File System for Mobile Computing

Quick overview of AFS

Identify the 1ssues for file system design in
wireless and mobile environments

Design Options for mobile file system
Coda File System



Sharing Semantics

« Unix Semantics (Read after write): every operation
on a file 1s 1nstantly visible to all processes.

« Session semantics: a process that intends to write
does so to its own copy. After the process closes the
file, the changes are then made visible to other
pProcesses.

* Close-to-open cache consistency by NFS: clients
flush all changes back to the server on each file
close, and check for file changes on the server on
each file open.



Commonly-used mechanisms and techniques
in distributed file systems

» (Caching at clients
O Exploit temporal locality of reference

O Key issue: the size of cached units. Options: individual
pages of files; whole files, large block

0 Where to maintain? In main memory; on disk

0 Cache validation: client to contact server; server notify
clients when cached data 1s rendered stale

O Spatial locality of a file: read-ahead of file data

 Transferring data in bulk

O Amortize fixed protocol overheads over many
consecutive pages of a file

O Depend on spatial locality of reference within files for
effectiveness



Mechanisms (cont’d)

 Hints

O Improve performance if correct; has no semantically
negative consequence if wrong

o0 Most often used for file location information

* Encryption

O Prevent unauthorized release and modification of
information

* Mount points

O Glue file name spaces into a single, seamless,
hierarchically structured name space

O Two ways: each client individually mounts subtrees from
servers; embed mount information in the data stored in
the file servers.



Andrew File System

* Goal: distributed file system for large-scale systems

* General principles:

O Name space: private client name space, & a globally
shared and location independent name space

0 Unit of sharing: volume (a variable file set forming a
partial subtree of the name space; the basis of disk
quotas)

O Cache coherence: upon each open, contact server to
verify the cache to be up to date (AFS-1)

O Locating server: volume location database (caches
volume <-> server mapping)

O Pathname traversal: client caches directory; client
initiates lookup one at a time; client does lookup



AFS (continued)

* General principle (cont’d)
O Availability: each pathname directory must be available
O State: callback state
0 Caching:

What is cached: status, directory, whole files

Client has 2 caches: status cache (kept in VM) to rapidly service
stat. Calls; data cache (kept in local disk)

Where 1s it cached: disk
Cache size: fixed (64KB)

Modifications propagate on close. Modifications to directory are
immediately visible

No more cache consistency check on open. Cache 1s assumed to
be correct until the client is informed via callback

Callbacks: when a client caches a file, the server promises to
notify it upon any changes (inconsistency)
Callback problems:

— Load at server increases if many clients cache same file

— Client and server may be out of sync (server crash and recovery)



ACID properties for transactions

Atomicity: a transaction either commits or aborts. If
a transaction commuits, all its effects remain;
otherwise, effects are undone.

O Each transaction appears indivisible w.r.t. crashes
Consistency: a transaction 1s a correct
transformation of the system state.

O It preserves the state invariants
[solation/Serializability: concurrent transactions are
isolated from the updates of other incomplete

transactions. These updates do not constitute a
consistent state.

O Transactions appear indivisible to each other

Durability: once a transaction commits, its effects
will persist even 1f there are system failures.




Mobile File Systems

— access the same file as if connected

— retain the same consistency semantics for shared files
as if connected

— availability and reliability as if connected

— ACID (atomic/recoverability, consistent,
isolated/serializablity, durable) properties for
transactions

— disconnection and/or partial connection

— low bandwidth connection

— variable bandwidth and latency connection
— connection cost



Mobile File system

— hoarding: what to pre-fetch

— consistency: what to keep consistent when
connectivity is partial

— emulation: how to operate when disconnected
— conflict resolution: how to resolve conflicts



Design Options for Hoarding

« Application hints (Coda): application provides a
hoarding database
O +: can list all files needed
O --: cannot predict accurately in advance
O --: do not know all system files used

* Prior run (disconnected AFS): application runs the
same program
O +: no need to explicitly provide hoard database
o +: AFS automatically does caching

O --: no single run of application typically brings over all
files

O --: cannot predict all applications
O --: tedious to do “cat filename” for each data file u want



Design Options for Hoarding

* Snapshot spying (updated version of coda): look at
a time window and hoard all files used 1n this time
window

O +: works well along with hoarding database
O -: still has the single run problem

« Semantic distance (Ficus): measure the correlation
between file accesses (e.g. the distance btw. file
opens and closes) and cluster files

O +: based on long term user behavior
O +: independent of a time window

O --: cannot relate concurrent access

O ?: do not know how well 1t works



Options for Hoarding (Cont’d)

» Application context: create working sets for
each application, and load all the files for
desired applications

O +: solves the single run problem
O +: works well for application/system files

O --: still cannot predict which applications user
will run

O --: do not work well for data files (e.g. emacs will
create a working set of all previous data files
unless pruned carefully)



Options for Consistency Management

* Optimistic consistency during disconnection: cannot
contact server during disconnection, so assume NO
conflict

O +: allows disconnected operation

O --: causes potential conflict

« Conservative consistency policy: lock the file before
disconnection (or when callback recall fails)

O +: prevents conflicts

O --:1f a portable caches files and disconnects, backbone
users cannot access file (I.e., requires full connectivity
among clients currently caching a file)



Consistency Management

* Conservative on shared files, optimistic on private
files: monitor file sharing activity at server (how
many users perform concurrent read/write sharing
of a file), and be conservative for read/write shared
files

O +: reduces conflict while improving access to unshared
files

O --: cannot accurately monitor files, particularly when
servers are replicated and network may be partitioned
* Replay: when the communication pipe is thin,
replay the actions (commands) rather than keep files
consistent
O +: good for actions that create large files (e.g. gcc)
O --: significant processing overhead

O --: almost impossible to keep environments and context
fully consistent



Consistency Management

* Block-by-block consistency: when the
communication pipe 1s thin, fetch/update critical
blocks on demand

O +: works well in conjunction with (3), can propagate
changes to files which are known to be shared more often

O --: needs optimistic concurrency as backup
O --: does not use application semantics

* Application-dependent consistency: application
imposes structure on file and specifies which parts
of the file need to be kept consistent

O +: semantic consistency users bandwidth intelligently
O +: can work for both aware and unaware applications
O --: complex mechanisms to handle unstructured files

O --: per-user mechanism, since different applications may
potentially use different templates on the same file



Emulation
 Goal: client emulates whatever basic distributed file

system 1s being adapted to support disconnection

 Tasks involved:

O Create files
» Can either create temporary or permanent file 1ds
« Can hoard the directory structure in order to reduce potential
conflicts
O Maintain logs:
» For session semantics (1), log only file-mutating closes
 For replay semantics (4), log all operations
» For block-by-block semantics (5), log all writes

 For application-dependent semantics (6), log only writes which
need to be kept consistent

» Compress logs by deleting entries upon unlink, overwrites, etc.
O Propagate logs:

« Upon partial or total reconnection, propagate log back to server
 Can prioritize updates to propagate



Contlict Detection

* Detect write-write conflicts: detect conflict
conservatively when the same base version of the
file has been updated concurrently during
disconnection by both the portable and the
backbone

O +: simple
O --: inadequate 1n some cases

» Detect read-write and write-write conflicts: provide

serializability
O +: satisfies a key requirement for transactions

O --: complex



Contlict detection and resolution

« Application specific conflict detection procedures:
application provides the rules to detect conflicts and
merge updates when files have been updated
concurrently

o +: works well for structured files
O --: cumbersome and difficult for unstructured files

* Ownership: owner has the “correct” copy in case of

conflict
O +: simple semantics

O --: some external resolution still needs to be performed by

user who is notified that his/her changes have been
discarded



Contlict resolution

« Application specific conflict resolution procedures:
application provides the rules to resolve conflicts
O +: can automate fully
O --: very difficult to write applications in such an
environment without adequate library support
» Multi-level read-write: need to introduce multi-level
read/write semantics

O All reads and writes are provisional until they have been
propagated and conflicts have been resolved

O Notion of provisional vs. committed operations



Main Features for Coda

Main goals: availability and scalability
Disconnected operation for mobile computing

High performance thru client side persistent caching
Server replication

Security support

Continued operation during partial network failures
in server networks

Good scalability
Application transparent adaptation

Well defined semantics of sharing, even 1n the
presence of network failures



Trickle Reintegration

A mechanism that propagates updates to the
servers asyn., while minimally impacting
foreground activity

Deferring the update propagation to servers,
Conceptually similar to write-back caching

Make write-disconnect state permanent

Keep log optimization thru an aging window



Mobile File Systems

hoard, cache or prefetch part/whole files: what to cache, where to
cache, what grain to cache at

a variety of consistency semantics: optimistic, conservative,
application-dependent, block-by-block,

relaxed properties (e.g. only isolation) for transactions

reconciliation upon reconnection: when to propagate updates,
which updates to propagate given limited/partial connection
capability, how to resolve detected conflicts

application-level hints or directions for caching/consistency/partial
consistency: use of semantics for validation, caching and
consistency

profiling for hoarding/caching

reservation of system resources, and loss profiles to arbitrate
between applications during conflict



