
Semaphore
 Synchronization tool that does not require busy waiting

 Semaphore S – integer variable

 Two standard operations modify S: wait() and signal()

 Originally called P() and V()

 Less complicated

 Can only be accessed via two indivisible (atomic) operations

 wait (S) {

 while S <= 0

 ; // no-op

 S--;

 }

 signal (S) {

 S++;

 }

Semaphore as General Synchronization Tool

 Counting semaphore – integer value can range over an unrestricted domain

 Binary semaphore – integer value can range only between 0

and 1; can be simpler to implement

 Also known as mutex locks

 Can implement a counting semaphore S as a binary semaphore

 Provides mutual exclusion

 Semaphore S; // initialized to 1

 wait (S);

 Critical Section

 signal (S);

Semaphore Implementation
 Must guarantee that no two processes can execute wait () and

signal () on the same semaphore at the same time

 Thus, implementation becomes the critical section problem

where the wait and signal code are placed in the crtical

section.

 Could now have busy waiting in critical section implementation

 But implementation code is short

 Little busy waiting if critical section rarely occupied

 Note that applications may spend lots of time in critical

sections and therefore this is not a good solution.

Semaphore Implementation with no Busy waiting

 With each semaphore there is an associated waiting queue.

Each entry in a waiting queue has two data items:

 value (of type integer)

 pointer to next record in the list

 Two operations:

 block – place the process invoking the operation on the

appropriate waiting queue.

 wakeup – remove one of processes in the waiting queue and

place it in the ready queue.

Semaphore Implementation with no Busy waiting (Cont.)

 Implementation of wait:

 wait (S){

 value--;

 if (value < 0) {

 add this process to waiting queue

 block(); }

 }

 Implementation of signal:

 Signal (S){

 value++;

 if (value <= 0) {

 remove a process P from the waiting queue

 wakeup(P); }

 }

Deadlock and Starvation

 Deadlock – two or more processes are waiting indefinitely for an event that can be caused by
only one of the waiting processes

 Let S and Q be two semaphores initialized to 1

 P0 P1

 wait (S); wait (Q);

 wait (Q); wait (S);

 . .

 . .

 . .

 signal (S); signal (Q);

 signal (Q); signal (S);

 Starvation – indefinite blocking. A process may never be removed from the semaphore queue
in which it is suspended.

Classical Problems of Synchronization

 Bounded-Buffer Problem

 Readers and Writers Problem

 Dining-Philosophers Problem

Bounded-Buffer Problem
 N buffers, each can hold one item

 Semaphore mutex initialized to the value 1

 Semaphore full initialized to the value 0

 Semaphore empty initialized to the value N.

Bounded Buffer Problem (Cont.)
 The structure of the producer process

 while (true) {

 // produce an item

 wait (empty);

 wait (mutex);

 // add the item to the buffer

 signal (mutex);

 signal (full);

 }

Bounded Buffer Problem (Cont.)
 The structure of the consumer process

 while (true) {

 wait (full);

 wait (mutex);

 // remove an item from buffer

 signal (mutex);

 signal (empty);

 // consume the removed item

 }

Readers-Writers Problem
 A data set is shared among a number of concurrent processes

 Readers – only read the data set; they do not perform any updates

 Writers – can both read and write.

 Problem – allow multiple readers to read at the same time.

Only one single writer can access the shared data at the same

time.

 Shared Data

 Data set

 Semaphore mutex initialized to 1.

 Semaphore wrt initialized to 1.

 Integer readcount initialized to 0.

Readers-Writers Problem (Cont.)
 The structure of a writer process

 while (true) {

 wait (wrt) ;

 // writing is performed

 signal (wrt) ;

 }

Readers-Writers Problem (Cont.)
 The structure of a reader process

 while (true) {

 wait (mutex) ;

 readcount ++ ;

 if (readcount == 1) wait (wrt) ;

 signal (mutex)

 // reading is performed

 wait (mutex) ;

 readcount - - ;

 if (readcount == 0) signal (wrt) ;

 signal (mutex) ;

 }

Dining-Philosophers Problem

 Shared data

 Bowl of rice (data set)

 Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem (Cont.)
 The structure of Philosopher i:

While (true) {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

}

Problems with Semaphores
 Correct use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) or signal (mutex) (or both)

