
File System for Mobile Computing

• Quick overview of AFS

• Identify the issues for file system design in

wireless and mobile environments

• Design Options for mobile file system

• Coda File System

Sharing Semantics

• Unix Semantics (Read after write): every operation

on a file is instantly visible to all processes.

• Session semantics: a process that intends to write

does so to its own copy. After the process closes the

file, the changes are then made visible to other

processes.

• Close-to-open cache consistency by NFS: clients

flush all changes back to the server on each file

close, and check for file changes on the server on

each file open.

Commonly-used mechanisms and techniques
in distributed file systems

• Caching at clients

 Exploit temporal locality of reference

 Key issue: the size of cached units. Options: individual
pages of files; whole files, large block

 Where to maintain? In main memory; on disk

 Cache validation: client to contact server; server notify
clients when cached data is rendered stale

 Spatial locality of a file: read-ahead of file data

• Transferring data in bulk

 Amortize fixed protocol overheads over many
consecutive pages of a file

 Depend on spatial locality of reference within files for
effectiveness

Mechanisms (cont’d)

• Hints

 Improve performance if correct; has no semantically
negative consequence if wrong

 Most often used for file location information

• Encryption

 Prevent unauthorized release and modification of
information

• Mount points

 Glue file name spaces into a single, seamless,
hierarchically structured name space

 Two ways: each client individually mounts subtrees from
servers; embed mount information in the data stored in
the file servers.

Andrew File System

• Goal: distributed file system for large-scale systems

• General principles:

 Name space: private client name space, & a globally
shared and location independent name space

 Unit of sharing: volume (a variable file set forming a
partial subtree of the name space; the basis of disk
quotas)

 Cache coherence: upon each open, contact server to
verify the cache to be up to date (AFS-1)

 Locating server: volume location database (caches
volume <-> server mapping)

 Pathname traversal: client caches directory; client
initiates lookup one at a time; client does lookup

AFS (continued)
• General principle (cont’d)

 Availability: each pathname directory must be available

 State: callback state

 Caching:

• What is cached: status, directory, whole files

• Client has 2 caches: status cache (kept in VM) to rapidly service
stat. Calls; data cache (kept in local disk)

• Where is it cached: disk

• Cache size: fixed (64KB)

• Modifications propagate on close. Modifications to directory are
immediately visible

• No more cache consistency check on open. Cache is assumed to
be correct until the client is informed via callback

• Callbacks: when a client caches a file, the server promises to
notify it upon any changes (inconsistency)

• Callback problems:

– Load at server increases if many clients cache same file

– Client and server may be out of sync (server crash and recovery)

ACID properties for transactions
• Atomicity: a transaction either commits or aborts. If

a transaction commits, all its effects remain;
otherwise, effects are undone.

 Each transaction appears indivisible w.r.t. crashes

• Consistency: a transaction is a correct
transformation of the system state.

 It preserves the state invariants

• Isolation/Serializability: concurrent transactions are
isolated from the updates of other incomplete
transactions. These updates do not constitute a
consistent state.

 Transactions appear indivisible to each other

• Durability: once a transaction commits, its effects
will persist even if there are system failures.

Mobile File Systems
• Requirements:

– access the same file as if connected

– retain the same consistency semantics for shared files
as if connected

– availability and reliability as if connected

– ACID (atomic/recoverability, consistent,
isolated/serializablity, durable) properties for
transactions

• Constraints:

– disconnection and/or partial connection

– low bandwidth connection

– variable bandwidth and latency connection

– connection cost

Mobile File system

• Four major aspects of disconnected or
partially connected operations:

– hoarding: what to pre-fetch

– consistency: what to keep consistent when
connectivity is partial

– emulation: how to operate when disconnected

– conflict resolution: how to resolve conflicts

Design Options for Hoarding

• Application hints (Coda): application provides a
hoarding database

 +: can list all files needed

 --: cannot predict accurately in advance

 --: do not know all system files used

• Prior run (disconnected AFS): application runs the
same program

 +: no need to explicitly provide hoard database

 +: AFS automatically does caching

 --: no single run of application typically brings over all
files

 --: cannot predict all applications

 --: tedious to do “cat filename” for each data file u want

Design Options for Hoarding

• Snapshot spying (updated version of coda): look at
a time window and hoard all files used in this time
window

 +: works well along with hoarding database

 -: still has the single run problem

• Semantic distance (Ficus): measure the correlation
between file accesses (e.g. the distance btw. file
opens and closes) and cluster files

 +: based on long term user behavior

 +: independent of a time window

 --: cannot relate concurrent access

 ?: do not know how well it works

Options for Hoarding (Cont’d)

• Application context: create working sets for

each application, and load all the files for

desired applications

 +: solves the single run problem

 +: works well for application/system files

 --: still cannot predict which applications user

will run

 --: do not work well for data files (e.g. emacs will

create a working set of all previous data files

unless pruned carefully)

Options for Consistency Management

• Optimistic consistency during disconnection: cannot

contact server during disconnection, so assume NO

conflict

 +: allows disconnected operation

 --: causes potential conflict

• Conservative consistency policy: lock the file before

disconnection (or when callback recall fails)

 +: prevents conflicts

 --: if a portable caches files and disconnects, backbone

users cannot access file (I.e., requires full connectivity

among clients currently caching a file)

Consistency Management
• Conservative on shared files, optimistic on private

files: monitor file sharing activity at server (how
many users perform concurrent read/write sharing
of a file), and be conservative for read/write shared
files

 +: reduces conflict while improving access to unshared
files

 --: cannot accurately monitor files, particularly when
servers are replicated and network may be partitioned

• Replay: when the communication pipe is thin,
replay the actions (commands) rather than keep files
consistent

 +: good for actions that create large files (e.g. gcc)

 --: significant processing overhead

 --: almost impossible to keep environments and context
fully consistent

Consistency Management

• Block-by-block consistency: when the
communication pipe is thin, fetch/update critical
blocks on demand

 +: works well in conjunction with (3), can propagate
changes to files which are known to be shared more often

 --: needs optimistic concurrency as backup

 --: does not use application semantics

• Application-dependent consistency: application
imposes structure on file and specifies which parts
of the file need to be kept consistent

 +: semantic consistency users bandwidth intelligently

 +: can work for both aware and unaware applications

 --: complex mechanisms to handle unstructured files

 --: per-user mechanism, since different applications may
potentially use different templates on the same file

Emulation
• Goal: client emulates whatever basic distributed file

system is being adapted to support disconnection

• Tasks involved:

 Create files

• Can either create temporary or permanent file ids

• Can hoard the directory structure in order to reduce potential
conflicts

 Maintain logs:

• For session semantics (1), log only file-mutating closes

• For replay semantics (4), log all operations

• For block-by-block semantics (5), log all writes

• For application-dependent semantics (6), log only writes which
need to be kept consistent

• Compress logs by deleting entries upon unlink, overwrites, etc.

 Propagate logs:

• Upon partial or total reconnection, propagate log back to server

• Can prioritize updates to propagate

Conflict Detection

• Detect write-write conflicts: detect conflict

conservatively when the same base version of the

file has been updated concurrently during

disconnection by both the portable and the

backbone

 +: simple

 --: inadequate in some cases

• Detect read-write and write-write conflicts: provide

serializability

 +: satisfies a key requirement for transactions

 --: complex

Conflict detection and resolution

• Application specific conflict detection procedures:
application provides the rules to detect conflicts and
merge updates when files have been updated
concurrently

 +: works well for structured files

 --: cumbersome and difficult for unstructured files

• Ownership: owner has the “correct” copy in case of
conflict

 +: simple semantics

 --: some external resolution still needs to be performed by
user who is notified that his/her changes have been
discarded

Conflict resolution

• Application specific conflict resolution procedures:

application provides the rules to resolve conflicts

 +: can automate fully

 --: very difficult to write applications in such an

environment without adequate library support

• Multi-level read-write: need to introduce multi-level

read/write semantics

 All reads and writes are provisional until they have been

propagated and conflicts have been resolved

 Notion of provisional vs. committed operations

Main Features for Coda

• Main goals: availability and scalability

• Disconnected operation for mobile computing

• High performance thru client side persistent caching

• Server replication

• Security support

• Continued operation during partial network failures
in server networks

• Good scalability

• Application transparent adaptation

• Well defined semantics of sharing, even in the
presence of network failures

Trickle Reintegration

• A mechanism that propagates updates to the

servers asyn., while minimally impacting

foreground activity

• Deferring the update propagation to servers,

Conceptually similar to write-back caching

• Make write-disconnect state permanent

• Keep log optimization thru an aging window

Mobile File Systems
• Options:

– hoard, cache or prefetch part/whole files: what to cache, where to
cache, what grain to cache at

– a variety of consistency semantics: optimistic, conservative,
application-dependent, block-by-block,

– relaxed properties (e.g. only isolation) for transactions

– reconciliation upon reconnection: when to propagate updates,
which updates to propagate given limited/partial connection
capability, how to resolve detected conflicts

– application-level hints or directions for caching/consistency/partial
consistency: use of semantics for validation, caching and
consistency

– profiling for hoarding/caching

– reservation of system resources, and loss profiles to arbitrate
between applications during conflict

