Slides for Chapter 6:
Indirect Communication

From Coulouris, Dollimore, Kindberg and Blair
=4 Distributed Systems:
L Concepts and Design

— o Edition 5, © Addison-Wesley 2012

MMSTRIBUTED SYSTEMS

Figure 6.1

Space and time coupling in distributed systems

Space coupling

Space uncoupling

Time-coupled

Properties: Communication directed
towards a given receiver or receivers;
receiver(s) must exist at that moment in
time

Examples: Message passing, remote
invocation (see Chapters 4 and 5)

Properties: Sender does not need to
know the identity of the receiver(s);
receiver(s) must exist at that moment in
time

Examples: 1P multicast (see Chapter 4)

Time-uncoupled

Properties: Communication directed
towards a given receiver or receivers;
sender(s) and receiver(s) can have
independent lifetimes

Examples: See Exercise 15.3

Properties: Sender does not need to know
the identity of the receiver(s); sender(s)
and receiver(s) can have independent
lifetimes

Examples: Most indirect communication
paradigms covered in this chapter

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5 2

© Pearson Education 2012

Figure 6.2
Open and closed groups

Closed group Open group

O O

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.3
The role of group membership management

Group

address
expansion
Group \ - Leave
send

Multicast *

communication

Eail Group membership
— > management

< doin_

Process group ——

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 6.4
The architecture of JGroups

Applications

Building
blocks

Channel

(| CAUSAL

GMS
MERGE Protocol stack

FRAG
UDP

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 6.5
Java class FireAlarmJG

import org.jgroups.JChannel;
public class FireAlarmJG {
public void raise() {
try {
JChannel channel = new JChannel();
channel.connect("AlarmChannel”);

Message msg = new Message(null, null, "Fire!"),
channel.send(msg);

/
catch(Exception e) {
/

/

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 6.6
Java class FireAlarmConsumerJG

import org.jgroups.JChannel;

public class FireAlarmConsumerJG {

public String await() {

try {
JChannel channel = new JChannel(),
channel.connect("AlarmChannel");
Message msg = (Message) channel.receive(0),
return (String) msg.GetObject(),

} catch(Exception e) {
return null;

/
/
/

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 6.7
Dealing room system

Dealer’'s computer External Dealer’s computer
source
aler Notification Notification Dealer
) /f: -
ot p Information —

8- Notification R providgt Notification

S5
Notificatio o
Notification Qotification
Dealer’'s computer Dealer’s computer
- Notification
Information ‘ =
8 provider
Notification
Dealer 9‘ Notification

source

Dealer

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

Figure 6.8
The publish-subscribe paradigm

Publishers Subscribers

subscribe(ti)
publish(ei)

publish(e2) subscribe(t2)

Publish-subscribe system

notify(ei)
aavertise(t7)

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.9
A network of brokers

Publishers Subscribers
Broker network

Si

53

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 1 0
© Pearson Education 2005

Figure 6.10
The architecture of publish-subscribe systems

J — Publish-subscribe architecture — — — — — — = .

| I
| < Matching > |
| I
| I
Event routing | Flooding Filtering 'rgg;g}gd I
| I
| I
| Broker Gr |
oup
o) - |

T — — — — — — —— —— — —— —— Se—— — S—

Network protocols TCP/IP m 802.11g) (MAC bcast

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 1 1
© Pearson Education 2005

Overlay networks

Figure 6.11
Filtering-based routing

upon receive publish(event e) from node x
matchlist := match(e, subscriptions)
send notify(e) to matchlist,
fwdlist := match(e, routing);, 4
send publish(e) to fwdlist - x; 5
upon receive subscribe(subscription s) from node x
if x is client then 7
add x to subscriptions;, 8§
else add(x, s) to routing; 9
send subscribe(s) to neighbours - x; 10

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

© Pearson Education 2005

N~

12

Figure 6.12
Rendezvous-based routing

upon receive publish(event e) from node x at node i
rviist := EN(e),
if i in rvlist then begin
matchlist :=match(e, subscriptions),
send notify(e) to matchlist,
end
send publish(e) to rviist - i,
upon receive subscribe(subscription s) from node x at node i
rvlist := SN(s),
if i in rvlist then
add s to subscriptions;
else
send subscribe(s) to rviist - i,

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

13

Figure 6.13
Example publish-subscribe system

System (and further reading) Subscription
model
CORBA Event Service (Chapter 8) Channel-based
TIB Rendezvouz [Oki ef al. 1993] Topic-based
Scribe [Castro et al. 2002b] Topic-based
TERA [Baldomni et al. 2007] Topic-based
Siena [Carzaniga et al. 2001] Content-based
Gryphon [www.research.ibm.com] Content-based
Hermes [Pietzuch and Bacon 2002] Topic- and
content-based
MEDYM [Cao and Singh 2005] Content-based
Meghdoot [Gupta et al. 2004] Content-based

Structure-less CBR [Baldoni ef al. 2005] Content-based

Distribution

model
Centralized

Distributed

Peer-to-peer
(DHT)

Peer-to-peer
Distributed
Distributed
Distributed

Distributed
Peer-to-peer
Peer-to-peer

Event routing

Ffiltering
Rendezvous

Informed gossip
Filtering
Filtering
Rendezvous and
filtering
Flooding
Rendezvous
Informed gossip

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn.

© Pearson Education 2005

14

Figure 6.14
The message queue paradigm

Producers Message queue system Consumers
Receive
Send / 4——‘;
-
Send
Send ,
> - Notity

o J

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 1 5
© Pearson Education 2005

Figure 6.15
A simple networked topology in WebSphere MQ

Queue manager

/

".A/

i \
(Proxy)
Services

Client channel

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 1 6
© Pearson Education 2005

Figure 6.16
The programming model offered by JMS

Connection factory

Connection
Message : Message
producer s SERRIn ®>1 consumer
Sends to 'v ¢ + Receives from
Destination Message Destination
Topic Topic
Queue Queue

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 1 7
© Pearson Education 2005

Figure 6.17
Java class FireAlarmJMS

import javax.jms.*;
import javax.naming. *;
public class FireAlarmJMS {

public void raise() {
try { 1
Context ctx = new InitialContext(); 2
TopicConnectionFactory topicFactory = 3
(TopicConnectionFactory)ctx.lookup ("TopicConnectionFactory"),; 4
Topic topic = (Topic)ctx.lookup("Alarms"); 5
TopicConnection topicConn = 6
topicConnectionFactory.createTopicConnection(), 7
TopicSession topicSess = topicConn.createTopicSession(false, §

Session.AUTO ACKNOWLEDGE), 9
TopicPublisher topicPub = topicSess.createPublisher(topic), 10;
TextMessage msg = topicSess.createTextMessage(); 11

msg.setlext("Fire!"); 12
topicPub.publish(message);, 13
} catch (Exceptione) { 14
15

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

Figure 6.18
Java class FireAlarmConsumerJMS

import javax.jms.*; import javax.naming.*;
public class FireAlarmConsumerJMS
public String await() {
try { 1
Context ctx = new InitialContext(); 2
TopicConnectionFactory topicFactory = 3
(TopicConnectionFactory)ctx.lookup("TopicConnectionFactory"),; 4
Topic topic = (Topic)ctx.lookup("Alarms"); 5

TopicConnection topicConn = 6
topicConnectionFactory.createlopicConnection(), 7
TopicSession topicSess = topicConn.createTopicSession(false, 8
Session. AUTO ACKNOWLEDGE), 9
TopicSubscriber topicSub = topicSess.createSubscriber(topic); 10
topicSub.start();, 11
TextMessage msg = (lextMessage) topicSub.receive(); 12

return msg.getlext(), 13
} catch (Exceptione) { 14
return null; 15
26

} Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

19

Figure 6.19
The distributed shared memory abstraction

Distributed shared memory

S v 4 » DSM appears as
accessm DSM iy gl e memory in address
9 e MapplngsJ space of process
Physmal ~ Physical Physmal

memory memory memory

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 3
© Addison-Wesley Publishers 2000

Figure 6.20
The tuple space abstraction

fa.{'e(c*Srﬁng, '‘Scotland’, String>) write(<'Population’, "Wales', 2900000>)

-

<'Capital’, "N. Ireland’, "Belfast’
<'Capital’, "England’, "London’>

<'Population’, "Scotland’, 5168000>

\«: ‘Population’, UK, 61000000> k

read(<'Population’, String, Integer>) lake(<String, ‘Scotland’, Integer>)

”Capf?af’j ‘Scotland’, "Edinburgh"”>

<'Capital’, "Wales', "Cardiff>

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

21

Figure 6.21 (1)
Replication and the tuple space operations [Xu and Liskov 1989]

write

1. The requesting site multicasts the write request to all members of the view; 2.
On receiving this request, members insert the tuple into their replica and

acknowledge this action;

3. Step 1 is repeated until all acknowledgements are received.

read

1. The requesting site multicasts the read request to all members of the view;

2. Onreceiving this request, a member returns a matching tuple to the requestor;

3. The requestor returns the first matching tuple received as the result of the operation (ignoring others); ¢
Step 1 is repeated until at least one response is received.

continued on next slide

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 22
© Pearson Education 2005

Figure 6.21 (continued)
Replication and the tuple space operations [Xu and Liskov 1989]

take Phase 1: Selecting the tuple to be removed

1. The requesting site multicasts the take request to all members of the view;

2. Onreceiving this request, each replica acquires a lock on the associated tuple set and, if the lock cannot

be acquired, the fake request is rejected;

All accepting members reply with the set of all matching tuples;

4. Step 1 is repeated until all sites have accepted the request and responded with their set of tuples and the
intersection is non-null;

5. A particular tuple is selected as the result of the operation (selected randomly from the intersection of all
the replies);

6. If only a minority accept the request, this minority are asked to release their locks and phase 1 repeats.

(U]

Phase 2: Removing the selected tuple

1. The requesting site multicasts a remove request to all members of the view citing the tuple to be
removed;

2. On receiving this request, members remove the tuple from their replica, send an acknowledgement
and release the lock;

3. Step 1 is repeated until all acknowledgements are received.

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 2 3
© Pearson Education 2005

Figure 6.22
Partitioning in the York Linda Kernel

User process User process User process
Local tuple Local tuple Local tuple

sSpace manager space manager space manager

Local tuple Local tuple Local tuple
Space manager space manager Space manager
User process User process User process

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

24

Figure 6.23
The JavaSpaces API

Operation

Lease write(Entry e, Transaction txn, long lease)

Entry read(Entry tmpl, Transaction txn, long timeout)

Entry readlfExists(Entry tmpl, Transaction txn, long timeout)

Entry take(Entry tmpl, Transaction txn, long timeout)

Entry takelfExists(Entry tmpl, Transaction txn, long timeout)

EventRegistration notify(Entry tmpl, Transaction txn,
RemoteEventListener listen, long lease,
MarshalledObject handback)

Effect

Places an entry into a particular
JavaSpace

Returns a copy of an entry matching
a specified template

As above, but not blocking

Retrieves (and removes) an entry
matching a specified template

As above, but not blocking

Notifies a process if a tuple matching
a specified template is written to a
JavaSpace

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4 2 5

© Pearson Education 2005

Figure 6.24
Java class AlarmTupledS

import net.jini.core.entry. ™,
public class AlarmTupleJS implements Entry {
public String alarmType;
public AlarmTupleJS() { }
/
public AlarmTupleJS(String alarmType) {
this.alarmType = alarmType,}

/
/

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

26

Figure 6.25
Java class FireAlarmJS

import net.jini.space.JavaSpace,
public class FireAlarmJS {
public void raise() {
try {
JavaSpace space = SpaceAccessor.findSpace("AlarmSpace”);
AlarmTupleJS tuple = new AlarmTupleJS("Fire!");
space.write(tuple, null, 60*60*1000);
catch (Exception e) {

/
}
/

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

27

Figure 16.26
Java class FireAlarmReceiverJS

import net.jini.space.JavaSpace;
public class FireAlarmConsumerJS {
public String await() {

try {
JavaSpace space = SpaceAccessor.findSpace();
AlarmTupleJS template = new AlarmTupleJS("Fire!");
AlarmTupleJS recvd = (AlarmTupleJS) space.read(template, null,
Long MAX VALUE),
return recvd.alarmType;,
/

catch (Exception e) {
return null;

/

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4
© Pearson Education 2005

28

Figure 6.27

Summary of indirect communication styles

Space-
uncoupled

Time- uncoupled
Style of service
Communication
pattern

Main intent

Scalability

Associative

Groups

Yes

Possible

Communication-
based

1-to-many

Reliable
distributed
computing

Limited
No

Instructor’s Guide for Coulouris, Dollimore and Kindberg Distributed Systems: Concepts and Design Edn. 4

Publish-
subscribe systems

Yes

Possible
Communication-
based

1-to-many

Information
dissemination or
EAI; mobile and
ubiquitous
systems

Possible

Content-based
publish-subscribe
only

Message queues

Yes

Yes

Communication-
based

1-to-1

Information
dissemination or
EALI
commercial
transaction
processing

Possible

No

© Pearson Education 2005

DSM

Yes

Yes

State-based

1-to-many

Parallel and
distributed
computation

Limited
No

Tuple spaces

Yes

Yes
State-based

1-1 or 1-to-many

Parallel and
distributed
computation,
mobile and
ubiquitous
systems
Limited

Yes

29

