
From Coulouris, Dollimore, Kindberg and Blair

Distributed Systems:

 Concepts and Design

Edition 5, © Addison-Wesley 2012

Slides for Chapter 16:

 Transactions and Concurrency

Control

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.1

Operations of the Account interface

deposit(amount)

 deposit amount in the account

withdraw(amount)

 withdraw amount from the account

getBalance() -> amount

 return the balance of the account

setBalance(amount)

 set the balance of the account to amount

create(name) -> account

 create a new account with a given name

lookUp(name) -> account

 return a reference to the account with the given name

 branchTotal() -> amount

 return the total of all the balances at the branch

Operations of the Branch interface

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.2

A client’s banking transaction

Transaction T:

a.withdraw(100);

b.deposit(100);

c.withdraw(200);

b.deposit(200);

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.3

Operations in Coordinator interface

openTransaction() -> trans;

 starts a new transaction and delivers a unique TID trans. This

 identifier will be used in the other operations in the transaction.

closeTransaction(trans) -> (commit, abort);

 ends a transaction: a commit return value indicates that the

 transaction has committed; an abort return value indicates that it

 has aborted.

abortTransaction(trans);

 aborts the transaction.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.4

Transaction life histories

Successful Aborted by client Aborted by server

openTransaction openTransaction openTransaction

operation operation operation

operation operation operation

server aborts

transaction

operation operation operation ERROR

reported to client

closeTransaction abortTransaction

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.5

The lost update problem

Transaction T :

balance = b.getBalance();

b.setBalance(balance*1.1);

a.withdraw(balance/10)

Transaction U :

balance = b.getBalance();

b.setBalance(balance*1.1);

c.withdraw(balance/10)

balance = b.getBalance(); $200

balance = b.getBalance(); $200

b.setBalance(balance*1.1); $220

b.setBalance(balance*1.1); $220

a.withdraw(balance/10) $80

c.withdraw(balance/10) $280

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.6

The inconsistent retrievals problem

Transaction V :

a.withdraw(100)

b.deposit(100)

Transaction W :

aBranch.branchTotal()

a.withdraw(100); $100

total = a.getBalance() $100

total = total+b.getBalance() $300

total = total+c.getBalance()

b.deposit(100) $300

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.7

A serially equivalent interleaving of T and U

Transaction T :

balance = b.getBalance()

b.setBalance(balance*1.1)

a.withdraw(balance/10)

Transaction U :

balance = b.getBalance()

b.setBalance(balance*1.1)

c.withdraw(balance/10)

balance = b.getBalance() $200

b.setBalance(balance*1.1) $220

balance = b.getBalance() $220

b.setBalance(balance*1.1) $242

a.withdraw(balance/10) $80

c.withdraw(balance/10) $278

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.8

A serially equivalent interleaving of V and W

Transaction V :

a.withdraw(100);

b.deposit(100)

Transaction W :

aBranch.branchTotal()

a.withdraw(100); $100

b.deposit(100) $300

total = a.getBalance() $100

total = total+b.getBalance() $400

total = total+c.getBalance()

...

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.9

Read and write operation conflict rules

Operations of different
transactions

Conflict Reason

read read No Because the effect of a pair of read operations

does not depend on the order in which they are

executed

read write Yes Because the effect of a read and a write operation

depends on the order of their execution

write write Yes Because the effect of a pair of write operations

depends on the order of their execution

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.10

A non-serially equivalent interleaving of operations of transactions T and U

Transaction T : Transaction U :

x = read(i)

write(i, 10)
y = read(j)

write(j, 30)

write(j, 20)
z = read (i)

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.11

A dirty read when transaction T aborts

Transaction T :

a.getBalance()

a.setBalance(balance + 10)

Transaction U :

a.getBalance()

a.setBalance(balance + 20)

balance = a.getBalance() $100

a.setBalance(balance + 10) $110

balance = a.getBalance() $110

a.setBalance(balance + 20) $130

commit transaction

abort transaction

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.12

Overwriting uncommitted values

Transaction T :

a.setBalance(105)

Transaction U :

a.setBalance(110)

$100

a.setBalance(105) $105

a.setBalance(110) $110

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.13

Nested transactions

T : top-level transaction

T 1 = openSubTransaction T 2 = openSubTransaction

openSubTransaction openSubTransaction openSubTransaction

openSubTransaction

T 1 : T 2 :

T 11 : T 12 :

T 211 :

T 21 :

prov.commit

prov. commit

abort

prov. commit prov. commit

prov. commit

commit

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.14

Transactions T and U with exclusive locks

Transaction T :

balance = b.getBalance()

b.setBalance(bal*1.1)

a.withdraw(bal/10)

Transaction U :

balance = b.getBalance()
b.setBalance(bal*1.1)

c.withdraw(bal/10)

Operations Locks Operations Locks

openTransaction

bal = b.getBalance() lock B

b.setBalance(bal*1.1) openTransaction

a.withdraw(bal/10) lock A bal = b.getBalance() waits for T ’s

lock on B

closeTransaction unlock A , B

lock B

b.setBalance(bal*1.1)

 c.withdraw(bal/10) lock C

closeTransaction unlock B , C

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.15

Lock compatibility

For one object Lock requested

read write

Lock already set none OK OK

read OK wait

write wait wait

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.16

Use of locks in strict two-phase locking

1. When an operation accesses an object within a transaction:

 (a) If the object is not already locked, it is locked and the operation proceeds.

 (b) If the object has a conflicting lock set by another transaction, the

 transaction must wait until it is unlocked.

 (c) If the object has a non-conflicting lock set by another transaction, the lock

 is shared and the operation proceeds.

 (d) If the object has already been locked in the same transaction, the lock will

 be promoted if necessary and the operation proceeds. (Where promotion is

 prevented by a conflicting lock, rule (b) is used.)

2. When a transaction is committed or aborted, the server unlocks all objects it

locked for the transaction.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.17

Lock class

public class Lock {

 private Object object; // the object being protected by the lock

 private Vector holders; // the TIDs of current holders

 private LockType lockType; // the current type

 public synchronized void acquire(TransID trans, LockType aLockType){

 while(/*another transaction holds the lock in conflicing mode*/) {

 try {

 wait();

 }catch (InterruptedException e){/*...*/ }

 }

 if(holders.isEmpty()) { // no TIDs hold lock

 holders.addElement(trans);

 lockType = aLockType;

 } else if(/*another transaction holds the lock, share it*/)){

 if(/* this transaction not a holder*/) holders.addElement(trans);

 } else if (/* this transaction is a holder but needs a more exclusive lock*/)

 lockType.promote();

 }

 }

Continues on next slide

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.17

continued

public synchronized void release(TransID trans){

 holders.removeElement(trans); // remove this holder

 // set locktype to none

 notifyAll();

 }

}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.18

 LockManager class

public class LockManager {
 private Hashtable theLocks;

 public void setLock(Object object, TransID trans, LockType lockType){
 Lock foundLock;
 synchronized(this){
 // find the lock associated with object
 // if there isn’t one, create it and add to the hashtable
 }
 foundLock.acquire(trans, lockType);
 }

 // synchronize this one because we want to remove all entries
 public synchronized void unLock(TransID trans) {
 Enumeration e = theLocks.elements();
 while(e.hasMoreElements()){
 Lock aLock = (Lock)(e.nextElement());
 if(/* trans is a holder of this lock*/) aLock.release(trans);
 }
 }
}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.19

Deadlock with write locks

Transaction T Transaction U

 Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

waits for U ’s
a.withdraw(200); waits for T ’s

lock on B
lock on A

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.20

The wait-for graph for Figure 16.19

B

A

Waits for

Held by

Held by

T U U T

Waits for

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.21

A cycle in a wait-for graph

U

V

T

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.22

Another wait-for graph

C

T

U
V

Held by

Held by

Held by

T

U

V

W

W

B

Held by

Waits for

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.23

Resolution of the deadlock in Figure 15.19

Transaction T Transaction U

Operations Locks Operations Locks

a.deposit(100); write lock A

b.deposit(200) write lock B

b.withdraw(100)

waits for U ’s a.withdraw(200); waits for T’s

lock on B lock on A

 (timeout elapses)

 T’s lock on A becomes vulnerable,

 unlock A , abort T

a.withdraw(200); write locks A

unlock A , B

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.24

Lock compatibility (read, write and commit locks)

For one object Lock to be set

read write commit

Lock already set none OK OK OK

read OK OK wait

write OK wait

commit wait wait

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.25

Lock hierarchy for the banking example

Branch

Account A B C

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.26

Lock hierarchy for a diary

Week

Monday Tuesday Wednesday Thursday Friday

9:00–10:00

time slots

10:00–11:00 11:00–12:00 12:00–13:00 13:00–14:00 14:00–15:00 15:00–16:00

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.27

Lock compatibility table for hierarchic locks

For one object Lock to be set

read write I-read I-write

Lock already set none OK OK OK OK

read OK wait OK wait

write wait wait wait wait

I-read OK wait OK OK

I-write wait wait OK OK

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Table on page 708

 Serializability of transaction T with respect to transaction Ti

Tv Ti Rule

write read 1. Ti must not read objects written by Tv

read write 2. Tv must not read objects written by Ti

write write 3. Ti must not write objects written by Tv and

Tv must not write objects written by Ti

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.28

Validation of transactions

Earlier committed
transactions

Working Validation Update

T 1

T v

Transaction

being validated

T 2

T 3

Later active

transactions

active
1

active
2

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Page 709-710

Validation of Transactions

Backward validation of transaction Tv

 boolean valid = true;

 for (int Ti = startTn+1; Ti <= finishTn; Ti++){

 if (read set of Tv intersects write set of Ti) valid = false;

 }

Forward validation of transaction Tv

 boolean valid = true;

 for (int Tid = active1; Tid <= activeN; Tid++){

 if (write set of Tv intersects read set of Tid) valid = false;

 }

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.29

Operation conflicts for timestamp ordering

Rule Tc Ti

1. write read Tc must not write an object that has been read by any Ti where
 this requires that Tc ≥ the maximum read timestamp of the object.

2. write write Tc must not write an object that has been written by any Ti where

Ti > Tc

 this requires that Tc > write timestamp of the committed object.

3. read write Tc must not read an object that has been written by any Ti where
 this requires that Tc > write timestamp of the committed object.

Ti > Tc

Ti > Tc

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.30

Write operations and timestamps

 write (b) T3 (a) write

(c) T3 write
object produced

by transaction Ti

 (with write timestamp Ti)

 T3

 write (d) T3

T1<T2<T3<T4

Time

Before

After

T 2

T 2 T 3

Time

Before

After

T 2

T 2 T 3

T 1

T 1

Time

Before

After

T 1

T 1

T 4

T 3 T 4

Time

Transaction

aborts
Before

After

T 4

T 4

Tentative

Committed

T i

T i

Key:

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Page 713

Timestamp ordering write rule

if (Tc ≥ maximum read timestamp on D &&

 Tc > write timestamp on committed version of D)

 perform write operation on tentative version of D with write timestamp Tc

else /* write is too late */

 Abort transaction Tc

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Page 714

Timestamp ordering read rule

if (Tc > write timestamp on committed version of D) {

 let Dselected be the version of D with the maximum write timestamp ≤ Tc

 if (Dselected is committed)

 perform read operation on the version Dselected

 else

 Wait until the transaction that made version Dselected commits or aborts

 then reapply the read rule

} else

 Abort transaction Tc

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.31

Read operations and timestamps

(b) T3 read

Time

read

proceeds

Selected

T 2

Time

read

proceeds

Selected

T 2 T 4

Time

read waits

Selected

T 1 T 2

Time

Transaction

aborts
T 4

Key:

Tentative

Committed

T i

T i

object produced

 by transaction Ti

 (with write timestamp Ti)

 T1 < T2 < T3 < T4

(a) T3 read

(c) T3 read (d) T3 read

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.32

Timestamps in transactions T and U

Timestamps and versions of objects

 T U A B C

RTS WTS RTS WTS RTS WTS
{} S {} S {} S

openTransaction
bal = b.getBalance() {T}

openTransaction
b.setBalance(bal*1.1)

bal = b.getBalance()

wait for T

 a.withdraw(bal/10)

commit T T

bal = b.getBalance()

b.setBalance(bal*1.1)

c.withdraw(bal/10) S, U

T, U

S, T

S, T

{U}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 16.33

Late write operation would invalidate a read

Time

T 4 write; T 5 read; T 3 write; T 3 read;

T 2

T 3 T 5

T 1
T 3

T 1 < T 2 < T 3 < T 4 < T 5

Key:

Tentative Committed

T i T
i

T
k T k

object produced by transaction Ti

(with write timestamp Ti and read

timestamp Tk)

