Chapter 2: Operating-System Structures

Chapter 2: Operating-System
Structures

System Calls
Types of System Calls

System Programs

vV v v Vv

Operating System Design and Implementation

System Calls

® Programming interface to the services provided by the OS
@ Typically written in a high-level language (C or C++)

® Mostly accessed by programs via a high-level Application Program Interface
(API1) rather than direct system call use

® Three most common APIs are Win32 API for Windows, POSIX API for POSIX-
based systems (including virtually all versions of UNIX, Linux, and Mac OS X),
and Java API for the Java virtual machine (JVM)

@ Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are generic)

Example of System Calls

» System call sequence to copy the contents of one file to another file

“ source file »‘ destination file

@ Example System Call Sequence D

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

Example of Standard API

@® Consider the ReadFile() function in the
return value

'

® Win32 APl—a function for reac

BOOL ReadFile ¢ (HANDLE file,
LPVOID buffer,
T DWORD bytes To Read, | parameters
LPDWORD bytes Read,

. LPOVERLAPPED 1) ;
function name ovl);

@® Adescription of the parameters passed to ReadFile()
= HANDLE file—the file to be read
= LPVOID buffer—a buffer where the data will be read into and written from
= DWORD bytesToRead—the number of bytes to be read into the buffer
= LPDWORD bytesRead—the number of bytes read during the last read
= LPOVERLAPPED ovl—indicates if overlapped I/0 is being used

System Call Implementation

@ Typically, a number associated with each system call

= System-call interface maintains a table indexed according to these numbers

® The system call interface invokes intended system call in OS kernel and
returns status of the system call and any return values

@ The caller need know nothing about how the system call is implemented
= Just needs to obey API and understand what OS will do as a result call

= Most details of OS interface hidden from programmer by API

O Managed by run-time support library (set of functions built into libraries included with
compiler)

APl - System Call - OS Relationship

user application
open ()
user

mode
system call interface
kernel
mode A
L | - open ()
Implementation
» Of open ()

system call

return

Standard C Library Example

» C program invoking printf() library call, which calls write() system
call

#include <stdio.h>
int main ()

{

printf ("Greetings"); |«

return O;

}

user
mode

standard C library

lkernel

mode
write ()
write ()
system call

System Call Parameter Passing

® Often, more information is required than simply identity of desired system call
= Exact type and amount of information vary according to OS and call

@ Three general methods used to pass parameters to the OS
= Simplest: pass the parameters in registers
o In some cases, may be more parameters than registers

= Parameters stored in a block, or table, in memory, and address of block passed as a
parameter in a register

o This approach taken by Linux and Solaris

= Parameters placed, or pushed, onto the stack by the program and popped off the
stack by the operating system

= Block and stack methods do not limit the nhumber or length of parameters being
passed

Parameter Passing via Table

X: parameters
for call

load address X

reqgister

system call 13 —

/

use parameters
from table X

user program

>

operating system

}

code for
system
call 13

Types of System Calls

Process control
File management
Device management

Information maintenance

vV v v v v

Communications

MS-DOS execution

free memory

free memory

process
command
interpreter _command
interpreter
kernel kernel

(a) (b)
(a) At system startup (b) running a program

FreeBSD Running Multiple Programs

process D

free memory

process C

interpreter

process B

kernel

System Programs

@ System programs provide a convenient environment for program
development and execution. The can be divided into:

= File manipulation

= Status information

= File modification

= Programming language support
= Program loading and execution
= Communications

= Application programs

® Most users’ view of the operation system is defined by system
programs, not the actual system calls

Solaris 10 dtrace Following System Call

./all.d ‘pgrep xclock' XEventsQueued
dtrace: script ’./all.d’ matched 52377 probes
CPU FUNCTION
—= XEventsQueued
—-> XEventsQueued
-> XllTransBytesReadable
<— XllTransBytesReadable
-> XllTransSocketBytesReadable
<— XllTransSocketBytesreadable
-> lioctl
—= loctl
—-= getf
-> set active fd
<— set active fd
<— getf
-> get udatamodel
<— get udatamodel

o

el N eNolel Nl oMol NoNeNe
AARARAACCCOCCCC

-= releasef
-> clear active fd
<— clear active fd
—-> c¢Vv_broadcast
<— c¢Vv_broadcast
<— releasef
<— loctl
<— loctl
<— XEventsQueued
«<— XEventsQueued

coooooo000O.
CCamRmAARAARANRN

System Programs

» Provide a convenient environment for program development and execution

» Some of them are simply user interfaces to system calls; others are considerably
more complex

» File management - Create, delete, copy, rename, print, dump, list, and generally
manipulate files and directories

» Status information

» Some ask the system for info - date, time, amount of available memory, disk
space, number of users

» Others provide detailed performance, logging, and debugging information

» Typically, these programs format and print the output to the terminal or other
output devices

» Some systems implement a registry - used to store and retrieve configuration
information

System Programs (cont’d)

@ File modification
= Text editors to create and modify files

= Special commands to search contents of files or perform transformations of the text

® Programming-language support - Compilers, assemblers, debuggers and
interpreters sometimes provided

@ Program loading and execution- Absolute loaders, relocatable loaders, linkage
editors, and overlay-loaders, debugging systems for higher-level and machine
language

® Communications - Provide the mechanism for creating virtual connections
among processes, users, and computer systems

= Allow users to send messages to one another’s screens, browse web pages, send
electronic-mail messages, log in remotely, transfer files from one machine to another

Operating System Design and
Implementation

@ Design and Implementation of OS not “solvable”, but some approaches have
proven successful

@ Internal structure of different Operating Systems can vary widely
@ Start by defining goals and specifications
@ Affected by choice of hardware, type of system

@ User goals and System goals

= User goals - operating system should be convenient to use, easy to learn, reliable,
safe, and fast

= System goals - operating system should be easy to design, implement, and maintain,
as well as flexible, reliable, error-free, and efficient

Operating System Desigh and Implementation
(Cont.)

» Important principle to separate

Policy: What will be done?
Mechanism: How to do it?

» Mechanisms determine how to do something, policies decide what will be
done

» The separation of policy from mechanism is a very important principle, it allows
maximum flexibility if policy decisions are to be changed later

