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Solution of linear system of equations 

 Numerical solution of differential equations 
(Finite Difference Method) 

 Numerical solution of integral equations (Finite 
Element Method, Method of Moments) 
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Consistency (Solvability) 

 The linear system of equations Ax=b has a 
solution, or said to be consistent IFF 

 Rank{A}=Rank{A|b}  

 A system is inconsistent when 

  Rank{A}<Rank{A|b}  

Rank{A} is the maximum number of linearly independent columns 
or rows of A. Rank can be found by using ERO (Elementary Row 
Oparations) or ECO (Elementary column operations). 

ERO# of rows with at least one nonzero entry 
ECO# of columns with at least one nonzero entry 
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Elementary row operations 

 The following operations applied to the 
augmented matrix [A|b], yield an equivalent 
linear system 

 Interchanges: The order of two rows can be 
changed 

 Scaling: Multiplying a row by a nonzero constant 

 Replacement: The row can be replaced by the sum 
of that row and a nonzero multiple of any other row. 

Engineering Mathematics III 



5 

An inconsistent example 
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Uniqueness of solutions 

 The system has a unique solution IFF 

 Rank{A}=Rank{A|b}=n 

 n is the order of the system 

 Such systems are called full-rank systems 
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Full-rank systems 

 If Rank{A}=n  

 Det{A}  0  A is nonsingular so invertible 

 Unique solution 
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Rank deficient matrices 

 If Rank{A}=m<n 

 Det{A} = 0  A is singular so not invertible  

 infinite number of solutions (n-m free variables) 

 under-determined system 
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Ill-conditioned system of equations 

 A small deviation in the entries of A matrix, 
causes a large deviation in the solution. 
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Ill-conditioned continued..... 

 A linear system of 

equations is said to 

be “ill-conditioned” 

if the coefficient 

matrix tends to be 

singular 
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Types of linear system of equations 

 Coefficient matrix A is square and real 

 The RHS vector b is nonzero and real 

 Consistent system, solvable 

 Full-rank system, unique solution 

 Well-conditioned system 
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Solution Techniques 

 Direct solution methods 
 Finds a solution in a finite number of operations by 

transforming the system into an equivalent system 
that is ‘easier’ to solve.  

 Diagonal, upper or lower triangular systems are 
easier to solve 

 Number of operations is a function of system size n. 

 Iterative solution methods 
 Computes succesive approximations of the solution 

vector for a given A and b, starting from an initial 
point x0.  

 Total number of operations is uncertain, may not 
converge. 
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Direct solution Methods 

 Gaussian Elimination 

 By using ERO, matrix A is transformed into an upper 
triangular matrix (all elements below diagonal 0) 

 Back substitution is used to solve the upper-
triangular system 
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First step of elimination 
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Second step of elimination 
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Gaussion elimination algorithm 
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Back substitution algorithm 





















































































)(

)1(

1

)3(

3

)2(

2

)1(

1

1

3

2

1

)(

)(

1

)(

11

)3(

3

)3(

33

)2(

2

)2(

23

)2(

22

)1(

1

)1(

13

)1(

12

)1(

11

0000

000

00

0

n

n

n

n

n

n

n

nn

n

nn

n

nn

n

n

n

b

b

b

b

b

x

x

x

x

x

a

aa

aa

aaa

aaaa









 

1,,2,1
1

1

1

)()(

)(

1

1

)1(

1)1(

11

1)(

)(




























nnixab
a

x

xab
a

x
a

b
x

n

ik

k

i

ik

i

ii

ii

i

n

n

nn

n

nn

nn

nn

nn

n

n
n

Engineering Mathematics III 



18 

Operation count 

 Number of arithmetic operations required by 
the algorithm to complete its task. 

 Generally only multiplications and divisions are 
counted  

 Elimination process  

 

 Back substitution 
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