
From Coulouris, Dollimore, Kindberg and Blair 

Distributed Systems:  

  Concepts and Design 

Edition 5, © Addison-Wesley 2012 

 

Slides for Chapter 6:  

 Indirect Communication 



2 Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5    

©  Pearson Education 2012  

Figure 6.1  

Space and time coupling in distributed systems 



Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.2 

Open and closed groups 

Closed group Open group



Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5    

©  Pearson Education 2012  

Figure 6.3 

The role of group membership management 

Join 

Group 

address 

expansion 

Multicast 

communication 

  Group 

send 

Fail 
Group membership 

management 

Leave 

Process group 



5 Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5    

©  Pearson Education 2012  

Figure 6.4  

The architecture of JGroups 



6 Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5    

©  Pearson Education 2012  

Figure 6.5 

Java class FireAlarmJG 

import org.jgroups.JChannel; 

public class FireAlarmJG {  

public void raise() { 

 try { 

  JChannel channel = new JChannel(); 

   channel.connect("AlarmChannel");  

  Message msg = new Message(null, null, "Fire!");  

  channel.send(msg); 

 }  

 catch(Exception e) {  

 } 

} 



7 Instructor’s Guide for  Coulouris, Dollimore, Kindberg and Blair,  Distributed Systems: Concepts and Design   Edn. 5    

©  Pearson Education 2012  

Figure 6.6 

Java class FireAlarmConsumerJG 

import org.jgroups.JChannel; 

 

    public class FireAlarmConsumerJG {  

         public String await() { 

        try { 

                JChannel channel = new JChannel();  

                channel.connect("AlarmChannel");  

                Message msg = (Message) channel.receive(0);  

                return (String) msg.GetObject(); 

        } catch(Exception e) { 

                return null; 

        } 

    } 

} 



Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.7 

Dealing room system 

Dealer’s computer 

Information 
provider 

Dealer 

External 
source 

External 
source 

Information 
provider 

Dealer 

Dealer 

Dealer 

Notification 

Notification 

Notification 

Notification 

Notification 
Notification 

Notification 

Notification 

Dealer’s computer 

Dealer’s computer Dealer’s computer 

Notification 
Notification 



9 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.8  

The publish-subscribe paradigm 



10 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.9  

A network of brokers 



11 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.10 

The architecture of publish-subscribe systems 



12 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.11 

Filtering-based routing 

upon receive publish(event e) from node x   1  

 matchlist := match(e, subscriptions)   2  

 send notify(e) to matchlist;      3  

 fwdlist := match(e, routing); 4  

 send publish(e) to fwdlist - x; 5 

upon receive subscribe(subscription s) from node x 6  

 if x is client then 7  

  add x to subscriptions; 8  

 else add(x, s) to routing; 9  

 send subscribe(s) to neighbours - x; 10 



13 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.12 

Rendezvous-based routing 

upon receive publish(event e) from node x at node i  

 rvlist := EN(e); 

 if i in rvlist then begin  

  matchlist :=match(e, subscriptions);  

  send notify(e) to matchlist; 

 end 

 send publish(e) to rvlist - i;  

upon receive subscribe(subscription s) from node x at node i 

 rvlist := SN(s);  

 if i in rvlist then 

  add s to subscriptions;  

 else 

   send subscribe(s) to rvlist - i; 



14 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.13  

Example publish-subscribe system 



15 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.14  

The message queue paradigm 



16 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.15  

A simple networked topology in WebSphere MQ 



17 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.16  

The programming model offered by JMS 



18 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.17 

Java class FireAlarmJMS 

import javax.jms.*; 

import javax.naming.*; 

public class FireAlarmJMS { 

 

public void raise() {  

 try {                                                             1 

  Context ctx = new InitialContext(); 2  

  TopicConnectionFactory topicFactory = 3   

  (TopicConnectionFactory)ctx.lookup ("TopicConnectionFactory"); 4 

  Topic topic = (Topic)ctx.lookup("Alarms");  5 

  TopicConnection topicConn =     6 

   topicConnectionFactory.createTopicConnection(); 7 

  TopicSession topicSess = topicConn.createTopicSession(false, 8 

   Session.AUTO_ACKNOWLEDGE);                                           9 

   TopicPublisher topicPub = topicSess.createPublisher(topic); 10; 

  TextMessage msg = topicSess.createTextMessage(); 11  

   msg.setText("Fire!"); 12  

  topicPub.publish(message); 13 

  } catch (Exception e) { 14  

      } 15 

} 

 



19 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.18 

Java class FireAlarmConsumerJMS 

import javax.jms.*;  import javax.naming.*; 

public class FireAlarmConsumerJMS  

public String await() {  

 try {                                                              1  

  Context ctx = new InitialContext(); 2  

  TopicConnectionFactory topicFactory = 3  

   (TopicConnectionFactory)ctx.lookup("TopicConnectionFactory"); 4 

               Topic topic = (Topic)ctx.lookup("Alarms"); 5 

               TopicConnection topicConn =         6 

                       topicConnectionFactory.createTopicConnection();        7 

               TopicSession topicSess = topicConn.createTopicSession(false,        8 

                           Session.AUTO_ACKNOWLEDGE);        9 

               TopicSubscriber topicSub = topicSess.createSubscriber(topic); 10  

               topicSub.start(); 11  

               TextMessage msg = (TextMessage) topicSub.receive(); 12  

               return msg.getText(); 13 

               } catch (Exception e) { 14  

                              return null; 15  

    }16 

} 

 



Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 3    

©  Addison-Wesley Publishers 2000  

Figure 6.19 

The distributed shared memory abstraction 



21 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.20  

The tuple space abstraction 



22 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.21 (1) 

Replication and the tuple space operations [Xu and Liskov 1989] 

write 

1. The requesting site multicasts the write request to all members of the view; 2.

 On receiving this request, members insert the tuple into their replica and 

acknowledge this action;  

3. Step 1 is repeated until all acknowledgements are received. 

read 

1. The requesting site multicasts the read request to all members of the view;  

2. On receiving this request, a member returns a matching tuple to the requestor;  

3. The requestor returns the first matching tuple received as the result of the operation (ignoring others); 4.

 Step 1 is repeated until at least one response is received. 

continued on next slide 



23 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.21 (continued) 

Replication and the tuple space operations [Xu and Liskov 1989] 

take Phase 1: Selecting the tuple to be removed 

Phase 2: Removing the selected tuple 

1. The requesting site multicasts the take request to all members of the view; 

2. On receiving this request, each replica acquires a lock on the associated tuple set and, if the lock cannot 

       be acquired, the take request is rejected; 

3. All accepting members reply with the set of all matching tuples; 

4. Step 1 is repeated until all sites have accepted the request and responded with their set of tuples and the 

       intersection is non-null; 

5. A particular tuple is selected as the result of the operation (selected randomly from the intersection of all 

       the replies); 

6. If only a minority accept the request, this minority are asked to release their locks and phase 1 repeats. 

1. The requesting site multicasts a remove request to all members of the view citing the tuple to be 

     removed; 

2.  On receiving this request, members remove the tuple from their replica, send an acknowledgement           

     and release the lock; 

3. Step 1 is repeated until all acknowledgements are received. 



24 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.22  

Partitioning in the York Linda Kernel 



25 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.23  

The JavaSpaces API 



26 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.24 

Java class AlarmTupleJS 

import net.jini.core.entry.*; 

public class AlarmTupleJS implements Entry {  

 public String alarmType; 

  public AlarmTupleJS() { } 

 } 

 public AlarmTupleJS(String alarmType) {  

  this.alarmType = alarmType;} 

 } 

} 



27 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.25 

Java class FireAlarmJS 

import net.jini.space.JavaSpace;  

public class FireAlarmJS { 

public void raise() {  

 try { 

  JavaSpace space = SpaceAccessor.findSpace("AlarmSpace");  

   AlarmTupleJS tuple = new AlarmTupleJS("Fire!");  

  space.write(tuple, null, 60*60*1000); 

  catch (Exception e) {  

 } 

    } 

} 

 



28 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 16.26 

Java class FireAlarmReceiverJS 

import net.jini.space.JavaSpace;  

public class FireAlarmConsumerJS { 

public String await() {  

 try { 

                    JavaSpace space = SpaceAccessor.findSpace();  

                    AlarmTupleJS template = new AlarmTupleJS("Fire!");  

                    AlarmTupleJS recvd = (AlarmTupleJS) space.read(template, null, 

                                        Long.MAX_VALUE); 

                    return recvd.alarmType; 

 }  

  catch (Exception e) { 

                     return null; 

                  } 

          } 

} 

 



29 Instructor’s Guide for  Coulouris, Dollimore and Kindberg   Distributed Systems: Concepts and Design   Edn. 4    

©  Pearson Education 2005  

Figure 6.27  

Summary of indirect communication styles 


