
Chapter 2: Operating-System Structures

Chapter 2: Operating-System

Structures

 Operating System Structure

 Virtual Machines

 Operating System Generation

 System Boot

Simple Structure

 MS-DOS – written to provide the most functionality in the least space

 Not divided into modules

 Although MS-DOS has some structure, its interfaces and levels of functionality are

not well separated

MS-DOS Layer Structure

Layered Approach

 The operating system is divided into a number of layers (levels), each built on

top of lower layers. The bottom layer (layer 0), is the hardware; the highest

(layer N) is the user interface.

 With modularity, layers are selected such that each uses functions

(operations) and services of only lower-level layers

Layered Operating System

UNIX

 UNIX – limited by hardware functionality, the original UNIX operating

system had limited structuring. The UNIX OS consists of two

separable parts

 Systems programs

 The kernel

 Consists of everything below the system-call interface and above the physical

hardware

 Provides the file system, CPU scheduling, memory management, and other

operating-system functions; a large number of functions for one level

UNIX System Structure

Microkernel System Structure

 Moves as much from the kernel into “user” space

 Communication takes place between user modules using message passing

 Benefits:

 Easier to extend a microkernel

 Easier to port the operating system to new architectures

 More reliable (less code is running in kernel mode)

 More secure

 Detriments:

 Performance overhead of user space to kernel space communication

Mac OS X Structure

Modules

 Most modern operating systems implement kernel modules

 Uses object-oriented approach

 Each core component is separate

 Each talks to the others over known interfaces

 Each is loadable as needed within the kernel

 Overall, similar to layers but with more flexible

Solaris Modular Approach

Virtual Machines

 A virtual machine takes the layered approach to its logical

conclusion. It treats hardware and the operating system

kernel as though they were all hardware

 A virtual machine provides an interface identical to the

underlying bare hardware

 The operating system creates the illusion of multiple

processes, each executing on its own processor with its own

(virtual) memory

Virtual Machines (Cont.)

 The resources of the physical computer are shared to create the virtual

machines

 CPU scheduling can create the appearance that users have their own processor

 Spooling and a file system can provide virtual card readers and virtual line printers

 A normal user time-sharing terminal serves as the virtual machine operator’s

console

Virtual Machines (Cont.)

(a) Nonvirtual machine (b) virtual machine

Non-virtual Machine Virtual Machine

Virtual Machines (Cont.)

 The virtual-machine concept provides complete protection of

system resources since each virtual machine is isolated from

all other virtual machines. This isolation, however, permits

no direct sharing of resources.

 A virtual-machine system is a perfect vehicle for operating-

systems research and development. System development is

done on the virtual machine, instead of on a physical

machine and so does not disrupt normal system operation.

 The virtual machine concept is difficult to implement due to

the effort required to provide an exact duplicate to the

underlying machine

VMware Architecture

The Java Virtual Machine

Operating System Generation

 Operating systems are designed to run on any of a class of machines; the

system must be configured for each specific computer site

 SYSGEN program obtains information concerning the specific configuration of

the hardware system

 Booting – starting a computer by loading the kernel

 Bootstrap program – code stored in ROM that is able to locate the kernel, load

it into memory, and start its execution

System Boot

 Operating system must be made available to hardware so hardware can start

it

 Small piece of code – bootstrap loader, locates the kernel, loads it into memory,

and starts it

 Sometimes two-step process where boot block at fixed location loads bootstrap

loader

 When power initialized on system, execution starts at a fixed memory location

 Firmware used to hold initial boot code

