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Figure 15.1 

A network partition 
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Figure 15.2 

Server managing a mutual exclusion token for a set of processes 
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Figure 15.3 

A ring of processes transferring a mutual exclusion token 
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Figure 15.4 

Ricart and Agrawala’s algorithm 

On initialization 
 state := RELEASED;  
To enter the section 
 state := WANTED; 
 Multicast request to all processes;  request processing deferred here 
 T := request’s timestamp; 
 Wait until (number of replies received = (N – 1)); 
 state := HELD; 
 
On receipt of a request <Ti, pi> at pj (i ≠ j) 
 if  (state = HELD or (state = WANTED and (T, pj) < (Ti, pi))) 
 then  
  queue request from pi without replying;  
 else  
  reply immediately to pi; 
 end if 
To exit the critical section 
 state := RELEASED; 
 reply to any queued requests; 
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Figure 15.5 

Multicast synchronization 
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Figure 15.6 

Maekawa’s algorithm – part 1 

On initialization 

 state := RELEASED; 

 voted := FALSE; 

For pi to enter the critical section 

 state := WANTED; 

 Multicast request to all processes in Vi; 

 Wait until (number of replies received = K); 

 state := HELD; 

On receipt of a request from pi at pj 

 if (state = HELD or voted = TRUE) 

 then  

  queue request from pi without replying;  

 else  

  send reply to pi; 

  voted := TRUE; 

 end if 

For pi to exit the critical section 

 state := RELEASED; 

 Multicast release to all processes in Vi; 

On receipt of a release from pi at pj 

 if (queue of requests is non-empty) 

 then  

  remove head of queue – from pk, say;  

  send reply to pk; 

  voted := TRUE; 

 else  

  voted := FALSE; 

 end if 
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Figure 15.7 

A ring-based election in progress 
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Note: The election was started by process 17. 

The highest process identifier encountered so far is 24.  

Participant processes are shown in a darker colour 
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Figure 15.8 

The bully algorithm 
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Figure 15.9 

Reliable multicast algorithm 
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Figure 15.10 

The hold-back queue for arriving multicast messages 
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Figure 15.11 

Total, FIFO and causal ordering of multicast messages 
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Figure 15.12 

Display from bulletin board program 

Bulletin board:  os.interesting 

Item From Subject 

23 A.Hanlon Mach     

24 G.Joseph Microkernels 

25 A.Hanlon Re: Microkernels 

26 T.L’Heureux RPC performance 

27 M.Walker Re: Mach 

end 
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Figure 15.13 

Total ordering using a sequencer 
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Figure 15.14 

The ISIS algorithm for total ordering 
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Figure 15.15 

Causal ordering using vector timestamps 
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Figure 15.16 

Consensus for three processes 
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Figure 15.17 

Consensus in a synchronous system 
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Figure 15.18 

Three Byzantine generals 
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Figure 15.19 

Four Byzantine generals 
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