Problems with Semaphores

» Correct use of semaphore operations:

» signal (mutex) ... wait (mutex)

» wait (mutex) ... wait (mutex)

» Omitting of wait (mutex) or signal (mutex) (or both)

Monitors

» Ahigh-level abstraction that provides a convenient and effective
mechanism for process synchronization

» Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations
procedure P1 (...) { }

procedure Pn (...) {.....}

Initialization code (....) { ... }

Schematic view of a Monitor

shared data ‘

~"

operations

initialization
code

Condition Variables

» condition x, v;

» Two operations on a condition variable:
» Xx.wait () - a process that invokes the operation is
suspended.
» x.signal () - resumes one of processes (if any) that

invoked x.wait ()

Monitor with Condition Variables

entry queue

shared data

queues associated with
X, y conditions

initialization
code

Solution to Dining Philosophers

monitor DP
{
enum { THINKING; HUNGRY, EATING) state [5] ;
condition self [5];

void pickup (int i) {

state[i] = HUNGRY;

test(i);

if (state[i] != EATING) self [i].wait;
3

void putdown (int i) {
state[i] = THINKING;
// test left and right neighbors
test((i + 4) % 5);
test((i + 1) % 5);

Solution to Dining Philosophers (cont)

void test (int i) {
if ((state[(i +4) % 5] != EATING) &&
(state[i] == HUNGRY) &&
(state[(i + 1) % 5] != EATING)) {
state[i] = EATING ;
self[i].signal () ;
}
3

initialization_code() {
for (inti=0;i<5; i++)
state[i] = THINKING;

Solution to Dining Philosophers (cont)

» Each philosopher | invokes the operations pickup()
and putdown() in the following sequence:

dp.pickup (i)
EAT

dp.putdown (i)

Monitor Implementation Using Semaphore

» Variables
semaphore mutex; // (initially = 1)
semaphore next; // (initially = 0)
int next-count = 0;

» Each procedure F will be replaced by

wait(mutex);

body of F;

if (next-count > 0)
signal(next)

else
signal(mutex);

» Mutual exclusion within a monitor is ensured.

Monitor Implementation

» For each condition variable x, we have:

semaphore x-sem; // (initially =0)
int x-count = 0;

» The operation x.wait can be implemented as:

X-count++;

if (next-count > 0)
signal(next);

else
signal(mutex);

wait(x-sem);

x-count--;

Monitor Implementation

» The operation x.signal can be implemented as:

if (x-count > 0) {
next-count++;
signal(x-sem);
wait(next);
next-count--;

