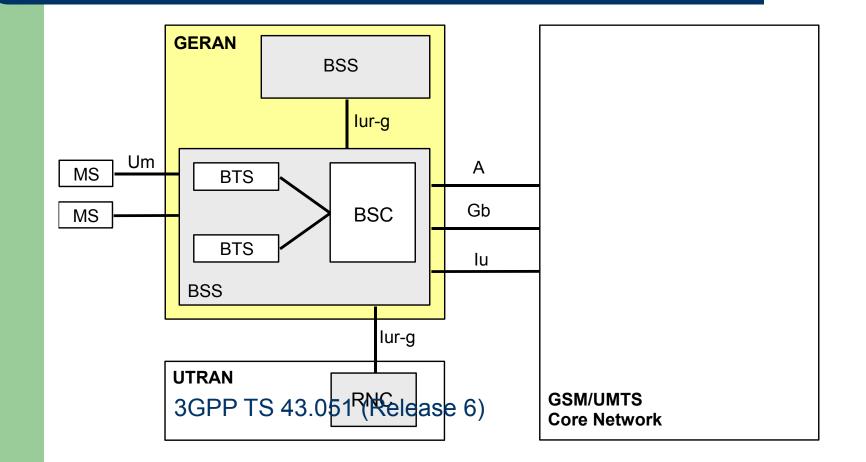
General Packet Radio Service (GPRS)

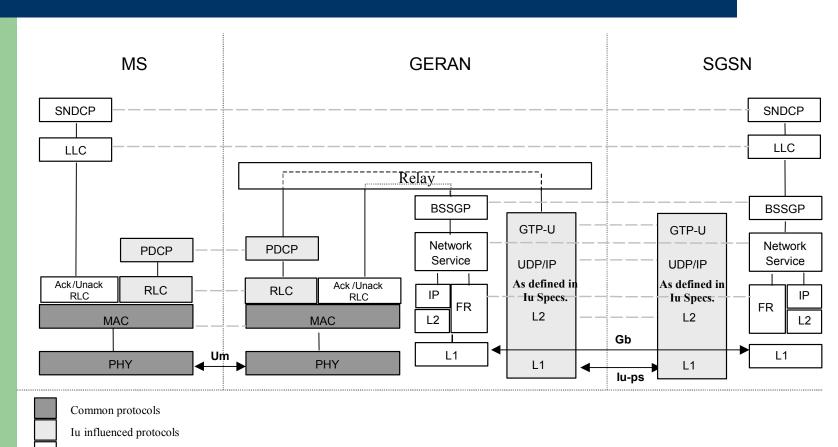

Introduction

- Packet switched data on top of GSM network
- Goals of GPRS:
 - Efficient bandwidth usage for bursty data traffic (e.g. Internet)
 - Higher data rates
 - New charging models
- Initially specified by ETSI
- Specifications handed over to 3GPP

GPRS Release 5/6

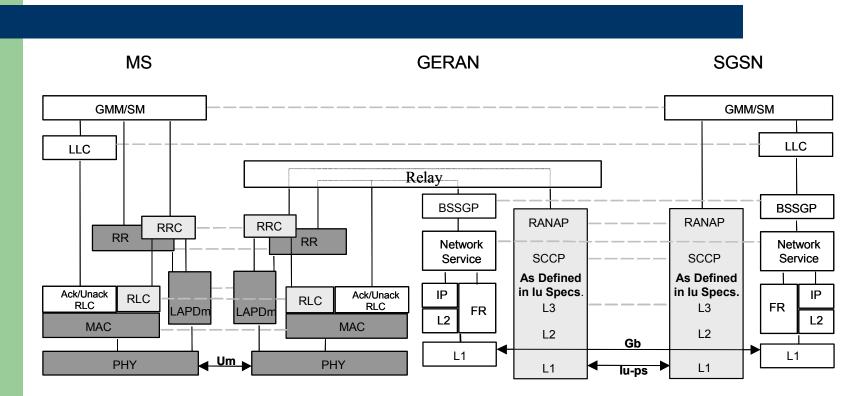
- Two modes determined by generation of core network:
 - 2G core => A/Gb
 - 3G core => lu
- Iu interface added in rel. 5 to align with UMTS

GERAN Reference Architecture


A/Gb mode

- Class A: MS can operate simultaneous packet switched and circuit switched services
- Class B: MS can operate either one at one time
 - Most common for handsets today
- Class C: MS can operate only packet switched services
 - E.g. expansion cards for laptops

lu mode


- CS/PS mode: Same as Class A in A/Gb mode
- PS mode: MS can only operate packet switched services
- CS mode: MS can only operate circuit switched services

User Plane Protocol Architecture

Gb influenced protocols

Control Plane Protocol Architecture

Common protocols

Iu influenced protocols

Gb influenced protocols

Service Types

Point-to-Point

- Internet access by user
- Point-to-Multipoint
 - Delivery of information (e.g. news) to multiple locations or interactive conference applications

Internet (IP) Multimedia Subsystem

- New in Release 5
- Simultaneous access to multiple different types of real-time and non-real-time traffic
- IMS provides synchronization between such components

Radio Interface Protocols

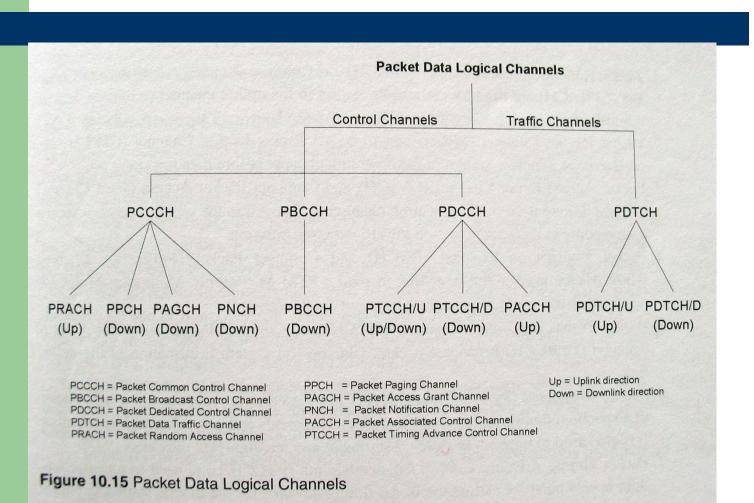
- User plane and Control Plane
- Three layers
 - Layer 1; Physical (PHY)
 - Layer 2; Data Link, Media Access Control (MAC), Radio Link Control (RLC) and Packet Data Convergence Protocol (PDCP)
 - Layer 3; Radio Resource Control (RRC) for lu mode and Radio Resource (RR) for A/Gb mode

Physical Layer

- Combined Frequency Division Multiple Access (FDMA) and Time Division Multiple Access (TDMA) (GSM)
- Channel separation: 200 kHz
- Power output control; find minimum acceptable level
- Synchronization with base station
- Handover
- Quality monitoring

Release 5 Protocol Arch.

- Physical Channels
- Logical, Control and Traffic Channels
- Media Access Control and Radio Link Control
- Radio Resource Control and Radio Resource


Physical Channels

- Defined by timeslot (0-7) and radio frequency channel
- Shared Basic Physical Sub Channel
 - Shared among several users (up to 8)
 - Uplink Stage Flag (USF) controls multiple access
- Dedicated Basic Physical Sub Channel
 - One user

Physical Channels

- Packet Data Channel (PDCH)
 - Dedicated to packet data traffic from logical channels (next slide)
 - Control
 - User data

Logical Channels

Logical Channels

- Mapped by the MAC to physical channels
- Control channels for control, synchronization and signaling
 - Common
 - Dedicated
 - Broadcast
- Packet Traffic channels
 - Encoded speech
 - Encoded data

Control Channels

- Packet Common Control Channel (PCCCH)
 - Paging (PPCH)
 - Random Access (PRACH)
 - Grant (PAGCH)
 - Packet Notification (PNCH)

Control Channels

Packet Dedicated Control Channel (PDCCH)

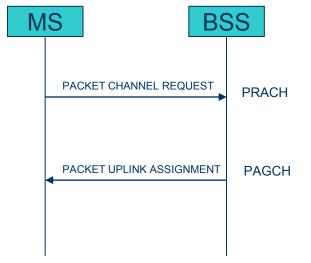
- Operations on DBPSCH
 - Slow Associated Control Channel (SACCH)
 - Radio measurements and data
 - SMS transfer during calls
 - Fast Associated Control Channel (FACCH)
 - For one Traffic Channel (TCH)
 - Stand-alone Dedicated Control Channel (SDCCH)

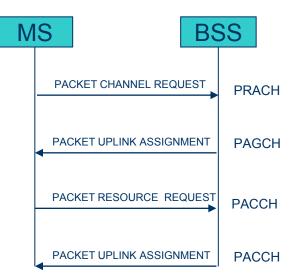
Control Channels

- Packet Broadcast Control Channel (PBCCH)
 - Frequency correction channels
 - Synchronization channel (MS freq. vs. BS)
 - Broadcast control channel for general information on the base station
 - Packet broadcast channels
 - Broadcast parameters that MS needs to access network for packet transmission

Packet Traffic Channels

- Traffic Channels (TCH)
- Encoding of speech or user data
- Channels are either predetermined multiplexed or multiplexing determined by MAC
- Full rate/half rate
- On both SBPSCH and DBPSCH
- Modulation techniques
 - GMSK
 - 8**-**PSK

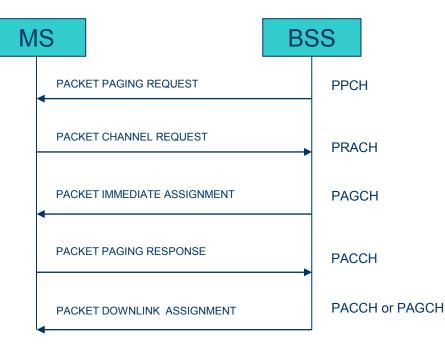

Media Access Control (MAC)


- Connection oriented
- Connections are called Temporary Block Flows (TBF)
 - Logical unidirectional connection between two MAC entities
 - Allocated resources on PDCH(s)
 - One PDCH can accomodate multiple TBFs
 - Temporary Flow Identity (TFI) is unique among concurrent TBFs in the same direction
 - Global_TFI to each station

MAC: TBF Establishment

MS initiated

- One Phase Access, or
- Two Phase Access



TBF Est. By MS: Two Phase Access

TBF Est. By MS: One Phase Access

MAC: TBF Establishment

Network initiated

TBF Est. By Network

MAC: Channel Access & Resource Allocation

- Slotted Aloha
 - Used in PRACH
 - MSs send packets in uplink direction at the beginning of a slot
 - Collision: Back off -> timer (arbitrary) -> re-transmit
- Time Division Multiple Access (TDMA)
 - Predefined slots allocated by BSS
 - Contention-free channel access
 - All logical channels except PRACH

MAC: Resource Allocation Mechanisms

- Uplink State Flag (USF, 3bits) associated with an assigned PDCH (USF on each downlink Radio Block)
- USF_GRANULARITY assigned during TBF est.
- Dynamic Allocation
 - 1. MS finds it's USF in RLC/MAC PDU header. On the next uplink block:
 - 2. If USF_GRANULARITY=0, transmit one radio block
 - 3. If USF_GRANULARITY=1, transmit four cons. radio blocks
- Extended Dynamic Allocation
 - Same as Dynamic, except the four radio blocks are transmitted on different PDCHs
- Exclusive Allocation

Radio Link Control

- Can provide reliability for MAC transmissions
- Transparent mode
 - No functionality
- Acknowledged mode
 - Selective Repeat ARQ
 - Sender: Window
 - Receiver: Uplink ACK/NACK or Downlink ACK/NACK
- Unacknowledged mode
 - Controlled by numbering within TBF
 - No retransmissions
 - Replaces missing packets with dummy information bits

Radio Resource Control/Radio Resource

- Radio resource management
- RRC in lu mode
 - Broadcasts system information
 - Considers QoS requirements and ensures allocation of resources
- RR in A/Gb mode
 - Maintains at least one PDCH for user data and control signaling
- Allocates new DBPSCHs
- Intracell handover of DBPSCHs

QoS Support

- End-to-end QoS may be specified by Service Level Agreements
- Assumes that IP multimedia applications are able to
 - Define their requirements
 - Negotiate their capabilities
 - Identify and select available media components
- GPRS specifies signaling that enable support for various traffic streams
 - Constant/variable bit rate
 - Connection oriented/connection less
 - Etc.

QoS Profile for GPRS Bearers

- Describes applications characteristics and QoS requirements
- 4 parameters:
 - Service precedence
 - 3 classes
 - Reliability parameter
 - 3 classes
 - Delay parameters
 - 4 classes
 - Throughput parameter
 - Maximum and mean bit rates

QoS Profile for GPRS Bearers

- QoS profile is included in Packet Data Protocol (PDP) context
- Negotiation managed through PDP procedures (activation, modification and deactivation)

Packet Classification and Scheduling

- TBF tagged with TFI
- TFI different for each TBF
- Packet scheduling algorithms are not defined by the standard; defined and implemented by GPRS network designers and carriers
- GPRS *can* enable per-flow quantitative QoS services with proper packet classification and scheduling algorithms...Hmmm.

Mobility Management

- Two procedures:
 - GPRS Attach/Detach (towards SGSN/HLR)
 - Makes MS available for SMS over GPRS
 - Paging via SGSN
 - Notification of incoming packet
 - PDP Context Activation/Deactivation
 - Associate with a GGSN
 - Obtain PDP address (e.g. IP)

GPRS Mobile "Station" States

- GPRS protocol stack (MS) can take on 3 different states
 - IDLE
 - STANDBY
 - ACTIVE/READY
- Data can only be transmitted in the ACTIVE state

Routing to MS

• IDLE state

- No logical PDP context activated
- No network address (IP) registered for the terminal
- No routing of external data possible
- Only multicast messages to all GPRS handsets available

Routing to MS

STANDBY state

- Only routing area is known
 - RA is defined by operator => allows individual optimizations
- When downlink data is available, packet paging message is sent to routing area
- Upon reception, MS sends it's cell location to the SGSN and enters the ACTIVE state

Routing to MS

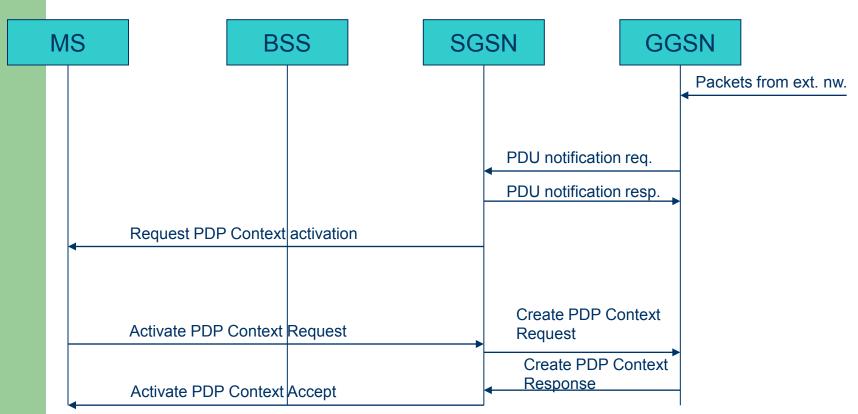
ACTIVE state

- SGSN knows the cell of the MS
- PDP contexts can be activated/deactivated
- Can remain in this state even if not data is transmitted (controlled by timer)

PDP Contexts

• Packet Data Protocol (PDP)

- Session
- Logical tunnel between MS and GGSN
- Anchored GGSN for session
- PDP activities
 - Activation
 - Modification
 - Deactivation


PDP Context Procedures

• MS initiated

PDP Context Procedures

GGSN initiated

Secondary PDP Contexts

- Used when the QoS requirements differ from Primary PDP Context
 - Same IP address
 - Same APN
- E.g., for IMS; signaling on primary PDP context and user data on secondary PDP context

The End...

