
From Coulouris, Dollimore, Kindberg and

Blair

Distributed Systems:

 Concepts and Design

Edition 5, © Addison-Wesley 2012

 Slides for Chapter 15:

Coordination and Agreement

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.1

A network partition

Crashed
router

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.2

Server managing a mutual exclusion token for a set of processes

Server

1. Request
token

Queue of
requests

2. Release
token

3. Grant
token

4

2

p
4

p
3 p

2

p
1

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.3

A ring of processes transferring a mutual exclusion token

p
n

p
2

p
3

p
4

Token

p
1

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.4

Ricart and Agrawala’s algorithm

On initialization
 state := RELEASED;
To enter the section
 state := WANTED;
 Multicast request to all processes; request processing deferred here
 T := request’s timestamp;
 Wait until (number of replies received = (N – 1));
 state := HELD;

On receipt of a request <Ti, pi> at pj (i ≠ j)
 if (state = HELD or (state = WANTED and (T, pj) < (Ti, pi)))
 then
 queue request from pi without replying;
 else
 reply immediately to pi;
 end if
To exit the critical section
 state := RELEASED;
 reply to any queued requests;

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.5

Multicast synchronization

p
3

34

Reply

34

41

41
41

34

p
1

p
2

Reply
Reply

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.6

Maekawa’s algorithm – part 1

On initialization

 state := RELEASED;

 voted := FALSE;

For pi to enter the critical section

 state := WANTED;

 Multicast request to all processes in Vi;

 Wait until (number of replies received = K);

 state := HELD;

On receipt of a request from pi at pj

 if (state = HELD or voted = TRUE)

 then

 queue request from pi without replying;

 else

 send reply to pi;

 voted := TRUE;

 end if

For pi to exit the critical section

 state := RELEASED;

 Multicast release to all processes in Vi;

On receipt of a release from pi at pj

 if (queue of requests is non-empty)

 then

 remove head of queue – from pk, say;

 send reply to pk;

 voted := TRUE;

 else

 voted := FALSE;

 end if

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.7

A ring-based election in progress

24

15

9

4

3

28

17

24

1

Note: The election was started by process 17.

The highest process identifier encountered so far is 24.

Participant processes are shown in a darker colour

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.8

The bully algorithm

p1 p
2

p
3

p
4

p
1

p
2

p
3

p
4

C

coordinator

Stage 4

C

election

election

Stage 2

p
1

p
2

p
3

p
4

C

election

answer

answer

election
Stage 1

timeout

Stage 3

Eventually.....

p
1

p
2

p
3

p
4

election

answer

The election of coordinator p2,

after the failure of p4 and then p3

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.9

Reliable multicast algorithm

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.10

The hold-back queue for arriving multicast messages

Message
processing

Delivery queue
Hold-back

queue

deliver

Incoming

messages

When delivery
guarantees are
met

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.11

Total, FIFO and causal ordering of multicast messages

F3

F1

F2

T2

T1

P1 P2 P3

Time

C3

C1

C2

Notice the consistent

ordering of totally ordered

messages T1 and T2,

 the FIFO-related messages

F1 and F2 and the causally

related messages C1 and C3

 – and the otherwise arbitrary

delivery ordering of

messages.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.12

Display from bulletin board program

Bulletin board: os.interesting

Item From Subject

23 A.Hanlon Mach

24 G.Joseph Microkernels

25 A.Hanlon Re: Microkernels

26 T.L’Heureux RPC performance

27 M.Walker Re: Mach

end

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.13

Total ordering using a sequencer

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.14

The ISIS algorithm for total ordering

2

1

1

2

2

1 Message

P 2

P 3

P 1

P 4

3 Agreed Seq

3

3

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.15

Causal ordering using vector timestamps

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.16

Consensus for three processes

1

P2

P3 (crashes)

P1

Consensus algorithm

v1=proceed

v3=abort

v2=proceed

d1 :=proceed d2 :=proceed

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.17

Consensus in a synchronous system

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.18

Three Byzantine generals

p 1 (Commander)

p 2 p 3

1:v 1:v

2:1:v

3:1:u

p 1 (Commander)

p 2 p 3

1:x 1:w

2:1:w

3:1:x

Faulty processes are shown coloured

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 15.19

Four Byzantine generals

p 1 (Commander)

p 2 p 3

1:v 1:v

2:1:v

3:1:u

Faulty processes are shown coloured

p 4

1:v

4:1:v

2:1:v 3:1:w

4:1:v

p 1 (Commander)

p 2 p 3

1:w 1:u

2:1:u

3:1:w

p 4

1:v

4:1:v

2:1:u 3:1:w

4:1:v

