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Properties of Regular 

Languages 

Reading: Chapter 4 
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Topics 

1) How to prove whether a given 

language is regular or not? 

 

2) Closure properties of regular 

languages 

 

3) Minimization of DFAs 
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Some languages are not 

regular 

When is a language is regular?  
if we are able to construct one of the 

following: DFA or NFA or  -NFA or regular 
expression 

 

When is it not? 
If we can show that no FA can be built for a 
language 
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How to prove languages are 

not regular? 

What if we cannot come up with any FA?  

A) Can it be language that is not regular?  

B) Or is it that we tried wrong approaches? 

 

How do we decisively prove that a language 

is not regular? 

“The hardest thing of all is to find a black cat in a dark room,  

especially if there is no cat!”   -Confucius 



5 

Example of a non-regular 

language  

Let L = {w | w is of the form 0n1n , for all n≥0}  

 Hypothesis: L is not regular 

 Intuitive rationale: How do you keep track 

of a running count in an FA? 

 A more formal rationale: 
 By contradition, if L is regular then there should exist a DFA 

for L.    

 Let k = number of states in that DFA. 

 Consider the special word w= 0k1k  => w  L 

 DFA is in some state pi, after consuming the first i symbols in 

w 
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Rationale…  

 Let {p0,p1,… pk} be the sequence of states that the 

DFA should have visited after consuming the first 

k symbols in w which is 0k 

 But there are only k states in the DFA! 

 ==> at least one state should repeat somewhere 

along the path    (by             ++        Principle)  

 ==> Let  the repeating state be pi=pJ for i < j 

 ==> We can fool the DFA by inputing 0(k-(j-i))1k and 

still get it to accept  (note: k-(j-i) is at most k-1). 

 ==> DFA accepts strings w/ unequal number of 0s 

and 1s, implying that the DFA is wrong! 

Uses Pigeon Hole Principle 



The Pumping Lemma for 

Regular Languages 

What it is?  

The Pumping Lemma is a property 

of all regular languages. 

How is it used?  

A technique that is used to show 

that a given language is not regular 
7 
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Pumping Lemma for Regular 

Languages 

Let L be a regular language 

 

Then there exists some constant N such that for 
every string w  L s.t. |w|≥N, there exists a 
way to break w into three parts, w=xyz, 
such that: 

1. y≠  

2. |xy|≤N 

3. For all k≥0, all strings of the form xykz  L 

This property should hold for all regular languages. 

Definition: N is called the “Pumping Lemma Constant” 
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Pumping Lemma: Proof 
 L is regular => it should have a DFA.  

 Set N := number of states in the DFA 

 Any string wL, s.t. |w|≥N, should have the 

form:  w=a1a2…am, where m≥N 

 Let the states traversed after reading the first 

N symbols be:    {p0,p1,… pN} 

 ==> There are N+1 p-states, while there are only 

N DFA states 

 ==> at least one state has to repeat  

i.e, pi= pJwhere 0≤i<j≤N (by PHP)  
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Pumping Lemma: Proof… 

 => We should be able to break w=xyz as follows: 
 x=a1a2..ai;   y=ai+1ai+2..aJ;   z=aJ+1aJ+2..am 

 x’s path will be p0..pi  

 y’s path will be pi pi+1..pJ (but pi=pJ implying a loop) 

 z’s path will be pJpJ+1..pm  

 Now consider another  

     string wk=xykz , where k≥0 

 Case k=0 

 DFA will reach the accept state pm 

 Case k>0 

 DFA will loop for yk, and finally reach the accept state pm for z 

 In either case, wk L  

yk (for k loops) 

p0 pi pm 
x z 

=pj 

This proves part (3) of the lemma 
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Pumping Lemma: Proof… 

 For part (1):  

 Since i<j, y ≠  

 

 For part (2): 

 By PHP, the repetition of states has to 
occur within the first N symbols in w 

 ==> |xy|≤N 

 

p0 pi pm 
x z 

yk (for k loops) 

=pj 
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The Purpose of the Pumping 

Lemma for RL 

 To prove that some languages cannot 

be regular.  
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How to use the pumping 

lemma?  

Think of playing a 2 person game 
 Role 1:  We claim that the language cannot 

be regular 

 

 Role 2:  An adversary who claims the 
language is regular   

 

 We show that the adversary’s statement will 
lead to a contradiction that implyies pumping 
lemma cannot hold for the language. 

 

 We win!! 
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How to use the pumping 

lemma? (The Steps) 

1. (we) L is not regular. 

2. (adv.) Claims that L is regular and gives you 
a value for N as its P/L constant 

3. (we) Using N, choose a string w  L s.t.,  
1. |w| ≥ N,  

2. Using w as the template, construct other words 
wk of the form xykz and show that at least one 
such wk  L  

  => this implies we have successfully broken the 
pumping lemma for the language, and hence that the 
adversary is wrong. 

(Note: In this process, we may have to try many values of k, 
starting with k=0, and then 2, 3, .. so on, until wk  L ) 

 



Using the Pumping Lemma  

 What WE do? 

 

 

3. Using N, we construct 

our template string w 

4. Demonstrate to the 

adversary, either 

through pumping up or 

down on w, that some 

string wk  L 

(this should happen 

regardless of w=xyz) 

 

 What the Adversary 

does? 

1. Claims L is regular 

2. Provides N 
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Note: We don’t have any control over N, except that it is positive. 

 We also don’t have any control over how to split w=xyz,  

  but xyz should respect the P/L conditions (1) and (2). 
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Example of using the Pumping Lemma to 

prove that a language is not regular 

Let Leq = {w | w is a binary string with equal number 
of 1s and 0s}  

 Your Claim: Leq is not regular 

 Proof:  

 By contradiction, let Leq be regular 

 P/L constant should exist 

 Let N = that P/L constant 

 Consider input w = 0N1N     
 (your choice for the template string) 

 By pumping lemma, we should be able to break 
w=xyz, such that: 

1) y≠  

2) |xy|≤N 

3) For all k≥0, the string xykz is also in L 

  adv. 

 you 

 adv. 

you 

Note: This N can be anything (need not necessarily be the #states in the DFA.  

  It’s the adversary’s choice.) 
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Proof…   

 Because |xy|≤N, xy should contain only 0s 

 (This and because y≠ ,  implies y=0+) 

 Therefore x can contain at most N-1 0s 

 Also, all the N 1s must be inside z 

 By (3), any string of the form xykz  Leq for all k≥0  

 Case k=0: xz has at most N-1 0s but has N 1s 

 Therefore, xy0z  Leq 

 This violates the P/L (a contradiction) 

Another way of proving this will be to show that if  

the #0s is arbitrarily pumped up (e.g., k=2), 

then the #0s will become exceed the #1s  

 you 

Template string w = 0N1N  = 00  ….     011  …    1 
N N 

Setting k=0 is  

referred to as 

“pumping down” 

Setting k>1 is  

referred to as 

“pumping up” 
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Exercise 2 

Prove L = {0n10n | n≥ 1} is not regular 

 

Note: This n is not to be confused with the pumping 

lemma constant N. That can be different. 

 

In other words, the above question is same as 

proving: 

 L = {0m10m | m≥ 1} is not regular 
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Example 3: Pumping Lemma 

Claim: L = { 0i | i is a perfect square} is not regular 

 Proof:  
 By contradiction, let L be regular.  

 P/L should apply 

 Let N = P/L constant 

 Choose w=0N2
 

 By pumping lemma, w=xyz satisfying all three rules 

 By rules (1) & (2), y has between 1 and N 0s 

 By rule (3), any string of the form xykz is also in L for all k≥0  

 Case k=0:  
 #zeros (xy0z)  =  #zeros (xyz) - #zeros (y) 

                  N2 – N    ≤     #zeros (xy0z)    ≤   N2 - 1 

 (N-1)2   <   N2 - N   ≤    #zeros (xy0z)     ≤    N2 - 1   <   N2 

 xy0z   L 

 But the above will complete the proof ONLY IF N>1.  

 … (proof contd.. Next slide) 
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Example 3: Pumping Lemma 

 (proof contd…) 
 If the adversary pick N=1, then (N-1)2   ≤   N2 – N, and therefore the #zeros(xy0z) 

could end up being a perfect square! 

 This means that pumping down (i.e., setting k=0) is not giving us the proof! 

 So lets try pumping up next… 

 Case k=2: 
 #zeros (xy2z)  =   #zeros (xyz) +  #zeros (y) 

                  N2 + 1    ≤     #zeros (xy2z)    ≤   N2 + N 

 N2   <   N2 + 1 ≤    #zeros (xy2z)     ≤    N2 + N   <   (N+1)2 

 xy2z   L 

 

 

 (Notice that the above should hold for all possible N values of N>0. Therefore, this 
completes the proof.) 

 

 



Closure properties of Regular 

Languages 

21 
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Closure properties for Regular 

Languages (RL) 

 Closure property: 
 If a set of regular languages are combined using 

an operator, then the resulting language is also 
regular 

 Regular languages are closed under: 
 Union, intersection, complement, difference 

 Reversal 

 Kleene closure 

 Concatenation 

 Homomorphism 

 Inverse homomorphism 

 

This is different 

from Kleene 

closure

This is different 

from Kleene 

closure 

Now, lets prove all of this! 
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RLs are closed under union  

 IF L and M are two RLs THEN: 

 

 they both have two corresponding regular 

expressions, R and S respectively 

 

 (L U M) can be represented using the regular 

expression R+S  

 

 Therefore, (L U M) is also regular 

How can this be proved using FAs? 
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RLs are closed under 

complementation 

q0 

qF1 

qF2 

qFk 

…
 

qi 

DFA for L 

q0 

qF1 

qF2 

qFk 

…
 

qi 

DFA for L 

 If L is an RL over ∑, then L=∑*-L 

 To show L is also regular, make the following 
construction Convert every final state into non-final, and  

 every non-final state into a final state 

Assumes q0 is a non-final state. If not, do the opposite. 
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RLs are closed under 

intersection 

 A quick, indirect way to prove: 

 By DeMorgan’s law:  

 L ∩ M = (L U M)  

 Since we know RLs are closed under union 

and complementation, they are also closed 

under intersection 

 A more direct way would be construct a 

finite automaton for L ∩ M 
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DFA construction for L ∩ M 

 AL = DFA for L = {QL, ∑ , qL,FL, δL } 

 AM = DFA for M = {QM, ∑ , qM,FM, δM } 

 Build AL ∩ M = {QLx QM,∑, (qL,qM), FLx FM,δ} 
such that: 
 δ((p,q),a) = (δL(p,a), δM(q,a)), where p in QL, and q 

in QM 

 This construction ensures that a string w will 
be accepted if and only if w reaches an 
accepting state in both input DFAs.  
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DFA construction for L ∩ M 

q0 

qF1 

qF2 

…
 

qi 

DFA for L 

p0 

pF1 

pF2 

…
 

pi 

DFA for M 

qj 
a 

pj 
a 

(qF1 ,pF1) 

…
 

DFA for LM 

a 
(qi ,pi) (qj ,pj) (q0 ,p0) 
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RLs are closed under set 

difference 

 We observe: 

 L - M = L ∩ M  

 

 Therefore, L - M is also regular 

Closed under intersection 

Closed under 

complementation 
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RLs are closed under reversal 

Reversal of a string w is denoted by wR 

 E.g., w=00111, wR=11100 

Reversal of a language: 

 LR = The language generated by 
reversing all strings in L 

 

Theorem: If L is regular then LR is also 
regular 
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 -NFA Construction for LR 

q0 

qF1 

qF2 

qFk 

…
 

qi qj 
a 

DFA for L 

New -NFA for LR 

New start 

state 
q’0 

 

 

 Make the 

old start state 

as the only new  

final state 

Reverse all transitions 

Convert the old set of final states 

into non-final states  

What to do if q0 was 

 one of the final states 

 in the input DFA?  
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If L is regular, LR is regular (proof 

using regular expressions) 

 Let E be a regular expression for L 

 Given E, how to build ER?  

 Basis: If E= , Ø, or a, then ER=E 

 Induction: Every part of E (refer to the part as “F”) 
can be in only one of the three following forms: 

1. F = F1+F2  

 FR = F1
R+F2

R 

2. F = F1F2 

 FR = F2
RF1

R 

3. F = (F1)* 

 (FR)* = (F1
R)* 
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Homomorphisms 

 Substitute each symbol in ∑ (main alphabet) 
by a corresponding string in T (another 
alphabet) 
 h: ∑--->T* 

 Example: 
 Let ∑={0,1} and T={a,b}  

 Let a homomorphic function h on ∑ be: 
  h(0)=ab, h(1)= 

 If w=10110, then h(w) = abab = abab 

 In general, 
 h(w) = h(a1) h(a2)… h(an) 
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FA Construction for h(L) 

q0 

qF1 

qF2 

qFk 

…
 

qi qj 
a 

DFA for L 

- Build a new FA that simulates h(a) for every symbol a transition in  

  the above DFA 

- The resulting FA may or may not be a DFA, but will be a FA for h(L) 

Replace every edge 

“a” by  

a path labeled h(a)  

in the new DFA 

Given a DFA for L, how to convert it into an FA for h(L)? 

h(a) 
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Inverse homomorphism 

 Let h: ∑--->T* 

 Let M be a language over alphabet T  

 h-1(M) = {w | w  ∑* s.t., h(w)  M } 

Claim: If M is regular, then so is h-1(M) 

 Proof: 
 Let A be a DFA for M 

 Construct another DFA A’ which encodes h-1(M) 

 A’ is an exact replica of A, except that its transition 
functions are s.t. for any input symbol a in ∑, A’ 
will simulate h(a) in A.  
 δ(p,a) = δ(p,h(a))  

The set of strings in ∑*  

whose homomorphic translation  

results in the strings of M  

 

Given a DFA for M, how to convert it into an FA for h-1(M)? 
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Decision properties of regular 

languages 

Decision 

problem 

solver 

Input 

(generally 

a question) 

Yes 

No 

Any “decision problem” looks like this: 
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Membership question 

 Decision Problem: Given L, is w in L? 

 Possible answers: Yes or No 

 Approach: 

1. Build a DFA for L 

2. Input w to the DFA 

3. If the DFA ends in an accepting state, 

then yes; otherwise no. 
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Emptiness test 

 Decision Problem: Is L=Ø ? 

 Approach: 
On a DFA for L: 

1. From the start state, run a reachability test, which 
returns: 
1. success: if there is at least one final state that is 

reachable from the start state 

2. failure:  otherwise 

2. L=Ø if and only if the reachability test fails 

 

How to implement the reachability test? 
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Finiteness 

 Decision Problem: Is L finite or infinite? 

 Approach: 

On a DFA for L: 

1. Remove all states unreachable from the start state 

2. Remove all states that cannot lead to any accepting state. 

3. After removal, check for cycles in the resulting FA 

4. L is finite if there are no cycles; otherwise it is infinite 

 Another approach 

 Build a regular expression and look for Kleene closure 

How to implement steps 2 and 3? 



Finiteness test - examples 
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Ex 2) Is the language of this DFA finite or infinite? 

1 

0 

Ex 1) Is the language of this DFA finite or infinite? 

X 

X 

q6 

0 
1 X 

FINITE 

INFINITE 
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Equivalence & Minimization of 

DFAs 
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Applications of interest 

 Comparing two DFAs: 
 L(DFA1) == L(DFA2)? 
 

 

 How to minimize a DFA? 
1. Remove unreachable states 

2. Identify & condense equivalent states into one 
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When to call two states in a DFA 

“equivalent”? 

Two states p and q are said to be 

equivalent iff:  
i) Any string w accepted by starting at p is also accepted by 

starting at q;  

 

 

 

i) Any string w rejected by starting at p is also rejected by 

starting at q. 

P
a
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t 
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r 
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p 

q 
AND 

w 

p 

q 

w 

 p≡q 
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Computing equivalent states 

in a DFA 

A C E G 

B D F H 

0 

1 

1 

1 

1 

1 1 

1 0 

0 

0 

0 

0 

0 

0 

1 

Table Filling Algorithm 

A = 

B = = 

C x x = 

D x x x = 

E x x x x = 

F x x x x x = 

G x x x = x x = 

H x x = x x x x = 

A B C D E F G H 

Pass #0 

1. Mark  accepting states ≠ non-accepting states   

Pass #1 

1. Compare every pair of states 

2. Distinguish by one symbol transition 

3. Mark = or ≠ or blank(tbd) 

Pass #2 

1. Compare every pair of states 

2. Distinguish by up to two symbol transitions (until different or same or tbd)  

….  

(keep repeating until table complete) 
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Table Filling Algorithm - step 

by step 

A C E G 

B D F H 

0 

1 

1 

1 

1 

1 1 

1 0 

0 

0 

0 

0 

0 

0 

1 

A = 

B = 

C = 

D = 

E = 

F = 

G = 

H = 

A B C D E F G H 
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Table Filling Algorithm - step 

by step 

A C E G 

B D F H 

0 

1 

1 

1 

1 

1 1 

1 0 

0 

0 

0 

0 

0 

0 

1 

A = 

B = 

C = 

D = 

E X X X X = 

F X = 

G X = 

H X = 

A B C D E F G H 

1. Mark X between accepting vs. non-accepting state 
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Table Filling Algorithm - step 

by step 

A C E G 

B D F H 

0 

1 

1 

1 

1 

1 1 

1 0 

0 

0 

0 

0 

0 

0 

1 

A = 

B = 

C X = 

D X = 

E X X X X = 

F X = 

G X X = 

H X X = 

A B C D E F G H 

1. Mark X between accepting vs. non-accepting state 

2. Look 1- hop away for distinguishing states or strings 
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Table Filling Algorithm - step 

by step 

A C E G 

B D F H 

0 

1 

1 

1 

1 

1 1 

1 0 

0 

0 

0 

0 

0 

0 

1 

A = 

B = 

C X X = 

D X X = 

E X X X X = 

F X = 

G X X X = 

H X X X = 

A B C D E F G H 

1. Mark X between accepting vs. non-accepting state 

2. Look 1- hop away for distinguishing states or strings 
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Table Filling Algorithm - step 

by step 

A C E G 

B D F H 

0 

1 

1 

1 

1 

1 1 

1 0 

0 

0 

0 

0 

0 

0 

1 

A = 

B = 

C X X = 

D X X X = 

E X X X X = 

F X X = 

G X X X X = 

H X X = X = 

A B C D E F G H 

1. Mark X between accepting vs. non-accepting state 

2. Look 1- hop away for distinguishing states or strings 



50 

Table Filling Algorithm - step 

by step 

A C E G 

B D F H 

0 

1 

1 

1 

1 

1 1 

1 0 

0 

0 

0 

0 

0 

0 

1 

A = 

B = 

C X X = 

D X X X = 

E X X X X = 

F X X X = 

G X X X = X = 

H X X = X X = 

A B C D E F G H 

1. Mark X between accepting vs. non-accepting state 

2. Look 1- hop away for distinguishing states or strings 
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Table Filling Algorithm - step 

by step 

A C E G 

B D F H 

0 

1 

1 

1 

1 

1 1 

1 0 

0 

0 

0 

0 

0 

0 

1 

A = 

B = 

C X X = 

D X X X = 

E X X X X = 

F X X X = 

G X X X = X X = 

H X X = X X X = 

A B C D E F G H 

1. Mark X between accepting vs. non-accepting state 

2. Look 1- hop away for distinguishing states or strings 
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Table Filling Algorithm - step 

by step 

A C E G 

B D F H 

0 

1 

1 

1 

1 

1 1 

1 0 

0 

0 

0 

0 

0 

0 

1 

A = 

B = 

C X X = 

D X X X = 

E X X X X = 

F X X X = 

G X X X = X X = 

H X X = X X X X = 

A B C D E F G H 

1. Mark X between accepting vs. non-accepting state 

2. Look 1- hop away for distinguishing states or strings 
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Table Filling Algorithm - step 

by step 

A C E G 

B D F H 

0 

1 

1 

1 

1 

1 1 

1 0 

0 

0 

0 

0 

0 

0 

1 

A = 

B = = 

C X X = 

D X X X = 

E X X X X = 

F X X X X X = 

G X X X = X X = 

H X X = X X X X = 

A B C D E F G H 

1. Mark X between accepting vs. non-accepting state 

2. Pass 1:  

 Look 1- hop away for distinguishing states or strings 

3. Pass 2: 

 Look 1-hop away again for distinguishing states or strings 

continue….  
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Table Filling Algorithm - step 

by step 

A C E G 

B D F H 

0 

1 

1 

1 

1 

1 1 

1 0 

0 

0 

0 

0 

0 

0 

1 

A = 

B = = 

C X X = 

D X X X = 

E X X X X = 

F X X X X X = 

G X X X = X X = 

H X X = X X X X = 

A B C D E F G H 

Equivalences:  

• A=B 

• C=H 

• D=G       

1. Mark X between accepting vs. non-accepting state 

2. Pass 1:  

 Look 1- hop away for distinguishing states or strings 

3. Pass 2: 

 Look 1-hop away again for distinguishing states or strings 

continue….  
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Table Filling Algorithm - step 

by step 

A C E G 

B D F H 

0 

1 

1 

1 

1 

1 1 

1 0 

0 

0 

0 

0 

0 

0 

1 A C E 

D F 

0 

1 

1 

0 

0 

0 

1 

1 0 

1 

Equivalences:  

• A=B 

• C=H 

• D=G       

Retrain only one copy for  

 each equivalence set of states 
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Table Filling Algorithm – 

special case 

A = 

B = 

C = 

D = 

E = 

F = 

G = 

H = 

A B C D E F G H 
Q) What happens if the input DFA 

 has more than one final state? 

     Can all final states initially be treated 

 as equivalent to one another? 

A C E G 

B D F H 

0 

1 

1 

1 

1 

1 1 

1 0 

0 

0 

0 

0 

0 

0 

1 

? 
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How to minimize a DFA? 

 Goal: Minimize the number of states in 
a DFA 

 Algorithm: 

1. Eliminate states unreachable from the 
start state 

2. Identify and remove equivalent states 

3. Output the resultant DFA  

Depth-first traversal from the start state 

Table filling algorithm 

Putting it all together … 
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Are Two DFAs Equivalent? 

q0 … 

q0’ … 

DFA1 

DFA2 

Unified DFA 

1. Make a new dummy DFA by just putting together both DFAs 

2. Run table-filling algorithm on the unified DFA 

3. IF the start states of both DFAs are found to be equivalent,  

  THEN: DFA1≡ DFA2  

  ELSE: different 
 

Is q0 ≡ q0’? 

 : if yes, then DFA1≡DFA2 

 : else, not equiv. 
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Summary 

 How to prove languages are not regular? 

 Pumping lemma & its applications 

 

 Closure properties of regular languages 

 

 Simplification of DFAs 

 How to remove unreachable states? 

 How to identify and collapse equivalent states? 

 How to minimize a DFA? 

 How to tell whether two DFAs are equivalent? 


