Chapter 15: Security

Chapter 15: Security

- The Security Problem
- Program Threats
- System and Network Threats
- Cryptography as a Security Tool
- User Authentication
- Implementing Security Defenses
- Firewalling to Protect Systems and Networks
- Computer-Security Classifications
- An Example: Windows XP

Objectives

- To discuss security threats and attacks
- To explain the fundamentals of encryption, authentication, and hashing
- To examine the uses of cryptography in computing
- To describe the various countermeasures to security attacks

The Security Problem

- Security must consider external environment of the system, and protect the system resources
- Intruders (crackers) attempt to breach security
- Threat is potential security violation
- Attack is attempt to breach security
- Attack can be accidental or malicious
- Easier to protect against accidental than malicious misuse

Security Violations

- Categories
- Breach of confidentiality
- Breach of integrity
- Breach of availability
- Theft of service
- Denial of service
- Methods
- Masquerading (breach authentication)
- Replay attack
- Message modification
- Man-in-the-middle attack
- Session hijacking

Standard Security Attacks

Security Measure Levels

- Security must occur at four levels to be effective:
- Physical
- Human
- Avoid social engineering, phishing, dumpster diving
- Operating System
- Network
- Security is as week as the weakest chain

Program Threats

- Trojan Horse
- Code segment that misuses its environment
- Exploits mechanisms for allowing programs written by users to be executed by other users
- Spyware, pop-up browser windows, covert channels
- Trap Door
- Specific user identifier or password that circumvents normal security procedures
- Could be included in a compiler
- Logic Bomb
- Program that initiates a security incident under certain circumstances
- Stack and Buffer Overflow
- Exploits a bug in a program (overflow either the stack or memory buffers)

C Program with Buffer-overflow Condition

```
#include <stdio.h>
#define BUFFER SIZE 256
int main(int argc, char *argv[])
{
    char buffer[BUFFER SIZE];
    if (argc < 2)
        return -1;
    else {
        strcpy(buffer,argv[1]);
        return 0;
    }
}
```


Layout of Typical Stack Frame

Modified Shell Code

```
#include <stdio.h>
int main(int argc, char *argv[])
{
    execvp(''\bin\sh'','`\bin \sh'', NULL);
    return 0;
}
```


Hypothetical Stack Frame

return address		address of modified shell code
saved frame pointer buffer(BUFFER_SIZE - 1)		NO $\stackrel{\vdots}{\vdots} \mathrm{OP}$
buffer(1)		modified shell code
buffer(0)		
(a)		(b)

Before attack
After attack

Program Threats (Cont.)

- Viruses
- Code fragment embedded in legitimate program
- Very specific to CPU architecture, operating system, applications
- Usually borne via email or as a macro
- Visual Basic Macro to reformat hard drive

```
Sub AutoOpen()
Dim oFS
Set oFS =
CreateObject(''Scripting.FileSystemObje
    ct'')
    VS = Shell(''c:command.com /k format
        c:'' ,vbHide)
```

End Sulb

Program Threats (Cont.)

- Virus dropper inserts virus onto the system
- Many categories of viruses, literally many thousands of viruses
- File
- Boot
- Macro
- Source code
- Polymorphic
- Encrypted
- Stealth
- Tunneling
- Multipartite
- Armored

A Boot-sector Computer Virus

System and Network Threats

- Worms - use spawn mechanism; standalone program
- Internet worm
- Exploited UNIX networking features (remote access) and bugs in finger and sendmail programs
- Grappling hook program uploaded main worm program
- Port scanning
- Automated attempt to connect to a range of ports on one or a range of IP addresses
- Denial of Service
- Overload the targeted computer preventing it from doing any useful work
- Distributed denial-of-service (DDOS) come from multiple sites at once

The Morris Internet Worm

Cryptography as a Security Tool

- Broadest security tool available
- Source and destination of messages cannot be trusted without cryptography
- Means to constrain potential senders (sources) and / or receivers (destinations) of messages
- Based on secrets (keys)

Secure Communication over Insecure Medium

Encryption

- Encryption algorithm consists of
- Set of K keys
- Set of M Messages
- Set of C ciphertexts (encrypted messages)
- A function $E: K \rightarrow(M \rightarrow C)$. That is, for each $k \in K, E(k)$ is a function for generating ciphertexts from messages.
- Both E and $E(k)$ for any k should be efficiently computable functions.
- A function $D: K \rightarrow(C \rightarrow M)$. That is, for each $k \in K, D(k)$ is a function for generating messages from ciphertexts.
- Both D and $D(k)$ for any k should be efficiently computable functions.
- An encryption algorithm must provide this essential property: Given a ciphertext $c \in$ C, a computer can compute m such that $E(k)(m)=c$ only if it possesses $D(k)$.
- Thus, a computer holding $D(k)$ can decrypt ciphertexts to the plaintexts used to produce them, but a computer not holding $D(k)$ cannot decrypt ciphertexts.
- Since ciphertexts are generally exposed (for example, sent on the network), it is important that it be infeasible to derive $D(k)$ from the ciphertexts

Symmetric Encryption

- Same key used to encrypt and decrypt
- $E(k)$ can be derived from $D(k)$, and vice versa
- DES is most commonly used symmetric block-encryption algorithm (created by US Govt)
- Encrypts a block of data at a time
- Triple-DES considered more secure
- Advanced Encryption Standard (AES), twofish up and coming
- RC4 is most common symmetric stream cipher, but known to have vulnerabilities
- Encrypts/decrypts a stream of bytes (i.e wireless transmission)
- Key is a input to psuedo-random-bit generator
- Generates an infinite keystream

Asymmetric Encryption

- Public-key encryption based on each user having two keys:
- public key - published key used to encrypt data
- private key - key known only to individual user used to decrypt data
- Must be an encryption scheme that can be made public without making it easy to figure out the decryption scheme
- Most common is RSA block cipher
- Efficient algorithm for testing whether or not a number is prime
- No efficient algorithm is know for finding the prime factors of a number

Asymmetric Encryption (Cont.)

- Formally, it is computationally infeasible to derive $D\left(k_{d}, N\right)$ from $E\left(k_{e}, N\right)$, and so $E\left(k_{e}, N\right)$ need not be kept secret and can be widely disseminated
- $E\left(k_{e}, N\right)$ (or just k_{e}) is the public key
- $D\left(k_{d}, N\right)$ (or just k_{d}) is the private key
- N is the product of two large, randomly chosen prime numbers p and q (for example, p and q are 512 bits each)
- Encryption algorithm is $E\left(k_{e}, N\right)(m)=m^{k} e \bmod$ N, where k_{e} satisfies $k_{e} k_{d} \bmod (p-1)(q-1)=1$
- The decryption algorithm is then $D\left(k_{d}, N\right)(c)=$ $c^{k} d \bmod N$

Asymmetric Encryption Example

- For example. make $p=7$ and $q=13$
- We then calculate $N=7 * 13=91$ and $(p-1)(q-1)=72$
- We next select k_{e} relatively prime to 72 and< 72 , yielding 5
- Finally,we calculate k_{d} such that $k_{e} k_{d} \bmod 72=1$, yielding 29
- We how have our keys
- Public key, $k_{e}, N=5,91$
- Private key, $k_{d}, N=29,91$
- Encrypting the message 69 with the public key results in the cyphertext 62
- Cyphertext can be decoded with the private key
- Public key can be distributed in cleartext to anyone who

Encryption and Asymmetric Cry

Cryptography (Cont.)

- Note symmetric cryptography based on transformations, asymmetric based on mathematical functions
- Asymmetric much more compute intensive
- Typically not used for bulk data encryption

Authentication

- Constraining set of potential senders of a message
- Complementary and sometimes redundant to encryption
- Also can prove message unmodified
- Algorithm components
- A set K of keys
- A set M of messages
- A set A of authenticators
- A function $S: K \rightarrow(M \rightarrow A)$
- That is, for each $k \in K, S(k)$ is a function for generating authenticators from messages
- Both S and $S(k)$ for any k should be efficiently computable functions
- A function $V: K \rightarrow(M \times A \rightarrow\{$ true, false\} $)$. That is, for each $k \in K, V(k)$ is a function for verifying authenticators on messages
- Both V and $V(k)$ for any k should be efficiently computable functions

Authentication (Cont.)

- For a message m, a computer can generate an authenticator $a \in A$ such that $V(k)(m, a)=$ true only if it possesses $S(k)$
- Thus, computer holding $S(k)$ can generate authenticators on messages so that any other computer possessing $V(k)$ can verify them
- Computer not holding $S(k)$ cannot generate authenticators on messages that can be verified using $V(k)$
- Since authenticators are generally exposed (for example, they are sent on the network with the messages themselves), it must not be feasible to derive $S(k)$ from the authenticators

Authentication - Hash Functions

- Basis of authentication
- Creates small, fixed-size block of data (message digest, hash value) from m
- Hash Function H must be collision resistant on m
- Must be infeasible to find an $m^{\prime} \neq m$ such that $H(m)=$ $H\left(m^{\prime}\right)$
- If $H(m)=H\left(m^{\prime}\right)$, then $m=m^{\prime}$
- The message has not been modified
- Common message-digest functions include MD5, which produces a 128-bit hash, and SHA-1, which outputs a 160-bit hash

Authentication - MAC

- Symmetric encryption used in message-authentication code (MAC) authentication algorithm
- Simple example:
- MAC defines $S(k)(m)=f(k, H(m))$
- Where f is a function that is one-way on its first argument
- k cannot be derived from $f(k, H(m))$
- Because of the collision resistance in the hash function, reasonably assured no other message could create the same MAC
- A suitable verification algorithm is $V(k)(m, a) \equiv(f(k, m)=a)$
- Note that k is needed to compute both $S(k)$ and $V(k)$, so anyone able to compute one can compute the other

Authentication - Digital Signature

- Based on asymmetric keys and digital signature algorithm
- Authenticators produced are digital signatures
- In a digital-signature algorithm, computationally infeasible to derive $S\left(k_{s}\right)$ from $V\left(k_{v}\right)$
- V is a one-way function
- Thus, k_{v} is the public key and k_{s} is the private key
- Consider the RSA digital-signature algorithm
- Similar to the RSA encryption algorithm, but the key use is reversed
- Digital signature of message $S\left(k_{s}\right)(m)=H(m)^{k_{s}} \bmod N$
- The key k_{s} again is a pair d, N, where N is the product of two large, randomly chosen prime numbers p and q
- Verification algorithm is $V\left(k_{v}\right)(m, a) \equiv\left(a^{k_{v}} \bmod N=H(m)\right)$
- Where k_{v} satisfies $k_{v} k_{s} \bmod (p-1)(q-1)=1$

Authentication (Cont.)

- Why authentication if a subset of encryption?
- Fewer computations (except for RSA digital signatures)
- Authenticator usually shorter than message
- Sometimes want authentication but not confidentiality
- Signed patches et al
- Can be basis for non-repudiation

Key Distribution

- Delivery of symmetric key is huge challenge
- Sometimes done out-of-band
- Asymmetric keys can proliferate - stored on key ring
- Even asymmetric key distribution needs care - man-in-themiddle attack

Man-in-the-middle Attack on Asymmetric Cryptography

Digital Certificates

- Proof of who or what owns a public key
- Public key digitally signed a trusted party
- Trusted party receives proof of identification from entity and certifies that public key belongs to entity
- Certificate authority are trusted party - their public keys included with web browser distributions
- They vouch for other authorities via digitally signing their keys, and so on

Encryption Example - SSL

- Insertion of cryptography at one layer of the ISO network model (the transport layer)
- SSL - Secure Socket Layer (also called TLS)
- Cryptographic protocol that limits two computers to only exchange messages with each other
- Very complicated, with many variations
- Used between web servers and browsers for secure communication (credit card numbers)
- The server is verified with a certificate assuring client is talking to correct server
- Asymmetric cryptography used to establish a secure session key (symmetric encryption) for bulk of communication during session
- Communication between each computer theb uses symmetric key cryptography

User Authentication

- Crucial to identify user correctly, as protection systems depend on user ID
- User identity most often established through passwords, can be considered a special case of either keys or capabilities
- Also can include something user has and /or a user attribute
- Passwords must be kept secret
- Frequent change of passwords
- Use of "non-guessable" passwords
- Log all invalid access attempts
- Passwords may also either be encrypted or allowed to be used only once

Implementing Security Defenses

- Defense in depth is most common security theory multiple layers of security
- Security policy describes what is being secured
- Vulnerability assessment compares real state of system / network compared to security policy
- Intrusion detection endeavors to detect attempted or successful intrusions
- Signature-based detection spots known bad patterns
- Anomaly detection spots differences from normal behavior
- Can detect zero-day attacks
- False-positives and false-negatives a problem
- Virus protection
- Auditing, accounting, and logging of all or specific system or network activities

Firewalling to Protect Systems and Networks

- A network firewall is placed between trusted and untrusted hosts
- The firewall limits network access between these two security domains
- Can be tunneled or spoofed
- Tunneling allows disallowed protocol to travel within allowed protocol (i.e. telnet inside of HTTP)
- Firewall rules typically based on host name or IP address which can be spoofed
- Personal firewall is software layer on given host
- Can monitor / limit traffic to and from the host
- Application proxy firewall understands application protocol and can control them (i.e. SMTP)
- System-call firewall monitors all important system calls and apply rules to them (i.e. this program can execute that system call)

Network Security Through Domain Separation Via Firewa

Computer Security Classifications

- U.S. Department of Defense outlines four divisions of computer security: A, B, C, and D.
- D - Minimal security.
- C - Provides discretionary protection through auditing. Divided into C1 and C2. C1 identifies cooperating users with the same level of protection. C2 allows user-level access control.
- B - All the properties of C, however each object may have unique sensitivity labels. Divided into B1, B2, and B3.
- A - Uses formal design and verification techniques to ensure security.

Example: Windows XP

- Security is based on user accounts
- Each user has unique security ID
- Login to ID creates security access token
- Includes security ID for user, for user's groups, and special privileges
- Every process gets copy of token
- System checks token to determine if access allowed or denied
- Uses a subject model to ensure access security. A subject tracks and manages permissions for each program that a user runs
- Each object in Windows XP has a security attribute defined by a security descriptor
- For example, a file has a security descriptor that indicates the access permissions for all users

