
Chapter 2:  Operating-System Structures 



Chapter 2:  Operating-System 

Structures 

 System Calls 

 Types of System Calls 

 System Programs 

 Operating System Design and Implementation 



System Calls 

 Programming interface to the services provided by the OS 

 Typically written in a high-level language (C or C++) 

 Mostly accessed by programs via a high-level Application Program Interface 

(API) rather than direct system call use 

 Three most common APIs are Win32 API for Windows, POSIX API for POSIX-

based systems (including virtually all versions of UNIX, Linux, and Mac OS X), 

and Java API for the Java virtual machine (JVM) 

 Why use APIs rather than system calls? 

 

 

 (Note that the system-call names used throughout this text are generic) 

 



Example of System Calls 

 System call sequence to copy the contents of one file to another file 



Example of Standard API 

 Consider the ReadFile() function in the 

 Win32 API—a function for reading from a file 
 
 
 
 

 
 
 
 
 

 

 A description of the parameters passed to ReadFile() 

 HANDLE file—the file to be read 

 LPVOID buffer—a buffer where the data will be read into and written from 

 DWORD bytesToRead—the number of bytes to be read into the buffer 

 LPDWORD bytesRead—the number of bytes read during the last read 

 LPOVERLAPPED ovl—indicates if overlapped I/O is being used 

 



System Call Implementation 

 Typically, a number associated with each system call 

 System-call interface maintains a table indexed according to these numbers 

 The system call interface invokes intended system call in OS kernel and 

returns status of the system call and any return values 

 The caller need know nothing about how the system call is implemented 

 Just needs to obey API and understand what OS will do as a result call 

 Most details of  OS interface hidden from programmer by API   

 Managed by run-time support library (set of functions built into libraries included with 

compiler) 



API – System Call – OS Relationship 



Standard C Library Example 

 C program invoking printf() library call, which calls write() system 

call 



System Call Parameter Passing 

 Often, more information is required than simply identity of desired system call 

 Exact type and amount of information vary according to OS and call 

 Three general methods used to pass parameters to the OS 

 Simplest:  pass the parameters in registers 

  In some cases, may be more parameters than registers 

 Parameters stored in a block, or table, in memory, and address of block passed as a 
parameter in a register  

 This approach taken by Linux and Solaris 

 Parameters placed, or pushed, onto the stack by the program and popped off the 
stack by the operating system 

 Block and stack methods do not limit the number or length of parameters being 
passed 

 



Parameter Passing via Table 



Types of System Calls 

 Process control 

 File management 

 Device management 

 Information maintenance 

 Communications 

 



MS-DOS execution 

 

 

 

 

 

 

 

 

 

 

 

(a) At system startup (b) running a program 

 



FreeBSD Running Multiple Programs 



System Programs 

 System programs provide a convenient environment for program 

development and execution.  The can be divided into: 

 File manipulation  

 Status information 

 File modification 

 Programming language support 

 Program loading and execution 

 Communications 

 Application programs 

 Most users’ view of the operation system is defined by system 

programs, not the actual system calls 



Solaris 10 dtrace Following System Call 



System Programs 

 Provide a convenient environment for program development and execution 

 Some of them are simply user interfaces to system calls; others are considerably 
more complex 

 File management - Create, delete, copy, rename, print, dump, list, and generally 
manipulate files and directories 

 Status information 

 Some ask the system for info - date, time, amount of available memory, disk 
space, number of users 

 Others provide detailed performance, logging, and debugging information 

 Typically, these programs format and print the output to the terminal or other 
output devices 

 Some systems implement  a registry - used to store and retrieve configuration 
information 

 



System Programs (cont’d) 

 File modification 

 Text editors to create and modify files 

 Special commands to search contents of files or perform transformations of the text 

 Programming-language support - Compilers, assemblers, debuggers and 
interpreters sometimes provided 

 Program loading and execution- Absolute loaders, relocatable loaders, linkage 
editors, and overlay-loaders, debugging systems for higher-level and machine 
language 

 Communications - Provide the mechanism for creating virtual connections 
among processes, users, and computer systems 

 Allow users to send messages to one another’s screens, browse web pages, send 
electronic-mail messages, log in remotely, transfer files from one machine to another 

 



Operating System Design and 

Implementation 

 Design and Implementation of OS not “solvable”, but some approaches have 

proven successful 

 Internal structure of different Operating Systems  can vary widely 

 Start by defining goals and specifications  

 Affected by choice of hardware, type of system 

 User goals and System goals 

 User goals – operating system should be convenient to use, easy to learn, reliable, 

safe, and fast 

 System goals – operating system should be easy to design, implement, and maintain, 

as well as flexible, reliable, error-free, and efficient 



Operating System Design and Implementation 

(Cont.) 

 Important principle to separate 

 Policy:   What will be done?  

Mechanism:  How to do it? 

 Mechanisms determine how to do something, policies decide what will be 

done 

 The separation of policy from mechanism is a very important principle, it allows 

maximum flexibility if policy decisions are to be changed later 

 

 


