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Figure 6.1  

Space and time coupling in distributed systems 
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Figure 6.2 

Open and closed groups 
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Figure 6.3 

The role of group membership management 
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Figure 6.4  

The architecture of JGroups 
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Figure 6.5 

Java class FireAlarmJG 

import org.jgroups.JChannel; 

public class FireAlarmJG {  

public void raise() { 

 try { 

  JChannel channel = new JChannel(); 

   channel.connect("AlarmChannel");  

  Message msg = new Message(null, null, "Fire!");  

  channel.send(msg); 

 }  

 catch(Exception e) {  

 } 

} 
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Figure 6.6 

Java class FireAlarmConsumerJG 

import org.jgroups.JChannel; 

 

    public class FireAlarmConsumerJG {  

         public String await() { 

        try { 

                JChannel channel = new JChannel();  

                channel.connect("AlarmChannel");  

                Message msg = (Message) channel.receive(0);  

                return (String) msg.GetObject(); 

        } catch(Exception e) { 

                return null; 

        } 

    } 

} 
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Figure 6.7 

Dealing room system 
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Figure 6.8  

The publish-subscribe paradigm 
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Figure 6.9  

A network of brokers 
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Figure 6.10 

The architecture of publish-subscribe systems 
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Figure 6.11 

Filtering-based routing 

upon receive publish(event e) from node x   1  

 matchlist := match(e, subscriptions)   2  

 send notify(e) to matchlist;      3  

 fwdlist := match(e, routing); 4  

 send publish(e) to fwdlist - x; 5 

upon receive subscribe(subscription s) from node x 6  

 if x is client then 7  

  add x to subscriptions; 8  

 else add(x, s) to routing; 9  

 send subscribe(s) to neighbours - x; 10 
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Figure 6.12 

Rendezvous-based routing 

upon receive publish(event e) from node x at node i  

 rvlist := EN(e); 

 if i in rvlist then begin  

  matchlist :=match(e, subscriptions);  

  send notify(e) to matchlist; 

 end 

 send publish(e) to rvlist - i;  

upon receive subscribe(subscription s) from node x at node i 

 rvlist := SN(s);  

 if i in rvlist then 

  add s to subscriptions;  

 else 

   send subscribe(s) to rvlist - i; 
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Figure 6.13  

Example publish-subscribe system 
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Figure 6.14  

The message queue paradigm 
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Figure 6.15  

A simple networked topology in WebSphere MQ 
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Figure 6.16  

The programming model offered by JMS 
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Figure 6.17 

Java class FireAlarmJMS 

import javax.jms.*; 

import javax.naming.*; 

public class FireAlarmJMS { 

 

public void raise() {  

 try {                                                             1 

  Context ctx = new InitialContext(); 2  

  TopicConnectionFactory topicFactory = 3   

  (TopicConnectionFactory)ctx.lookup ("TopicConnectionFactory"); 4 

  Topic topic = (Topic)ctx.lookup("Alarms");  5 

  TopicConnection topicConn =     6 

   topicConnectionFactory.createTopicConnection(); 7 

  TopicSession topicSess = topicConn.createTopicSession(false, 8 

   Session.AUTO_ACKNOWLEDGE);                                           9 

   TopicPublisher topicPub = topicSess.createPublisher(topic); 10; 

  TextMessage msg = topicSess.createTextMessage(); 11  

   msg.setText("Fire!"); 12  

  topicPub.publish(message); 13 

  } catch (Exception e) { 14  

      } 15 

} 
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Figure 6.18 

Java class FireAlarmConsumerJMS 

import javax.jms.*;  import javax.naming.*; 

public class FireAlarmConsumerJMS  

public String await() {  

 try {                                                              1  

  Context ctx = new InitialContext(); 2  

  TopicConnectionFactory topicFactory = 3  

   (TopicConnectionFactory)ctx.lookup("TopicConnectionFactory"); 4 

               Topic topic = (Topic)ctx.lookup("Alarms"); 5 

               TopicConnection topicConn =         6 

                       topicConnectionFactory.createTopicConnection();        7 

               TopicSession topicSess = topicConn.createTopicSession(false,        8 

                           Session.AUTO_ACKNOWLEDGE);        9 

               TopicSubscriber topicSub = topicSess.createSubscriber(topic); 10  

               topicSub.start(); 11  

               TextMessage msg = (TextMessage) topicSub.receive(); 12  

               return msg.getText(); 13 

               } catch (Exception e) { 14  

                              return null; 15  

    }16 

} 
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Figure 6.19 

The distributed shared memory abstraction 
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Figure 6.20  

The tuple space abstraction 
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Figure 6.21 (1) 

Replication and the tuple space operations [Xu and Liskov 1989] 

write 

1. The requesting site multicasts the write request to all members of the view; 2.

 On receiving this request, members insert the tuple into their replica and 

acknowledge this action;  

3. Step 1 is repeated until all acknowledgements are received. 

read 

1. The requesting site multicasts the read request to all members of the view;  

2. On receiving this request, a member returns a matching tuple to the requestor;  

3. The requestor returns the first matching tuple received as the result of the operation (ignoring others); 4.

 Step 1 is repeated until at least one response is received. 

continued on next slide 
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Figure 6.21 (continued) 

Replication and the tuple space operations [Xu and Liskov 1989] 

take Phase 1: Selecting the tuple to be removed 

Phase 2: Removing the selected tuple 

1. The requesting site multicasts the take request to all members of the view; 

2. On receiving this request, each replica acquires a lock on the associated tuple set and, if the lock cannot 

       be acquired, the take request is rejected; 

3. All accepting members reply with the set of all matching tuples; 

4. Step 1 is repeated until all sites have accepted the request and responded with their set of tuples and the 

       intersection is non-null; 

5. A particular tuple is selected as the result of the operation (selected randomly from the intersection of all 

       the replies); 

6. If only a minority accept the request, this minority are asked to release their locks and phase 1 repeats. 

1. The requesting site multicasts a remove request to all members of the view citing the tuple to be 

     removed; 

2.  On receiving this request, members remove the tuple from their replica, send an acknowledgement           

     and release the lock; 

3. Step 1 is repeated until all acknowledgements are received. 
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Figure 6.22  

Partitioning in the York Linda Kernel 
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Figure 6.23  

The JavaSpaces API 
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Figure 6.24 

Java class AlarmTupleJS 

import net.jini.core.entry.*; 

public class AlarmTupleJS implements Entry {  

 public String alarmType; 

  public AlarmTupleJS() { } 

 } 

 public AlarmTupleJS(String alarmType) {  

  this.alarmType = alarmType;} 

 } 

} 



27 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.25 

Java class FireAlarmJS 

import net.jini.space.JavaSpace;  

public class FireAlarmJS { 

public void raise() {  

 try { 

  JavaSpace space = SpaceAccessor.findSpace("AlarmSpace");  

   AlarmTupleJS tuple = new AlarmTupleJS("Fire!");  

  space.write(tuple, null, 60*60*1000); 

  catch (Exception e) {  

 } 

    } 

} 
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Figure 16.26 

Java class FireAlarmReceiverJS 

import net.jini.space.JavaSpace;  

public class FireAlarmConsumerJS { 

public String await() {  

 try { 

                    JavaSpace space = SpaceAccessor.findSpace();  

                    AlarmTupleJS template = new AlarmTupleJS("Fire!");  

                    AlarmTupleJS recvd = (AlarmTupleJS) space.read(template, null, 

                                        Long.MAX_VALUE); 

                    return recvd.alarmType; 

 }  

  catch (Exception e) { 

                     return null; 

                  } 

          } 

} 
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Figure 6.27  

Summary of indirect communication styles 


