
Chapter 2: Operating-System Structures

Chapter 2: Operating-System

Structures

 System Calls

 Types of System Calls

 System Programs

 Operating System Design and Implementation

System Calls

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level Application Program Interface

(API) rather than direct system call use

 Three most common APIs are Win32 API for Windows, POSIX API for POSIX-

based systems (including virtually all versions of UNIX, Linux, and Mac OS X),

and Java API for the Java virtual machine (JVM)

 Why use APIs rather than system calls?

 (Note that the system-call names used throughout this text are generic)

Example of System Calls

 System call sequence to copy the contents of one file to another file

Example of Standard API

 Consider the ReadFile() function in the

 Win32 API—a function for reading from a file

 A description of the parameters passed to ReadFile()

 HANDLE file—the file to be read

 LPVOID buffer—a buffer where the data will be read into and written from

 DWORD bytesToRead—the number of bytes to be read into the buffer

 LPDWORD bytesRead—the number of bytes read during the last read

 LPOVERLAPPED ovl—indicates if overlapped I/O is being used

System Call Implementation

 Typically, a number associated with each system call

 System-call interface maintains a table indexed according to these numbers

 The system call interface invokes intended system call in OS kernel and

returns status of the system call and any return values

 The caller need know nothing about how the system call is implemented

 Just needs to obey API and understand what OS will do as a result call

 Most details of OS interface hidden from programmer by API

 Managed by run-time support library (set of functions built into libraries included with

compiler)

API – System Call – OS Relationship

Standard C Library Example

 C program invoking printf() library call, which calls write() system

call

System Call Parameter Passing

 Often, more information is required than simply identity of desired system call

 Exact type and amount of information vary according to OS and call

 Three general methods used to pass parameters to the OS

 Simplest: pass the parameters in registers

 In some cases, may be more parameters than registers

 Parameters stored in a block, or table, in memory, and address of block passed as a
parameter in a register

 This approach taken by Linux and Solaris

 Parameters placed, or pushed, onto the stack by the program and popped off the
stack by the operating system

 Block and stack methods do not limit the number or length of parameters being
passed

Parameter Passing via Table

Types of System Calls

 Process control

 File management

 Device management

 Information maintenance

 Communications

MS-DOS execution

(a) At system startup (b) running a program

FreeBSD Running Multiple Programs

System Programs

 System programs provide a convenient environment for program

development and execution. The can be divided into:

 File manipulation

 Status information

 File modification

 Programming language support

 Program loading and execution

 Communications

 Application programs

 Most users’ view of the operation system is defined by system

programs, not the actual system calls

Solaris 10 dtrace Following System Call

System Programs

 Provide a convenient environment for program development and execution

 Some of them are simply user interfaces to system calls; others are considerably
more complex

 File management - Create, delete, copy, rename, print, dump, list, and generally
manipulate files and directories

 Status information

 Some ask the system for info - date, time, amount of available memory, disk
space, number of users

 Others provide detailed performance, logging, and debugging information

 Typically, these programs format and print the output to the terminal or other
output devices

 Some systems implement a registry - used to store and retrieve configuration
information

System Programs (cont’d)

 File modification

 Text editors to create and modify files

 Special commands to search contents of files or perform transformations of the text

 Programming-language support - Compilers, assemblers, debuggers and
interpreters sometimes provided

 Program loading and execution- Absolute loaders, relocatable loaders, linkage
editors, and overlay-loaders, debugging systems for higher-level and machine
language

 Communications - Provide the mechanism for creating virtual connections
among processes, users, and computer systems

 Allow users to send messages to one another’s screens, browse web pages, send
electronic-mail messages, log in remotely, transfer files from one machine to another

Operating System Design and

Implementation

 Design and Implementation of OS not “solvable”, but some approaches have

proven successful

 Internal structure of different Operating Systems can vary widely

 Start by defining goals and specifications

 Affected by choice of hardware, type of system

 User goals and System goals

 User goals – operating system should be convenient to use, easy to learn, reliable,

safe, and fast

 System goals – operating system should be easy to design, implement, and maintain,

as well as flexible, reliable, error-free, and efficient

Operating System Design and Implementation

(Cont.)

 Important principle to separate

 Policy: What will be done?

Mechanism: How to do it?

 Mechanisms determine how to do something, policies decide what will be

done

 The separation of policy from mechanism is a very important principle, it allows

maximum flexibility if policy decisions are to be changed later

