
Slides for Chapter 17: Distributed transactions

From Coulouris, Dollimore, Kindberg and Blair
Distributed Systems:
Concepts and Design

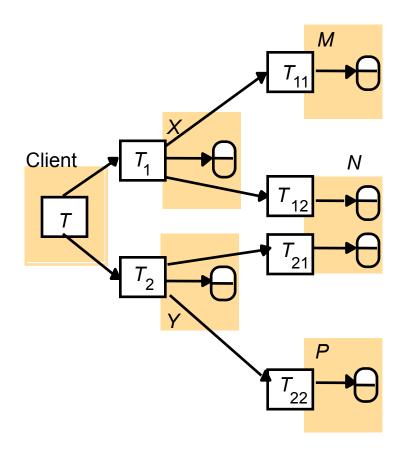

Edition 5, © Addison-Wesley 2012

Figure 17.1 Distributed transactions

(a) Flat transaction

Client

(b) Nested transactions

Figure 17.2 Nested banking transaction

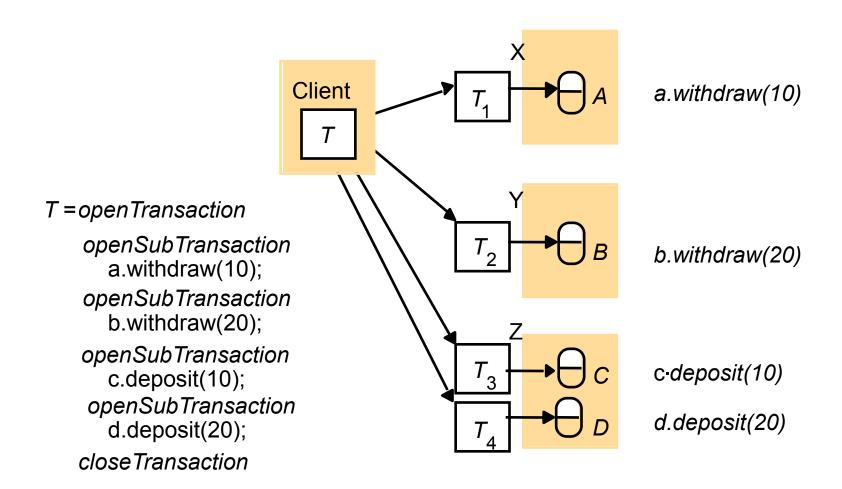
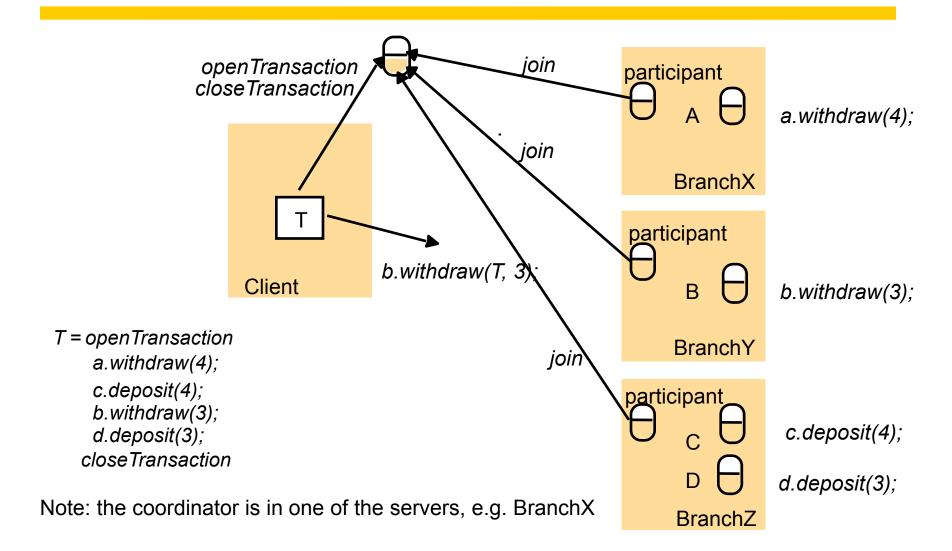



Figure 17.3 A distributed banking transaction

Figure 17.4 Operations for two-phase commit protocol

canCommit?(trans)-> Yes / No

Call from coordinator to participant to ask whether it can commit a transaction. Participant replies with its vote.

doCommit(trans)

Call from coordinator to participant to tell participant to commit its part of a transaction.

doAbort(trans)

Call from coordinator to participant to tell participant to abort its part of a transaction.

haveCommitted(trans, participant)

Call from participant to coordinator to confirm that it has committed the transaction.

getDecision(trans) -> Yes / No

Call from participant to coordinator to ask for the decision on a transaction after it has voted *Yes* but has still had no reply after some delay. Used to recover from server crash or delayed messages.

Figure 17.5 The two-phase commit protocol


Phase 1 (voting phase):

- 1. The coordinator sends a *canCommit*? request to each of the participants in the transaction.
- 2. When a participant receives a *canCommit*? request it replies with its vote (*Yes* or *No*) to the coordinator. Before voting *Yes*, it prepares to commit by saving objects in permanent storage. If the vote is *No* the participant aborts immediately.

Phase 2 (completion according to outcome of vote):

- 3. The coordinator collects the votes (including its own).
- (a) If there are no failures and all the votes are *Yes* the coordinator decides to commit the transaction and sends a *doCommit* request to each of the participants.
- (b) Otherwise the coordinator decides to abort the transaction and sends *doAbort* requests to all participants that voted *Yes*.
- 4. Participants that voted *Yes* are waiting for a *doCommit* or *doAbort* request from the coordinator. When a participant receives one of these messages it acts accordingly and in the case of commit, makes a *haveCommitted* call as confirmation to the coordinator

Figure 17.6 Communication in two-phase commit protocol

Figure 17.7 Operations in coordinator for nested transactions

openSubTransaction(trans) -> subTrans
Opens a new subtransaction whose parent is trans and returns a unique subtransaction identifier.

getStatus(trans)-> committed, aborted, provisional
Asks the coordinator to report on the status of the transaction
trans. Returns values representing one of the following:
committed, aborted, provisional.

Figure 17.8 Transaction *T* decides whether to commit

Figure 17.9 Information held by coordinators of nested transactions

Coordinator of transaction	Child transactions	Participant	Provisional commit list	Abort list
T	T ₁ , T ₂	yes	T1, T12	T ₁₁ , T ₂
T 1	T11, T12	yes	T1, T12	T ₁₁
T ₂	T ₂₁ , T ₂₂	no (aborted)		T ₂
T ₁₁		no (aborted)		T ₁₁
T12, T21		T ₁₂ but notT ₂₁ *	T21, T12	
T ₂₂		no (parent abort	ed) T22	

*T 21's parent has aborted

Figure 17.10 canCommit? for hierarchic two-phase commit protocol

canCommit?(trans, subTrans) -> Yes / No

Call a coordinator to ask coordinator of child subtransaction whether it can commit a subtransaction subTrans. The first argument trans is the transaction identifier of top-level transaction. Participant replies with its vote Yes / No.

Figure 17.11 canCommit? for flat two-phase commit protoco

canCommit?(trans, abortList) -> Yes / No

Call from coordinator to participant to ask whether it can
commit a transaction. Participant replies with its
vote Yes / No.

Figure 17.12 Interleavings of transactions *U*, *V* and *W*

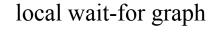
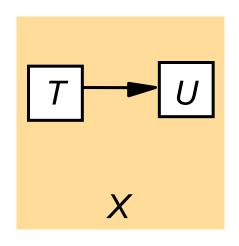
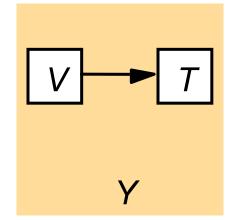

U		V		W	
d.deposit(10)	lock D				
a.deposit(20)	lock A at X	b.deposit(10)	lock B at Y		
b.withdraw(30)	wait at Y			c.deposit(30)	lock C at Z
		c.withdraw(20)	wait at Z	a.withdraw(20)	wait at X

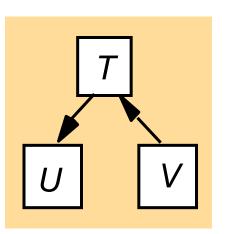
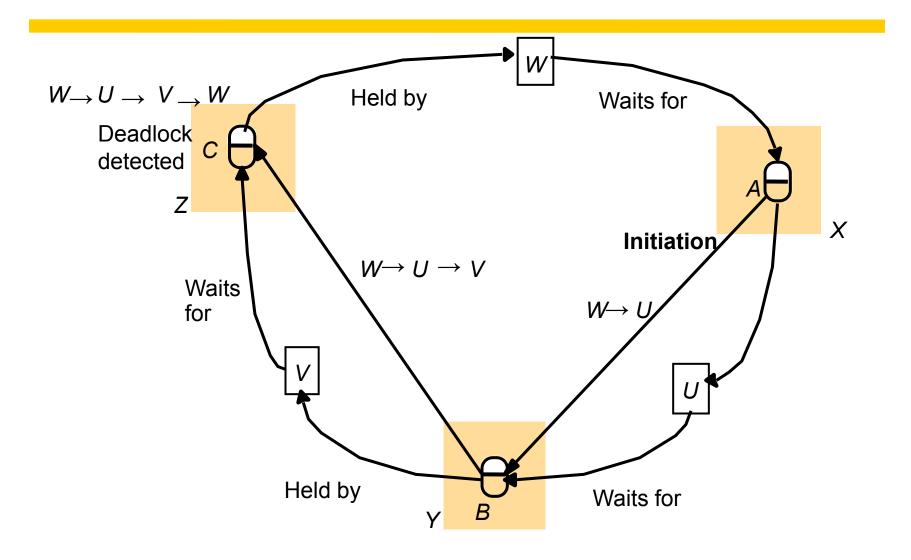
Figure 17.13 Distributed deadlock




Figure 17.14 Local and global wait-for graphs

local wait-for graph

global deadlock detector

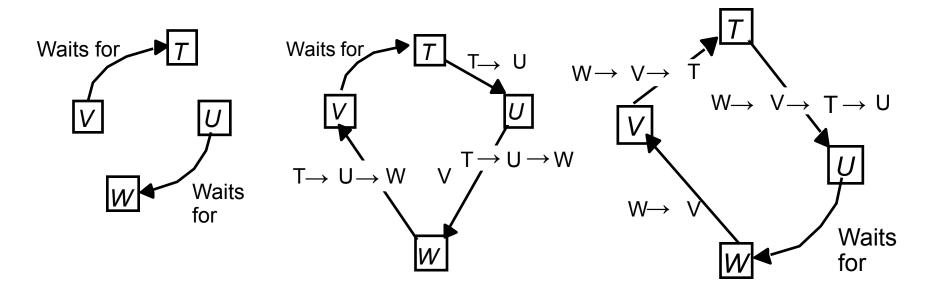
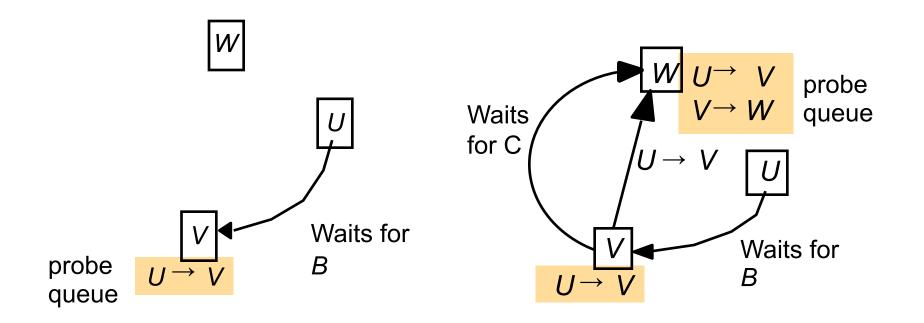

Figure 17.15
Probes transmitted to detect deadlock

Figure 17.16 Two probes initiated


- (a) initial situation
- (b) detection initiated at object requested by *T*

(c) detection initiated at object requested by W

Figure 17.17 Probes travel downhill

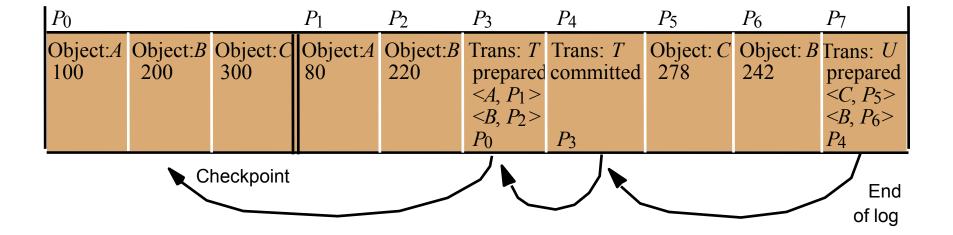

- (a) V stores probe when U starts waiting
- (b) Probe is forwarded when V starts waiting

Figure 17.18 Types of entry in a recovery file

Type of entry	Description of contents of entry
Object	A value of an object.
Transaction status	Transaction identifier, transaction status (<i>prepared</i> , <i>committed aborted</i>) and other status values used for the two-phase commit protocol.
Intentions list	Transaction identifier and a sequence of intentions, each of which consists of <i><objectid< i="">, <i>Pi></i>, where <i>Pi</i> is the position in the recovery file of the value of the object.</objectid<></i>

Figure 17.19 Log for banking service

Figure 17.20 Shadow versions

Map at start	Map when T commits
$A \rightarrow P_0$	$A \rightarrow P_1$
$B \rightarrow P_0'$	$B \rightarrow P_2$
$C \rightarrow P_0$ "	$C \rightarrow P_0$ "

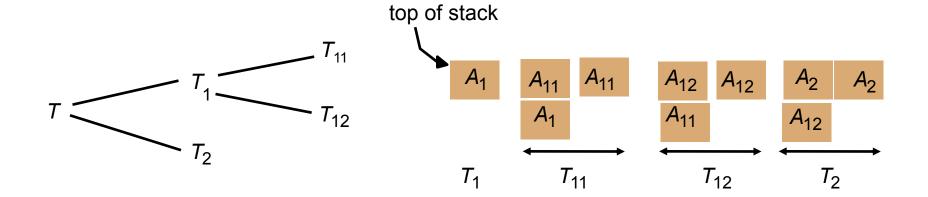
Version store

$$P_0$$
 P_0 '
 P_0 "
 P_1
 P_2
 P_3
 P_4

 Version store

 100
 200
 300
 80
 220
 278
 242

 Checkpoint


Figure 17.21 Log with entries relating to two-phase commit protocol

Trans:T	Coord'r:T	•	•	Trans: T	Trans: U	•	•	Part'pant: U	Trans:U	Trans: U
prepared	part'pant list:			committed	prepared			Coord'r:	uncertain	committed
intentions list					intentions list					

Figure 17.22 Recovery of the two-phase commit protocol

Role	Status	Action of recovery manager
Coordinator	prepared	No decision had been reached before the server failed. It sends <i>abortTransaction</i> to all the servers in the participant list and adds the transaction status <i>aborted</i> in its recovery file. Same action for state <i>aborted</i> . If there is no participant list, the participants will eventually timeout and abort the transaction.
Coordinator	committed	A decision to commit had been reached before the server failed. It sends a <i>doCommit</i> to all the participants in its participant list (in case it had not done so before) and resumes the two-phase protocol at ste (Fig 17.5).
Participant	committed	The participant sends a <i>haveCommitted</i> message to the coordinator (in case this was not done before it failed). This will allow the coordinate to discard information about this transaction at the next checkpoint.
Participant	uncertain	The participant failed before it knew the outcome of the transaction. cannot determine the status of the transaction until the coordinator informs it of the decision. It will send a <i>getDecision</i> to the coordinate to determine the status of the transaction. When it receives the reply will commit or abort accordingly.
Participant	prepared	The participant has not yet voted and can abort the transaction.
Coordinator	done	No action is required.

Figure 17.23 Nested transactions

