
Chapter 6: Process

Synchronization

Module 6: Process Synchronization

 Background

 The Critical-Section Problem

 Peterson’s Solution

 Synchronization Hardware

Background
 Concurrent access to shared data may result in data

inconsistency

 Maintaining data consistency requires mechanisms to

ensure the orderly execution of cooperating processes

 Suppose that we wanted to provide a solution to the

consumer-producer problem that fills all the buffers. We

can do so by having an integer count that keeps track of

the number of full buffers. Initially, count is set to 0. It

is incremented by the producer after it produces a new

buffer and is decremented by the consumer after it

consumes a buffer.

Producer

while (true) {

 /* produce an item and put in nextProduced */

 while (count == BUFFER_SIZE)

 ; // do nothing

 buffer [in] = nextProduced;

 in = (in + 1) % BUFFER_SIZE;

 count++;

}

Consumer

 while (true) {

 while (count == 0)

 ; // do nothing

 nextConsumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 count--;

 /* consume the item in nextConsumed

 }

Race Condition
 count++ could be implemented as

 register1 = count
 register1 = register1 + 1
 count = register1

 count-- could be implemented as

 register2 = count
 register2 = register2 - 1
 count = register2

 Consider this execution interleaving with “count = 5” initially:

 S0: producer execute register1 = count {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = count {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute count = register1 {count = 6 }
S5: consumer execute count = register2 {count = 4}

Solution to Critical-Section Problem
1. Mutual Exclusion - If process Pi is executing in its critical section,

then no other processes can be executing in their critical

sections

2. Progress - If no process is executing in its critical section and

there exist some processes that wish to enter their critical

section, then the selection of the processes that will enter the

critical section next cannot be postponed indefinitely

3. Bounded Waiting - A bound must exist on the number of times

that other processes are allowed to enter their critical sections

after a process has made a request to enter its critical section

and before that request is granted

 Assume that each process executes at a nonzero speed

 No assumption concerning relative speed of the N processes

Peterson’s Solution
 Two process solution

 Assume that the LOAD and STORE instructions are atomic;

that is, cannot be interrupted.

 The two processes share two variables:

 int turn;

 Boolean flag[2]

 The variable turn indicates whose turn it is to enter the

critical section.

 The flag array is used to indicate if a process is ready to

enter the critical section. flag[i] = true implies that

process Pi is ready!

Algorithm for Process Pi

 while (true) {

 flag[i] = TRUE;

 turn = j;

 while (flag[j] && turn == j);

 CRITICAL SECTION

 flag[i] = FALSE;

 REMAINDER SECTION

 }

Synchronization Hardware
 Many systems provide hardware support for critical section

code

 Uniprocessors – could disable interrupts

 Currently running code would execute without preemption

 Generally too inefficient on multiprocessor systems

 Operating systems using this not broadly scalable

 Modern machines provide special atomic hardware

instructions

 Atomic = non-interruptable

 Either test memory word and set value

 Or swap contents of two memory words

TestAndndSet Instruction

 Definition:

 boolean TestAndSet (boolean *target)

 {

 boolean rv = *target;

 *target = TRUE;

 return rv:

 }

Solution using TestAndSet
 Shared boolean variable lock., initialized to false.

 Solution:

 while (true) {

 while (TestAndSet (&lock))

 ; /* do nothing

 // critical section

 lock = FALSE;

 // remainder section

 }

Swap Instruction

 Definition:

 void Swap (boolean *a, boolean *b)

 {

 boolean temp = *a;

 *a = *b;

 *b = temp:

 }

Solution using Swap
 Shared Boolean variable lock initialized to FALSE; Each process has a local

Boolean variable key.

 Solution:

 while (true) {

 key = TRUE;

 while (key == TRUE)

 Swap (&lock, &key);

 // critical section

 lock = FALSE;

 // remainder section

 }

