
1

Properties of Regular

Languages

Reading: Chapter 4

2

Topics

1) How to prove whether a given

language is regular or not?

2) Closure properties of regular

languages

3) Minimization of DFAs

3

Some languages are not

regular

When is a language is regular?
if we are able to construct one of the

following: DFA or NFA or  -NFA or regular
expression

When is it not?
If we can show that no FA can be built for a
language

4

How to prove languages are

not regular?

What if we cannot come up with any FA?

A) Can it be language that is not regular?

B) Or is it that we tried wrong approaches?

How do we decisively prove that a language

is not regular?

“The hardest thing of all is to find a black cat in a dark room,

especially if there is no cat!” -Confucius

5

Example of a non-regular

language

Let L = {w | w is of the form 0n1n , for all n≥0}

 Hypothesis: L is not regular

 Intuitive rationale: How do you keep track

of a running count in an FA?

 A more formal rationale:
 By contradition, if L is regular then there should exist a DFA

for L.

 Let k = number of states in that DFA.

 Consider the special word w= 0k1k => w  L

 DFA is in some state pi, after consuming the first i symbols in

w

6

Rationale…

 Let {p0,p1,… pk} be the sequence of states that the

DFA should have visited after consuming the first

k symbols in w which is 0k

 But there are only k states in the DFA!

 ==> at least one state should repeat somewhere

along the path (by ++ Principle)

 ==> Let the repeating state be pi=pJ for i < j

 ==> We can fool the DFA by inputing 0(k-(j-i))1k and

still get it to accept (note: k-(j-i) is at most k-1).

 ==> DFA accepts strings w/ unequal number of 0s

and 1s, implying that the DFA is wrong!

Uses Pigeon Hole Principle

The Pumping Lemma for

Regular Languages

What it is?

The Pumping Lemma is a property

of all regular languages.

How is it used?

A technique that is used to show

that a given language is not regular
7

8

Pumping Lemma for Regular

Languages

Let L be a regular language

Then there exists some constant N such that for
every string w  L s.t. |w|≥N, there exists a
way to break w into three parts, w=xyz,
such that:

1. y≠ 

2. |xy|≤N

3. For all k≥0, all strings of the form xykz  L

This property should hold for all regular languages.

Definition: N is called the “Pumping Lemma Constant”

9

Pumping Lemma: Proof
 L is regular => it should have a DFA.

 Set N := number of states in the DFA

 Any string wL, s.t. |w|≥N, should have the

form: w=a1a2…am, where m≥N

 Let the states traversed after reading the first

N symbols be: {p0,p1,… pN}

 ==> There are N+1 p-states, while there are only

N DFA states

 ==> at least one state has to repeat

i.e, pi= pJwhere 0≤i<j≤N (by PHP)

10

Pumping Lemma: Proof…

 => We should be able to break w=xyz as follows:
 x=a1a2..ai; y=ai+1ai+2..aJ; z=aJ+1aJ+2..am

 x’s path will be p0..pi

 y’s path will be pi pi+1..pJ (but pi=pJ implying a loop)

 z’s path will be pJpJ+1..pm

 Now consider another

 string wk=xykz , where k≥0

 Case k=0

 DFA will reach the accept state pm

 Case k>0

 DFA will loop for yk, and finally reach the accept state pm for z

 In either case, wk L

yk (for k loops)

p0 pi pm
x z

=pj

This proves part (3) of the lemma

11

Pumping Lemma: Proof…

 For part (1):

 Since i<j, y ≠ 

 For part (2):

 By PHP, the repetition of states has to
occur within the first N symbols in w

 ==> |xy|≤N

p0 pi pm
x z

yk (for k loops)

=pj

12

The Purpose of the Pumping

Lemma for RL

 To prove that some languages cannot

be regular.

13

How to use the pumping

lemma?

Think of playing a 2 person game
 Role 1: We claim that the language cannot

be regular

 Role 2: An adversary who claims the
language is regular

 We show that the adversary’s statement will
lead to a contradiction that implyies pumping
lemma cannot hold for the language.

 We win!!

14

How to use the pumping

lemma? (The Steps)

1. (we) L is not regular.

2. (adv.) Claims that L is regular and gives you
a value for N as its P/L constant

3. (we) Using N, choose a string w  L s.t.,
1. |w| ≥ N,

2. Using w as the template, construct other words
wk of the form xykz and show that at least one
such wk  L

 => this implies we have successfully broken the
pumping lemma for the language, and hence that the
adversary is wrong.

(Note: In this process, we may have to try many values of k,
starting with k=0, and then 2, 3, .. so on, until wk  L)

Using the Pumping Lemma

 What WE do?

3. Using N, we construct

our template string w

4. Demonstrate to the

adversary, either

through pumping up or

down on w, that some

string wk  L

(this should happen

regardless of w=xyz)

 What the Adversary

does?

1. Claims L is regular

2. Provides N

15

Note: We don’t have any control over N, except that it is positive.

 We also don’t have any control over how to split w=xyz,

 but xyz should respect the P/L conditions (1) and (2).

16

Example of using the Pumping Lemma to

prove that a language is not regular

Let Leq = {w | w is a binary string with equal number
of 1s and 0s}

 Your Claim: Leq is not regular

 Proof:

 By contradiction, let Leq be regular

 P/L constant should exist

 Let N = that P/L constant

 Consider input w = 0N1N
 (your choice for the template string)

 By pumping lemma, we should be able to break
w=xyz, such that:

1) y≠ 

2) |xy|≤N

3) For all k≥0, the string xykz is also in L

  adv.

 you

 adv.

you

Note: This N can be anything (need not necessarily be the #states in the DFA.

 It’s the adversary’s choice.)

17

Proof…

 Because |xy|≤N, xy should contain only 0s

 (This and because y≠ , implies y=0+)

 Therefore x can contain at most N-1 0s

 Also, all the N 1s must be inside z

 By (3), any string of the form xykz  Leq for all k≥0

 Case k=0: xz has at most N-1 0s but has N 1s

 Therefore, xy0z  Leq

 This violates the P/L (a contradiction)

Another way of proving this will be to show that if

the #0s is arbitrarily pumped up (e.g., k=2),

then the #0s will become exceed the #1s

 you

Template string w = 0N1N = 00 …. 011 … 1
N N

Setting k=0 is

referred to as

“pumping down”

Setting k>1 is

referred to as

“pumping up”

18

Exercise 2

Prove L = {0n10n | n≥ 1} is not regular

Note: This n is not to be confused with the pumping

lemma constant N. That can be different.

In other words, the above question is same as

proving:

 L = {0m10m | m≥ 1} is not regular

19

Example 3: Pumping Lemma

Claim: L = { 0i | i is a perfect square} is not regular

 Proof:
 By contradiction, let L be regular.

 P/L should apply

 Let N = P/L constant

 Choose w=0N2

 By pumping lemma, w=xyz satisfying all three rules

 By rules (1) & (2), y has between 1 and N 0s

 By rule (3), any string of the form xykz is also in L for all k≥0

 Case k=0:
 #zeros (xy0z) = #zeros (xyz) - #zeros (y)

 N2 – N ≤ #zeros (xy0z) ≤ N2 - 1

 (N-1)2 < N2 - N ≤ #zeros (xy0z) ≤ N2 - 1 < N2

 xy0z  L

 But the above will complete the proof ONLY IF N>1.

 … (proof contd.. Next slide)

20

Example 3: Pumping Lemma

 (proof contd…)
 If the adversary pick N=1, then (N-1)2 ≤ N2 – N, and therefore the #zeros(xy0z)

could end up being a perfect square!

 This means that pumping down (i.e., setting k=0) is not giving us the proof!

 So lets try pumping up next…

 Case k=2:
 #zeros (xy2z) = #zeros (xyz) + #zeros (y)

 N2 + 1 ≤ #zeros (xy2z) ≤ N2 + N

 N2 < N2 + 1 ≤ #zeros (xy2z) ≤ N2 + N < (N+1)2

 xy2z  L

 (Notice that the above should hold for all possible N values of N>0. Therefore, this
completes the proof.)

Closure properties of Regular

Languages

21

22

Closure properties for Regular

Languages (RL)

 Closure property:
 If a set of regular languages are combined using

an operator, then the resulting language is also
regular

 Regular languages are closed under:
 Union, intersection, complement, difference

 Reversal

 Kleene closure

 Concatenation

 Homomorphism

 Inverse homomorphism

This is different

from Kleene

closure

This is different

from Kleene

closure

Now, lets prove all of this!

23

RLs are closed under union

 IF L and M are two RLs THEN:

 they both have two corresponding regular

expressions, R and S respectively

 (L U M) can be represented using the regular

expression R+S

 Therefore, (L U M) is also regular

How can this be proved using FAs?

24

RLs are closed under

complementation

q0

qF1

qF2

qFk

…

qi

DFA for L

q0

qF1

qF2

qFk

…

qi

DFA for L

 If L is an RL over ∑, then L=∑*-L

 To show L is also regular, make the following
construction Convert every final state into non-final, and

 every non-final state into a final state

Assumes q0 is a non-final state. If not, do the opposite.

25

RLs are closed under

intersection

 A quick, indirect way to prove:

 By DeMorgan’s law:

 L ∩ M = (L U M)

 Since we know RLs are closed under union

and complementation, they are also closed

under intersection

 A more direct way would be construct a

finite automaton for L ∩ M

26

DFA construction for L ∩ M

 AL = DFA for L = {QL, ∑ , qL,FL, δL }

 AM = DFA for M = {QM, ∑ , qM,FM, δM }

 Build AL ∩ M = {QLx QM,∑, (qL,qM), FLx FM,δ}
such that:
 δ((p,q),a) = (δL(p,a), δM(q,a)), where p in QL, and q

in QM

 This construction ensures that a string w will
be accepted if and only if w reaches an
accepting state in both input DFAs.

27

DFA construction for L ∩ M

q0

qF1

qF2

…

qi

DFA for L

p0

pF1

pF2

…

pi

DFA for M

qj
a

pj
a

(qF1 ,pF1)

…

DFA for LM

a
(qi ,pi) (qj ,pj) (q0 ,p0)

28

RLs are closed under set

difference

 We observe:

 L - M = L ∩ M

 Therefore, L - M is also regular

Closed under intersection

Closed under

complementation

29

RLs are closed under reversal

Reversal of a string w is denoted by wR

 E.g., w=00111, wR=11100

Reversal of a language:

 LR = The language generated by
reversing all strings in L

Theorem: If L is regular then LR is also
regular

30

 -NFA Construction for LR

q0

qF1

qF2

qFk

…

qi qj
a

DFA for L

New -NFA for LR

New start

state
q’0





 Make the

old start state

as the only new

final state

Reverse all transitions

Convert the old set of final states

into non-final states

What to do if q0 was

 one of the final states

 in the input DFA?

31

If L is regular, LR is regular (proof

using regular expressions)

 Let E be a regular expression for L

 Given E, how to build ER?

 Basis: If E= , Ø, or a, then ER=E

 Induction: Every part of E (refer to the part as “F”)
can be in only one of the three following forms:

1. F = F1+F2

 FR = F1
R+F2

R

2. F = F1F2

 FR = F2
RF1

R

3. F = (F1)*

 (FR)* = (F1
R)*

32

Homomorphisms

 Substitute each symbol in ∑ (main alphabet)
by a corresponding string in T (another
alphabet)
 h: ∑--->T*

 Example:
 Let ∑={0,1} and T={a,b}

 Let a homomorphic function h on ∑ be:
 h(0)=ab, h(1)=

 If w=10110, then h(w) = abab = abab

 In general,
 h(w) = h(a1) h(a2)… h(an)

34

FA Construction for h(L)

q0

qF1

qF2

qFk

…

qi qj
a

DFA for L

- Build a new FA that simulates h(a) for every symbol a transition in

 the above DFA

- The resulting FA may or may not be a DFA, but will be a FA for h(L)

Replace every edge

“a” by

a path labeled h(a)

in the new DFA

Given a DFA for L, how to convert it into an FA for h(L)?

h(a)

35

Inverse homomorphism

 Let h: ∑--->T*

 Let M be a language over alphabet T

 h-1(M) = {w | w  ∑* s.t., h(w)  M }

Claim: If M is regular, then so is h-1(M)

 Proof:
 Let A be a DFA for M

 Construct another DFA A’ which encodes h-1(M)

 A’ is an exact replica of A, except that its transition
functions are s.t. for any input symbol a in ∑, A’
will simulate h(a) in A.
 δ(p,a) = δ(p,h(a))

The set of strings in ∑*

whose homomorphic translation

results in the strings of M

Given a DFA for M, how to convert it into an FA for h-1(M)?

36

Decision properties of regular

languages

Decision

problem

solver

Input

(generally

a question)

Yes

No

Any “decision problem” looks like this:

37

Membership question

 Decision Problem: Given L, is w in L?

 Possible answers: Yes or No

 Approach:

1. Build a DFA for L

2. Input w to the DFA

3. If the DFA ends in an accepting state,

then yes; otherwise no.

38

Emptiness test

 Decision Problem: Is L=Ø ?

 Approach:
On a DFA for L:

1. From the start state, run a reachability test, which
returns:
1. success: if there is at least one final state that is

reachable from the start state

2. failure: otherwise

2. L=Ø if and only if the reachability test fails

How to implement the reachability test?

39

Finiteness

 Decision Problem: Is L finite or infinite?

 Approach:

On a DFA for L:

1. Remove all states unreachable from the start state

2. Remove all states that cannot lead to any accepting state.

3. After removal, check for cycles in the resulting FA

4. L is finite if there are no cycles; otherwise it is infinite

 Another approach

 Build a regular expression and look for Kleene closure

How to implement steps 2 and 3?

Finiteness test - examples

40

Ex 2) Is the language of this DFA finite or infinite?

1

0

Ex 1) Is the language of this DFA finite or infinite?

X

X

q6

0
1 X

FINITE

INFINITE

41

Equivalence & Minimization of

DFAs

42

Applications of interest

 Comparing two DFAs:
 L(DFA1) == L(DFA2)?

 How to minimize a DFA?
1. Remove unreachable states

2. Identify & condense equivalent states into one

43

When to call two states in a DFA

“equivalent”?

Two states p and q are said to be

equivalent iff:
i) Any string w accepted by starting at p is also accepted by

starting at q;

i) Any string w rejected by starting at p is also rejected by

starting at q.

P
a

s
t
d

o
e

s
n

’t
 m

a
tt

e
r

-
o

n
ly

 f
u

tu
re

 d
o

e
s
!

p

q
AND

w

p

q

w

 p≡q

44

Computing equivalent states

in a DFA

A C E G

B D F H

0

1

1

1

1

1 1

1 0

0

0

0

0

0

0

1

Table Filling Algorithm

A =

B = =

C x x =

D x x x =

E x x x x =

F x x x x x =

G x x x = x x =

H x x = x x x x =

A B C D E F G H

Pass #0

1. Mark accepting states ≠ non-accepting states

Pass #1

1. Compare every pair of states

2. Distinguish by one symbol transition

3. Mark = or ≠ or blank(tbd)

Pass #2

1. Compare every pair of states

2. Distinguish by up to two symbol transitions (until different or same or tbd)

….

(keep repeating until table complete)

45

Table Filling Algorithm - step

by step

A C E G

B D F H

0

1

1

1

1

1 1

1 0

0

0

0

0

0

0

1

A =

B =

C =

D =

E =

F =

G =

H =

A B C D E F G H

46

Table Filling Algorithm - step

by step

A C E G

B D F H

0

1

1

1

1

1 1

1 0

0

0

0

0

0

0

1

A =

B =

C =

D =

E X X X X =

F X =

G X =

H X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

47

Table Filling Algorithm - step

by step

A C E G

B D F H

0

1

1

1

1

1 1

1 0

0

0

0

0

0

0

1

A =

B =

C X =

D X =

E X X X X =

F X =

G X X =

H X X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Look 1- hop away for distinguishing states or strings

48

Table Filling Algorithm - step

by step

A C E G

B D F H

0

1

1

1

1

1 1

1 0

0

0

0

0

0

0

1

A =

B =

C X X =

D X X =

E X X X X =

F X =

G X X X =

H X X X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Look 1- hop away for distinguishing states or strings

49

Table Filling Algorithm - step

by step

A C E G

B D F H

0

1

1

1

1

1 1

1 0

0

0

0

0

0

0

1

A =

B =

C X X =

D X X X =

E X X X X =

F X X =

G X X X X =

H X X = X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Look 1- hop away for distinguishing states or strings

50

Table Filling Algorithm - step

by step

A C E G

B D F H

0

1

1

1

1

1 1

1 0

0

0

0

0

0

0

1

A =

B =

C X X =

D X X X =

E X X X X =

F X X X =

G X X X = X =

H X X = X X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Look 1- hop away for distinguishing states or strings

51

Table Filling Algorithm - step

by step

A C E G

B D F H

0

1

1

1

1

1 1

1 0

0

0

0

0

0

0

1

A =

B =

C X X =

D X X X =

E X X X X =

F X X X =

G X X X = X X =

H X X = X X X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Look 1- hop away for distinguishing states or strings

52

Table Filling Algorithm - step

by step

A C E G

B D F H

0

1

1

1

1

1 1

1 0

0

0

0

0

0

0

1

A =

B =

C X X =

D X X X =

E X X X X =

F X X X =

G X X X = X X =

H X X = X X X X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Look 1- hop away for distinguishing states or strings

53

Table Filling Algorithm - step

by step

A C E G

B D F H

0

1

1

1

1

1 1

1 0

0

0

0

0

0

0

1

A =

B = =

C X X =

D X X X =

E X X X X =

F X X X X X =

G X X X = X X =

H X X = X X X X =

A B C D E F G H

1. Mark X between accepting vs. non-accepting state

2. Pass 1:

 Look 1- hop away for distinguishing states or strings

3. Pass 2:

 Look 1-hop away again for distinguishing states or strings

continue….

54

Table Filling Algorithm - step

by step

A C E G

B D F H

0

1

1

1

1

1 1

1 0

0

0

0

0

0

0

1

A =

B = =

C X X =

D X X X =

E X X X X =

F X X X X X =

G X X X = X X =

H X X = X X X X =

A B C D E F G H

Equivalences:

• A=B

• C=H

• D=G

1. Mark X between accepting vs. non-accepting state

2. Pass 1:

 Look 1- hop away for distinguishing states or strings

3. Pass 2:

 Look 1-hop away again for distinguishing states or strings

continue….

55

Table Filling Algorithm - step

by step

A C E G

B D F H

0

1

1

1

1

1 1

1 0

0

0

0

0

0

0

1 A C E

D F

0

1

1

0

0

0

1

1 0

1

Equivalences:

• A=B

• C=H

• D=G

Retrain only one copy for

 each equivalence set of states

56

Table Filling Algorithm –

special case

A =

B =

C =

D =

E =

F =

G =

H =

A B C D E F G H
Q) What happens if the input DFA

 has more than one final state?

 Can all final states initially be treated

 as equivalent to one another?

A C E G

B D F H

0

1

1

1

1

1 1

1 0

0

0

0

0

0

0

1

?

57

How to minimize a DFA?

 Goal: Minimize the number of states in
a DFA

 Algorithm:

1. Eliminate states unreachable from the
start state

2. Identify and remove equivalent states

3. Output the resultant DFA

Depth-first traversal from the start state

Table filling algorithm

Putting it all together …

58

Are Two DFAs Equivalent?

q0 …

q0’ …

DFA1

DFA2

Unified DFA

1. Make a new dummy DFA by just putting together both DFAs

2. Run table-filling algorithm on the unified DFA

3. IF the start states of both DFAs are found to be equivalent,

 THEN: DFA1≡ DFA2

 ELSE: different

Is q0 ≡ q0’?

 : if yes, then DFA1≡DFA2

 : else, not equiv.

59

Summary

 How to prove languages are not regular?

 Pumping lemma & its applications

 Closure properties of regular languages

 Simplification of DFAs

 How to remove unreachable states?

 How to identify and collapse equivalent states?

 How to minimize a DFA?

 How to tell whether two DFAs are equivalent?

