NIL

2. then Inorder-Tree-Walk(left[p])

3. print key[x]

4. Inorder-Tree-Walk(right[p])

 How long does the walk take?

 Can you prove its correctness?

The binary-search-tree property allows the keys of a binary search

tree to be printed, in (monotonically increasing) order, recursively.

56

26 200

18 28 190 213

12 24 27

Correctness of Inorder-Walk
• Must prove that it prints all elements, in order,

and that it terminates.

• By induction on size of tree. Size=0: Easy.

• Size >1:

– Prints left subtree in order by induction.

– Prints root, which comes after all elements in left
subtree (still in order).

– Prints right subtree in order (all elements come after
root, so still in order).

Querying a Binary Search Tree
• All dynamic-set search operations can be supported in

O(h) time.

• h = (lg n) for a balanced binary tree (and for an
average tree built by adding nodes in random order.)

• h = (n) for an unbalanced tree that resembles a
linear chain of n nodes in the worst case.

Tree Search
Tree-Search(x, k)

1.

2.

3.

4.

5.

Tree-Search(x, k)

1. if x = NIL or k = key[x]

2. then return x

3. if k < key[x]

4. then return Tree-Search(left[x], k)

5. else return Tree-Search(right[x], k)

Running time: O(h)

Aside: tail-recursion

56

26 200

18 28 190 213

12 24 27

Iterative Tree Search

Iterative-Tree-Search(x, k)

1.

2.

3.

4.

5.

Iterative-Tree-Search(x, k)

1. while x  NIL and k  key[x]

2. do if k < key[x]

3. then x  left[x]

4. else x  right[x]

5. return x

The iterative tree search is more efficient on most computers.

The recursive tree search is more straightforward.

56

26 200

18 28 190 213

12 24 27

Finding Min & Max

Tree-Minimum(x) Tree-Maximum(x)

1.

2.

3.

Tree-Minimum(x) Tree-Maximum(x)

1. while left[x]  NIL 1. while right[x]  NIL

2. do x  left[x] 2. do x  right[x]

3. return x 3. return x

Q: How long do they take?

The binary-search-tree property guarantees that:

» The minimum is located at the left-most node.

» The maximum is located at the right-most node.

Predecessor and Successor
• Successor of node x is the node y such that key[y] is the

smallest key greater than key[x].

• The successor of the largest key is NIL.

• Search consists of two cases.

– If node x has a non-empty right subtree, then x’s successor is
the minimum in the right subtree of x.

– If node x has an empty right subtree, then:
• As long as we move to the left up the tree (move up through right

children), we are visiting smaller keys.

• x’s successor y is the node that x is the predecessor of (x is the
maximum in y’s left subtree).

• In other words, x’s successor y, is the lowest ancestor of x whose left
child is also an ancestor of x.

Pseudo-code for Successor
Tree-Successor(x)

•

2.

3. y

4.

5.

6.

7.

Tree-Successor(x)

• if right[x]  NIL

2. then return Tree-Minimum(right[x])

3. y  p[x]

4. while y  NIL and x = right[y]

5. do x  y

6. y  p[y]

7. return y

Code for predecessor is symmetric.

Running time: O(h)

56

26 200

18 28 190 213

12 24 27

BST Insertion – Pseudocode
Tree-Insert(T, z)
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Tree-Insert(T, z)
1. y  NIL
2. x  root[T]
3. while x  NIL
4. do y  x
5. if key[z] < key[x]
6. then x  left[x]
7. else x  right[x]
8. p[z]  y
9. if y = NIL
10. then root[t]  z
11. else if key[z] < key[y]
12. then left[y]  z
13. else right[y]  z

• Change the dynamic set
represented by a BST.

• Ensure the binary-
search-tree property
holds after change.

• Insertion is easier than
deletion.

56

26 200

18 28 190 213

12 24 27

Analysis of Insertion

• Initialization: O(1)

• While loop in lines 3-7
searches for place to
insert z, maintaining
parent y.
This takes O(h) time.

• Lines 8-13 insert the
value: O(1)

 TOTAL: O(h) time to
insert a node.

Tree-Insert(T, z)

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

Tree-Insert(T, z)

1. y  NIL

2. x  root[T]

3. while x  NIL

4. do y  x

5. if key[z] < key[x]

6. then x  left[x]

7. else x  right[x]

8. p[z]  y

9. if y = NIL

10. then root[t]  z

11. else if key[z] < key[y]

12. then left[y]  z

13. else right[y]  z

Exercise: Sorting Using BSTs
Sort (A)

 for i  1 to n

 do tree-insert(A[i])

 inorder-tree-walk(root)

– What are the worst case and best case running

times?

– In practice, how would this compare to other
sorting algorithms?

Tree-Delete (T, x)
if x has no children  case 0

 then remove x

if x has one child  case 1

 then make p[x] point to child

if x has two children (subtrees)  case 2

 then swap x with its successor

 perform case 0 or case 1 to delete it

 TOTAL: O(h) time to delete a node

Deletion – Pseudocode
Tree-Delete(T, z)
/*

•

•

•

/*
4.
5.
6.
/*

7.
8.
/* Continued on next slide */

Tree-Delete(T, z)
/* Determine which node to splice out: either z or z’s successor.

*/
• if left[z] = NIL or right[z] = NIL
• then y  z
• else y  Tree-Successor[z]
/* Set x to a non-NIL child of x, or to NIL if y has no children. */
4. if left[y]  NIL
5. then x  left[y]
6. else x  right[y]
/* y is removed from the tree by manipulating pointers of p[y]

and x */
7. if x  NIL
8. then p[x]  p[y]
/* Continued on next slide */

Deletion – Pseudocode

Tree-Delete(T, z) (Contd. from previous slide)

9.

10.

11.

12.

13.

/* If

14.

15.

16.

17.

Tree-Delete(T, z) (Contd. from previous slide)

9. if p[y] = NIL

10. then root[T]  x

11. else if y  left[p[i]]

12. then left[p[y]]  x

13. else right[p[y]]  x

/* If z’s successor was spliced out, copy its data into z */

14. if y  z

15. then key[z]  key[y]

16. copy y’s satellite data into z.

17. return y

Correctness of Tree-Delete
• How do we know case 2 should go to case 0 or case

1 instead of back to case 2?

– Because when x has 2 children, its successor is
the minimum in its right subtree, and that
successor has no left child (hence 0 or 1 child).

• Equivalently, we could swap with predecessor
instead of successor. It might be good to alternate
to avoid creating lopsided tree.

Binary Search Trees
• View today as data structures that can support

dynamic set operations.

– Search, Minimum, Maximum, Predecessor,
Successor, Insert, and Delete.

• Can be used to build

– Dictionaries.

– Priority Queues.

• Basic operations take time proportional to the
height of the tree – O(h).

Tree traversals

• A binary tree is defined recursively: it consists of a root, a
left subtree, and a right subtree

• To traverse (or walk) the binary tree is to visit each node in
the binary tree exactly once

• Tree traversals are naturally recursive

• Since a binary tree has three “parts,” there are six possible
ways to traverse the binary tree:

– root, left, right

– left, root, right

– left, right, root

– root, right, left

– right, root, left

– right, left, root

Preorder traversal

• In preorder, the root is visited first

• Here’s a preorder traversal to print out all
the elements in the binary tree:

 public void preorderPrint(BinaryTree bt) {
 if (bt == null) return;
 System.out.println(bt.value);
 preorderPrint(bt.leftChild);
 preorderPrint(bt.rightChild);
}

Inorder traversal

• In inorder, the root is visited in the middle

• Here’s an inorder traversal to print out all
the elements in the binary tree:

 public void inorderPrint(BinaryTree bt) {
 if (bt == null) return;
 inorderPrint(bt.leftChild);
 System.out.println(bt.value);
 inorderPrint(bt.rightChild);
}

Postorder traversal

• In postorder, the root is visited last

• Here’s a postorder traversal to print out all
the elements in the binary tree:

 public void postorderPrint(BinaryTree bt) {
 if (bt == null) return;
 postorderPrint(bt.leftChild);
 postorderPrint(bt.rightChild);
 System.out.println(bt.value);
}

Tree traversals using “flags”
• The order in which the nodes are visited during a tree

traversal can be easily determined by imagining there is a
“flag” attached to each node, as follows:

• To traverse the tree, collect the flags:

preorder inorder postorder

A

B C

D E F G

A

B C

D E F G

A

B C

D E F G

A B D E C F G D B E A F C G D E B F G C A

Copying a binary tree

• In postorder, the root is visited last

• Here’s a postorder traversal to make a
complete copy of a given binary tree:

 public BinaryTree copyTree(BinaryTree bt) {
 if (bt == null) return null;
 BinaryTree left = copyTree(bt.leftChild);
 BinaryTree right = copyTree(bt.rightChild);
 return new BinaryTree(bt.value, left, right);
}

Other traversals

• The other traversals are the reverse of these
three standard ones
– That is, the right subtree is traversed before the

left subtree is traversed

• Reverse preorder: root, right subtree, left
subtree

• Reverse inorder: right subtree, root, left
subtree

• Reverse postorder: right subtree, left subtree,
root

