
From Coulouris, Dollimore, Kindberg and Blair

Distributed Systems:

 Concepts and Design

Edition 5, © Addison-Wesley 2012

Slides for Chapter 11:

Security

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.1

Familiar names for the protagonists in security protocols

Alice First participant

Bob Second participant

Carol Participant in three- and four-party protocols

Dave Participant in four-party protocols

Eve Eavesdropper

Mallory Malicious attacker

Sara A server

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.2

Cryptography notations

KA Alice’s secret key

KB Bob’s secret key

KAB Secret key shared between Alice and Bob

KApriv Alice’s private key (known only to Alice)

KApub Alice’s public key (published by Alice for all to read)

{ M } K Message M encrypted with key K

[M]K Message M signed with key K

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.3

Alice’s bank account certificate

1. Certificate type : Account number

2. Name : Alice

3. Account : 6262626

4. Certifying authority : Bob’s Bank

5. Signature : {Digest(field 2 + field 3)} KBpriv

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.4

Public-key certificate for Bob’s Bank

1. Certificate type : Public key

2. Name : Bob’s Bank

3. Public key : KBpub

4. Certifying authority : Fred – The Bankers Federation

5. Signature : {Digest(field 2 + field 3)} KFpriv

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.5

Cipher block chaining

n

n+3 n+2 n+1 XOR

E(K, M)

n-1 n-2 n-3

plaintext blocks

ciphertext blocks

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.6

Stream cipher

XOR

E(K, M) number
generator n+3 n+2 n+1

plaintext
stream

ciphertext
stream

buffer

keystream

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.7

TEA encryption function

void encrypt(unsigned long k[], unsigned long text[]) {

 unsigned long y = text[0], z = text[1]; 1

 unsigned long delta = 0x9e3779b9, sum = 0; int n; 2

 for (n= 0; n < 32; n++) { 3

 sum += delta; 4

 y += ((z << 4) + k[0]) ^ (z+sum) ^ ((z >> 5) + k[1]); 5

 z += ((y << 4) + k[2]) ^ (y+sum) ^ ((y >> 5) + k[3]); 6

 }

 text[0] = y; text[1] = z; 7

}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.8

TEA decryption function

void decrypt(unsigned long k[], unsigned long text[]) {

 unsigned long y = text[0], z = text[1];

 unsigned long delta = 0x9e3779b9, sum = delta << 5; int n;

 for (n= 0; n < 32; n++) {

 z -= ((y << 4) + k[2]) ^ (y + sum) ^ ((y >> 5) + k[3]);

 y -= ((z << 4) + k[0]) ^ (z + sum) ^ ((z >> 5) + k[1]);

 sum -= delta;

 }

 text[0] = y; text[1] = z;

}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.9

TEA in use

void tea(char mode, FILE *infile, FILE *outfile, unsigned long k[]) {

/* mode is ’e’ for encrypt, ’d’ for decrypt, k[] is the key.*/

 char ch, Text[8]; int i;

 while(!feof(infile)) {

 i = fread(Text, 1, 8, infile); /* read 8 bytes from infile into Text */

 if (i <= 0) break;

 while (i < 8) { Text[i++] = ' ';} /* pad last block with spaces */

 switch (mode) {

 case 'e':

 encrypt(k, (unsigned long*) Text); break;

 case 'd':

 decrypt(k, (unsigned long*) Text); break;

 }

 fwrite(Text, 1, 8, outfile); /* write 8 bytes from Text to outfile */

 }

}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

RSA Encryption - 1

To find a key pair e, d:

1. Choose two large prime numbers, P and Q (each greater than 10100), and form:

 N = P x Q

 Z = (P–1) x (Q–1)

2. For d choose any number that is relatively prime with Z (that is, such that d has no

common factors with Z).

 We illustrate the computations involved using small integer values for P and Q:

 P = 13, Q = 17 –> N = 221, Z = 192

 d = 5

3. To find e solve the equation:

 e x d = 1 mod Z

That is, e x d is the smallest element divisible by d in the series Z+1, 2Z+1, 3Z+1,

 e x d = 1 mod 192 = 1, 193, 385, ...

 385 is divisible by d

 e = 385/5 = 77

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

RSA Encryption - 2

To encrypt text using the RSA method, the plaintext is divided into equal blocks of length k bits

where 2k < N (that is, such that the numerical value of a block is always less than N; in

practical applications, k is usually in the range 512 to 1024).

 k = 7, since 27 = 128

The function for encrypting a single block of plaintext M is:

 E'(e,N,M) = Me mod N

 for a message M, the ciphertext is M77 mod 221

The function for decrypting a block of encrypted text c to produce the original plaintext block

is:

 D'(d,N,c) = cd mod N

Rivest, Shamir and Adelman proved that E' and D' are mutual inverses

(that is, E'(D'(x)) = D'(E'(x)) = x) for all values of P in the range 0 ≤ P ≤ N.

The two parameters e,N can be regarded as a key for the encryption function, and similarly d,N

represent a key for the decryption function.

So we can write Ke
 = <e,N> and Kd = <d,N>, and we get the encryption function:

E(Ke, M) ={M}K (the notation here indicating that the encrypted message can be decrypted only

by the holder of the private key Kd) and D(Kd, ={M}K) = M.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.10

Digital signatures with public keys

{h}Kpri

M

Signing

Verifying

E(Kpri, h)

128 bits

H(M) h

M

hH(doc)

D(Kpub ,{h})
{h}Kpri h'

h = h'?

M

signed doc

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.11

Low-cost signatures with a shared secret key

M

Signing

Verifying

H(M+K) h

h'H(M+K)

h

h = h'?

K

M

signed doc

M

K

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.12

X509 Certificate format

S u b jec t
D i s t i n g u is he d N a m e, Pu b l ic K e y

Iss ue r D i s t i n g u is he d N a m e, Si g n at u r e

Pe ri o d o f v a li d i t y N o t Be f o r e Da t e, No t A f t e r D ate

A d m i ni str a t ive i n fo rma ti o n V er si o n , S e r i a l N u mb e r

Ex t en d e d I n f or m a t i o n

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.13

Performance of symmetric encryption and secure digest algorithms

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.14

The Needham–Schroeder secret-key authentication protocol

Header Message Notes

1. A->S: A, B, NA
A requests S to supply a key for communication
with B.

2. S->A: {NA , B, KAB,

{KAB, A}KB}KA

S returns a message encrypted in A’s secret key,
containing a newly generated key KAB and a
‘ticket’ encrypted in B’s secret key. The nonce NA
demonstrates that the message was sent in response
to the preceding one. A believes that S sent the
message because only S knows A’s secret key.

3. A->B: A sends the ‘ticket’ to B.

4. B->A: B decrypts the ticket and uses the new key KAB to
encrypt another nonce NB.

5. A->B: A demonstrates to B that it was the sender of the
previous message by returning an agreed
transformation of NB.

{KAB, A}KB

{NB}KAB

{NB - 1}KAB

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.15

System architecture of Kerberos

Server Client

DoOperation

Authentication
database

Login
session setup

Ticket-
granting

 service T

Kerberos Key Distribution Centre

Server
session setup

Authen-
tication

service A
1. Request for

TGS ticket

2. TGS
ticket

3. Request for
server ticket

4. Server ticket
5. Service
 request

Request encrypted with session key

Reply encrypted with session key

Service
function

Step B

Step A

Step C

C S

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.16

SSL protocol stack

SSL

Handshake

protocol

SSL Change
Cipher Spec

SSL Alert
Protocol

Transport layer (usually TCP)

Network layer (usually IP)

SSL Record Protocol

HTTP Telnet

SSL protocols: Other protocols:

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.17

TLS handshake protocol

Client Server

ClientHello

ServerHello

Certificate

Certificate Request

ServerHelloDone

Certificate

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Establish protocol version, session ID,

cipher suite, compression method,

exchange random values

Optionally send server certificate and

request client certificate

Send client certificate response if

requested

Change cipher suite and finish

handshake

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.18

TLS handshake configuration options

Component Description Example

Key exchange
method

the method to be used for
exchange of a session key

RSA with public-key
certificates

Cipher for data
transfer

the block or stream cipher to be
used for data

IDEA

Message digest
function

for creating message
authentication codes (MACs)

SHA-1

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.19

TLS record protocol

Application data abcdefghi

abc def ghi Record protocol units

Compressed units

MAC

Encrypted

TCP packet

Fragment/combine

Compress

Hash

Encrypt

Transmit

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 11.20

Use of RC4 stream cipher in IEEE 802.11 WEP

K

Encryption

IV: initial value
K: shared key

IV

plaintext

RC4

Decryption

Increment

XOR

keystream

cipher text IV

K

IV

RC4

XORcipher text IV plaintext

