
Problems with Semaphores
 Correct use of semaphore operations:

 signal (mutex) …. wait (mutex)

 wait (mutex) … wait (mutex)

 Omitting of wait (mutex) or signal (mutex) (or both)

Monitors
 A high-level abstraction that provides a convenient and effective

mechanism for process synchronization

 Only one process may be active within the monitor at a time

monitor monitor-name

{

 // shared variable declarations

 procedure P1 (…) { …. }

 …

 procedure Pn (…) {……}

 Initialization code (….) { … }

 …

 }

}

Schematic view of a Monitor

Condition Variables

 condition x, y;

 Two operations on a condition variable:

 x.wait () – a process that invokes the operation is

 suspended.

 x.signal () – resumes one of processes (if any) that

 invoked x.wait ()

 Monitor with Condition Variables

Solution to Dining Philosophers

monitor DP

 {

 enum { THINKING; HUNGRY, EATING) state [5] ;

 condition self [5];

 void pickup (int i) {

 state[i] = HUNGRY;

 test(i);

 if (state[i] != EATING) self [i].wait;

 }

 void putdown (int i) {

 state[i] = THINKING;

 // test left and right neighbors

 test((i + 4) % 5);

 test((i + 1) % 5);

 }

Solution to Dining Philosophers (cont)

 void test (int i) {

 if ((state[(i + 4) % 5] != EATING) &&

 (state[i] == HUNGRY) &&

 (state[(i + 1) % 5] != EATING)) {

 state[i] = EATING ;

 self[i].signal () ;

 }

 }

 initialization_code() {

 for (int i = 0; i < 5; i++)

 state[i] = THINKING;

 }

}

Solution to Dining Philosophers (cont)

 Each philosopher I invokes the operations pickup()

 and putdown() in the following sequence:

 dp.pickup (i)

 EAT

 dp.putdown (i)

Monitor Implementation Using Semaphores

 Variables
 semaphore mutex; // (initially = 1)
 semaphore next; // (initially = 0)
 int next-count = 0;

 Each procedure F will be replaced by

 wait(mutex);
 …
 body of F;

 …
 if (next-count > 0)
 signal(next)
 else
 signal(mutex);

 Mutual exclusion within a monitor is ensured.

Monitor Implementation

 For each condition variable x, we have:

 semaphore x-sem; // (initially = 0)

 int x-count = 0;

 The operation x.wait can be implemented as:

 x-count++;

 if (next-count > 0)

 signal(next);

 else

 signal(mutex);

 wait(x-sem);

 x-count--;

Monitor Implementation

 The operation x.signal can be implemented as:

 if (x-count > 0) {

 next-count++;

 signal(x-sem);

 wait(next);

 next-count--;

 }

