Slides for Chapter 14: Time and Global States



From Coulouris, Dollimore, Kindberg and Blair Distributed Systems: Concepts and Design

Edition 5, © Addison-Wesley 2012



Network

# Figure 14.2 Clock synchronization using a time server



# Figure 14.3 An example synchronization subnet in an NTP implementation



Note: Arrows denote synchronization control, numbers denote strata.

#### Figure 14.4 Messages exchanged between a pair of NTP peers



# Figure 14.5 Events occurring at three processes



#### Figure 14.6 Lamport timestamps for the events shown in Figure 14.5



#### Figure 14.7 Vector timestamps for the events shown in Figure 14.5



# Figure 14.8 Detecting global properties



Figure 14.9 Cuts



Marker receiving rule for process  $p_i$ 

On  $p_i$ 's receipt of a *marker* message over channel c:

*if*  $(p_i$  has not yet recorded its state) it

records its process state now;

records the state of *c* as the empty set;

turns on recording of messages arriving over other incoming channels; *else* 

 $p_i$  records the state of c as the set of messages it has received over c since it saved its state.

end if

Marker sending rule for process  $p_i$ 

After  $p_i$  has recorded its state, for each outgoing channel c:

 $p_i$  sends one marker message over c

(before it sends any other message over c).

# Figure 14.11 Two processes and their initial states



# Figure 14.12 The execution of the processes in Figure 14.11



Figure 14.13 Reachability between states in the snapshot algorithm



#### Figure 14.14 Vector timestamps and variable values for the execution of Figure 14.9



#### Figure 14.15 The lattice of global states for the execution of Figure 14.14



# Figure 14.16 Algorithms to evaluate *possibly* and *definitely*

L := 0;  

$$L := 0;$$
  
 $States := \{ (s_1^0, s_2^0, ..., s_N^0) \};$   
 $while (\phi(S) = False \text{ for all } S \in \text{ States})$   
 $L := L + 1;$   
 $Reachable := \{ S': S' \text{ reachable in } H \text{ from some } S \in \text{ States } \land \text{level}(S') = L \};$   
 $States := Reachable$   
 $end while$   
 $output "possibly \phi";$ 

2. Evaluating definitely 
$$\phi$$
 for global history  $H$  of  $N$  processes  
 $L := 0;$   
if  $(\phi(s_1^0, s_2^0, ..., s_N^0))$  then States := {} else States := { $(s_1^0, s_2^0, ..., s_N^0)$ };  
while  $(States \neq \{\})$   
 $L := L + 1;$   
Reachable := { $S'$ :  $S'$  reachable in  $H$  from some  $S \in States \land level(S') = L$ };  
States := { $S \in Reachable : \phi(S) = False$ }  
end while  
output "definitely  $\phi$ ";

# Figure 14.17 Evaluating *definitely*

