Slides for Chapter 15:
Coordination and Agreement

wpwewy ~rom Coulouris, Dollimore, Kindberg and
== Blair

Distributed Systems:
Concepts and Design

Edition 5, © Addison-Wesley 2012

Figure 15.1
A network partition

O O
O Crashed O

router

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.2
Server managing a mutual exclusion token for a set of processes

Server
Queue of
requests ———
4
2
3. Grant
token
1. Request '
token 2. Release P
P : token 4
p
P, 3

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.3

A ring of processes transferring a mutual exclusion token

N 7

_—/

Token

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.4
Ricart and Agrawala’s algorithm

On initialization
state = RELEASED;

1o enter the section
state .= WANTED:;
Multicast request to all processes;
T :=request’s timestamp;
Wait until (number of replies received = (N — 1));
state := HELD;

request processing deferred here

On receipt of a request <T, p,> at Dj (i#j)
if (state = HELD or (state = WANTED and (T, pj) <(T, p,))

then
queue request from p; without replying;

else
reply immediately to p;;
end if
To exit the critical section
state .= RELEASED;
reply to any queued requests;

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.5
Multicast synchronization

41
41

1 Reply

epl 34
Pl Reply

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.6
Maekawa's algorithm — part 1

On initialization
state = RELEASED;
voted := FALSE;
For p, to enter the critical section

state .= WANTED;
Multicast request to all processes in V;

Wait until (number of replies received = K);

state .= HELD;

On receipt of a request from p; at p;
if (state = HELD or voted = TRUE)
then
queue request from p; without replying;
else
send reply to p;;
voted := TRUE;
end if

For p, to exit the critical section
state .= RELEASED;
Multicast release to all processes in V;

On receipt of a release from p; at p;
if (queue of requests 1s non-empty)
then
remove head of queue — from p,, say;

send reply to p;;

voted := TRUE;
else

voted := FALSE;
end if

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.7
A ring-based election in progress

/3—\17
N\

4
24
9
1
' /
\ o8 "/ 24

~_

Note: The election was started by process 17.
The highest process identifier encountered so far is 24.
Participant processes are shown in a darker colour

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.8
The bully algorithm

The election of coordinator p,, election

after the failure of p, and then p; — .~ N C

election
Stage 1 ><
pygnswer_—,
1 ‘\2/[33 p4

answer

election

A~ ———Xn\0

election election
Stage 2 ><
answer

P1 p, ——p, P,
timeout

Stage 3 >< ><

P, P, P, P,
Eventually.....

coordinator
' —~ C

Stage 4 >< ><

p1 p2 p3 p4

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.9
Reliable multicast algorithm

On initialization
Received .= { };

For process p to R-multicast message m to group g
B-multicast(g, m); /I p € g 1s included as a destiation

On B-deliver(m) at process g with g = group(m)
if (m ¢ Received)
then
Received .= Received U {m};
if (q # p) then B-multicast(g, m); end if
R-deliver m;

end if

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.10
The hold-back queue for arriving multicast messages

Message
processing

I‘ deliver

Hold-back

queue Delivery queue

7
When delivery
guarantees ar

Incoming
messages

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.11
Total, FIFO and causal ordering of multicast messages

T,

Notice the consistent
ordering of totally ordered
messages T, and T,,

the FIFO-related messages
F,and F, and the causally

F
related messages C, and C;, 1(\
— and the otherwise arbitrary F, F3

delivery ordering of L

Time

P, P, Py

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.12
Display from bulletin board program

Bulletin board: 0s.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels
26 T.L’Heureux RPC performance
27 M. Walker Re: Mach

end

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.13
Total ordering using a sequencer

1. Algorithm for group member p
On initialization: g = 0;

To TO-multicast message m to group g
B-multicast(g U { sequencer(g)}, <m, i>);

On B-deliver(<m, i>) with g = group(m)
Place <m, i> in hold-back queue;

On B-deliver(m 4., = <“order”, i, S>) with g = group(m,.4.,)
wait until <m, 7> in hold-back queue and § = r
TO-deliver m: I/ (after deleting it from the hld-back queue)
= S+1;

2. Algorithm for sequencer of g
On initialization: Sg 1= 0,

On B-deliver(<m, i>) with g = group(m)
B-multicast(g, <*“order”, i, Sg >);

=5+ 1;
W S

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.14
The ISIS algorithm for total ordering

1 Message

3 Agreed Seq

P,

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.15
Causal ordering using vector timestamps

Algorithm for group member p; (i = 1,2..., N)

On initialization
Er . .)
VI[J] _O(J - 132---7N):

To CO-multicast message m to group g
Vil = VLT 1
B- multlcast(g, < Vg m>);

On B- dellver(< Vg m>) from pj with g = group(m)
place <V%, m> in hold- back queue;
wait until VELjY = VL1 + Land VELK] < VELK] (k #)):
CO-deliver m; // after removing it from the hold-back queue
SV VIR

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.16
Consensus for three processes

d,:=proceed d, :=proceed

P1 < P2

V4 =proceed Vo,=proceed

Consensus algorithm

va=abort

>< P5 (crashes)

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.17
Consensus in a synchronous system

Algorithm for process p; € g; algorithm proceeds in / + 1 rounds
On initialilzation 0
Values, == {v;}; Values; = {},

Inroundr(1<r<f+1)

B-multicast(g, Valuesg = Values? - 1); // Send only values that have not been sent

Values? = Values; ;
while (in round r)
{

On B-deliv+ellf(V j) from some p,
Values? 1= Values? St

;

After (f + 1) rounds
Assign d; = minimum(Values

1
I):

] ’

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.18
Three Byzantine generals

P1 (Commander) P4 (Commander)

1:X

Faulty processes are shown coloured

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 15.19
Four Byzantine generals

1 (Commander) 1 (Commander)

3:1:w

Pa

Faulty processes are shown coloured

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

