
From Coulouris, Dollimore, Kindberg and Blair

Distributed Systems:

 Concepts and Design

Edition 5, © Addison-Wesley 2012

Slides for Chapter 9

Web Services

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.1

Web services infrastructure and components

Security

Service descriptions (in WSDL)

Applications

Directory service

Web Services

XML

Choreography

SOAP

URIs (URLs or URNs) HTTP, SMTP or other transport

hire car booking

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.2

The ‘travel agent service’ combines other web services

hotel booking a

Travel Agent

flight booking a

hire car booking
a

Service
Client

flight booking
b

hotel booking b

b

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.3

SOAP message in an envelope

envelope

header

body

header element

body element

header element

body element

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.4

Example of a simple request without headers

m:exchange

env:envelope xmlns:env =namespace URI for SOAP envelopes

m:arg1

env:body

xmlns:m = namespace URI of the service description

Hello
m:arg2

World

In this figure and the next, each XML element is represented by a shaded

box with its name in italic followed by any attributes and its content

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.5

Example of a reply corresponding to the request in Figure 9.4

env:envelope xmlns:env = namespace URI for SOAP envelope

m:res1

env:body

xmlns:m = namespace URI for the service description

m:res2
World

m:exchangeResponse

Hello

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.6

Use of HTTP POST Request in SOAP client-server communication

endpoint address

action

POST /examples/stringer
Host: www.cdk4.net
Content-Type: application/soap+xml
Action: http://www.cdk4.net/examples/stringer#exchange

<env:envelope xmlns:env= namespace URI for SOAP envelope
<env:header> </env:header>
<env:body> </env:body>
</env:Envelope>

S
o

a
p

m
e

s
s
a

g
e

H
T

T
P

h
e

a
d

e
r

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.7

Java web service interface ShapeList

import java.rmi.*;

public interface ShapeList extends Remote {

 int newShape(GraphicalObject g) throws RemoteException; 1

 int numberOfShapes()throws RemoteException;

 int getVersion() throws RemoteException;

 int getGOVersion(int i)throws RemoteException;

 GraphicalObject getAllState(int i) throws RemoteException;

}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.8

Java implementation of the ShapeList server

import java.util.Vector;

public class ShapeListImpl implements ShapeList {

 private Vector theList = new Vector();

 private int version = 0;

 private Vector theVersions = new Vector();

 public int newShape(GraphicalObject g) throws RemoteException{

 version++;

 theList.addElement(g);

 theVersions.addElement(new Integer(version));

 return theList.size();

 }

 public int numberOfShapes(){}

 public int getVersion() {}

 public int getGOVersion(int i){ }

 public GraphicalObject getAllState(int i) {}

}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.9

Java implementation of the ShapeList client

package staticstub;

import javax.xml.rpc.Stub;

public class ShapeListClient {

 public static void main(String[] args) { /* pass URL of service */

 try {

 Stub proxy = createProxy(); 1

 proxy._setProperty 2

 (javax.xml.rpc.Stub.ENDPOINT_ADDRESS_PROPERTY, args[0]);

 ShapeList aShapeList = (ShapeList)proxy; 3

 GraphicalObject g = aShapeList.getAllState(0); 4

 } catch (Exception ex) { ex.printStackTrace(); }

 }

 private static Stub createProxy() { 5

 return

 (Stub) (new MyShapeListService_Impl().getShapeListPort()); 6

 }

}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.10

The main elements in a WSDL description

abstract concrete

how where

definitions

types

target namespace

interface bindings services message

document style request-reply style

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.11

WSDL request and reply messages for the newShape operation

message name = "ShapeList_newShape"

type = "ns:GraphicalObject "

part name ="GraphicalObject_1"

tns – target namespace xsd – XML schema definitions

message name = "ShapeList_newShapeResponse"

part name= "result"

type = "xsd:int"

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.12

Message exchange patterns for WSDL operations

Name

In-Out

In-Only

Robust In-Only

Out-In

Out-Only

Robust Out-Only

Client Server Delivery Fault message

Request Reply may replace Reply

Request no fault message

Request guaranteed may be sent

Reply Request may replace Reply

Request no fault message

Request guaranteed may send fault

Messages sent by

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.13

WSDL operation newShape

operation name = "newShape"

input message = tns:ShapeList_newShape

output message = "tns:ShapeList_newShapeResponse"

pattern = In-Out

tns – target namespace xsd – XML schema definitions

The names operation , pattern, input and output are defined in the XML schema for WSDL

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.14

SOAP binding and service definitions

soap:binding transport = URI

binding

style= "rpc"

endpoint

service
name =

binding = "tns:ShapeListBinding"

soap:address

 location = service URI

name = "MyShapeListService"

name = "ShapeListPort"
for schemas for soap/http

the service URI is:

 operation

 soap:operation
soapAction

ShapeListBinding
tns:ShapeList type =

name= "newShape"

 input

soap:body
 encoding, namespace

soap:body
 encoding, namespace

 output

“http://localhost:8080/ShapeList-jaxrpc/ShapeList”

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.15

The main UDDI data structures

tModel

businessServices

tModel

businessEntity

information

about the publisher

tModel

businessServices human readable

service descriptions
key

key
URL

URL

URL

businessServices

information

about a

family of services

human readable

service interfaces

bindingTemplate

bindingTemplate

bindingTemplate
information
about the

key

service interfaces

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.16

Algorithms required for XML signature

Type of algorithm Name of algorithm Required reference

Message digest SHA-1 Required Section 7.4.3

Encoding base64 Required [Freed and Borenstein 1996]

Signature DSA with SHA-1 Required [NIST 1994]

(asymmetric) RSA with SHA-1 Recommended Section 7.3.2

MAC signature

(symmetric)

HMAC-SHA-1 Required Section 7.4.2 and Krawczyk

et al. [1997]

Canonicalization Canonical XML Required Page 810

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.17

Algorithms required for encryption(in Figure 9.16 are also required)

Type of algorithm Name of algorithm Required reference

Block cipher TRIPLEDES,

AES 128

required Section 7.3.1

AES-192 optional

Encoding base64 required [Freed and Borenstein 1996]

Key transport RSA-v1.5,

RSA-OAEP

required Section 7.3.2
[Kaliski and Staddon 1998]

Symmetric key
wrap (signature
by shared key)

TRIPLEDES
KeyWrap,

AES-128 KeyWrap,

AES 256KeyWrap

required [Housley 2002]

AES-192 KeyWrap optional

Key agreement Diffie-Hellman optional [Rescorla, 1999]

AES-256

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.18

Travel agent scenario

1. The client asks the travel agent service for information about a set of services; for example, flights, car

hire and hotel bookings.

2. The travel agent service collects prices and availability information and sends it to the client, which

chooses one of the following on behalf of the user:

(a) refine the query, possibly involving more providers to get more information, then repeat step 2;

(b) make reservations;

(c) quit.

3. The client requests a reservation and the travel agent service checks availability.

4. Either all are available;

 or for services that are not available;

 either alternatives are offered to the client who goes back to step 3;

 or the client goes back to step 1.

5. Take deposit.

6. Give the client a reservation number as a confirmation.

7. During the period until the final payment, the client may modify or cancel reservations

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 9.19

A selection of Amazon Web Services

