Circle Midpoint Algorithm

. draw pixels in this octant
r (0,-R) (draw others using symmetry)

YT Implicit function for circle
F(x,y)=x"+y"—R’
F =(0 oncircle
(_RDO) (R,O) (x, y)

F(x,y)<0 inside
F(x,y)>0 outside

(O.R)

Choosing the Next Pixel

(X,y) (x+1,y)
@ QE

decision variable d

d=FM)=F(x+1,y+1/2)

F(x+1L,y+1/2)>0 C

F(x+1L,y+1/2)<0 C

noose E

noose SE

Change of d when E is chosen

(X,y) x+l,y) (x+2,y)

,\QE O

- M

O (

ncw

(x+1, y+1) (x+2,y+1)

d _=(x+2)+(y+1/2)> =R’
d, =(x+1)>+(y+1/2)° =R’
Ad=d_ —d, =2x+3

Change of d when SE is chosen
d =(x+2)+(y+3/2)’-R’

(X,) ct+,y) d,,=x+1)°+(y+1/2)’ - R’
o OE

\\ Ad=d, —d, =2x+2y+5
M 1d

(x+1,y+2) (x+2,y+2)

Initial value of d

(0,-R) (1,-R)

%
(1,-R+1)

dy=F(M,)
d,=F(,-R+1/2)
d,=(1)>+(-R+1/2)* - R’
d,=5/4-R

Midpoint Circle Algo

X = 0;
y = -R;
d =5/4 -R; /% real */

setPixel (X,Y);
while (y > x) {
if (d >0) { /* E chosen */
d += 2*x + 3;
X++
} else { /* SE chosen */
d += 2*(X+y) + 5;
X++; Y++;
}
setPixel (X,Y);

New Decision Variable

Our circle algorithm requires arithmetic
with real numbers.

Let’s create a new decision variable h
h=d-1/4
Substitute h+1/4 for d in the code.

Note h > -1/4 can be replaced with h > 0
since h will always have an integer value.

New Circle Algorithm

X = 0;
y = -Rj
h =1 - R;

setPixel (X,Y);
while (y > x) {
if (h > 0) { /* E chosen */
h += 2*%X + 3;
X++
} else { /* SE chosen */
h += 2*(X+y) + 5;
X++; Y++;
}
setPixel (X,Y);

Second-Order Differences

* Note that d is incremented by a linear
expression each time through the
loop.

—We can speed things up a bit by tracking
how these linear expressions change.

—Not a huge improvement since
multiplication by 2 is just a left-shift by 1
(e.g. 2*x = x<<1).

2"d Order Difference when E
chosen

* \When E chosen, we move from pixel
(x,y) to (x+1,y).

AE , =2x+3 ASE , =2(x+y)+5
AE =2(x+1)+3 ASE , =2(x+1+y)+5
Al;new_AE’old :2 AS’E'new_ASE’ola’ :2

2nd Order Difference when SE
chosen

 When SE chosen, we move from pixel
(X,y) to (x+1,y+1).

AE ,, =2x+3 ASE ,, =2(x+y)+5
AE = =2(x+1)+3 ASE, , =2(x+1+y+1)+5
AE —AE =2 ASE . —ASE =4

New and Improved Circle
Algorithm

x =05 y = -R;
1 - R;

h
dE = 3; dSE = -2*R + 5;
setPixel (x,y);

while (y > x) {

if (h > 0) { /* E chosen */

h += dE;
dE += 2; dSE += 2;
X++;
} else { /* SE chosen */
h += dSE;
dE += 2; dSE += 4;
X++; Y++;

}
setPixel (X,y);

Filling Primitives

We want to be able to fill rectangles,
circles, polygons, pie-slices, efc...

Deciding which pixels to fill is not trivial.
We also want to fill shapes with patterns.

We want to exploit spatial coherence

— Neighboring pixels within primitive are the
same.

— e.g. span, scan-line, edge coherence

Filling Rectangles

which pixels are “inside”?

How do we handle edge pixels?

Raster Operations

* Usually you are just overwriting pixels
when rasterizing a shape.

destination pixel = source pixel

« Sometimes you want to combine the
source and destination pixel in an
interesting way:
dest. pixel = source pixel XOR dest. pixel
0101 = (1100) XOR (1001)

XOR Animation Hack

* Quick way to animate a small object
(e.g. a ball) moving across the screen.

—"Move” ball to next location
—Draw ball using XOR
—Draw ball again using XOR (erases ball)
—repeat

* Does not require entire screen to be
redrawn.

. A = (A XOR B) XOR B

Other Ways to Combine Pixels

Name Value written to destination
OR SORD

AND SAND D

INVERT NOT D

NOR NOT (S OR D)

NAND NOT (S AND D)

More pixel combining tricks later...
...back to filling primitives

 How do we handle edge pixels?
* What if we want to tile to primitives
together without creating any seams?

—Remember, any pixels that are drawn
twice in XOR mode will disappear!

/'

don’t fill these pixels twice! —

Rule for Boundary Pixels

* |f a pixel lies on an edge...

— The pixel is part of the primitive if it lies
on the left boundary (or bottom boundary
for horizontal edges).

— Otherwise, the pixel is not part of the
primitive.

Using Rule to Fill Adjacent
Rectangles

