Dynamic Source Routing in Ad Hoc Wireless Networks

Background

Difficult problem

- Wireless communication
- Dynamic topology
- Frequent link broken and network partition

- No single protocol works well in all cases
- Many proposed protocols only address a sub-space of the problem domain
 - DSR only works for mobile ad hoc networks with middle or small size and nodes' speed is moderate and every node has enough energy

Classification of Unicast Ad-Hoc Routing Protocols

Trade-Off Between Proactive and Reactive

- Latency of route discovery
 - Proactive protocols have lower latency since routes are maintained all times
 - Reactive protocols have higher latency because a node needs to find a route when it has data to send
- Overhead of route maintenance
 - Reactive protocols have lower overhead since routes are maintained ed only if they are needed
 - Proactive protocols have higher overhead due to continuous route updating
- Which approach achieves a better trade-off depends on the traffic and mobility patterns
 - If most nodes always have data to send and nodes' mobility is high, proactive protocols may produce higher routing efficiency
 - If only a few nodes have data to send and nodes' mobility is low, reactive protocols may produce higher routing efficiency

Basic Assumptions in DSR

- All nodes are willing to forward packets for other nodes in the network
- The diameter of an ad-hoc network will not be too larger
 Packet header will be bigger than payload if route is very longer
- The node's speed is moderate
 Local route cache will become stale soon if node's speed is high
- All nodes are overhearing (promiscuous)
 No energy saving

- When S sends a data packet to D, the entire route is included in the packet header
- Intermediate nodes use the source route embedded in the packet's header to determine to whom the packet should be forwarded
- Different packets may have different routes, even they have the same source and destination

Hence called as dynamic source routing

Basic For DSR

- Two basic mechanisms
 - Route Discovery
 - o Route Request (RREQ)
 - o Route Reply (RREP)

Route Maintenance

o Route Error (RERR)

- Key optimization
 - Each node maintains a route cache
 - o Overhears data, RREQ, RREP, and RERR packets
 - o Passively collects new routes as many as possible
 - o Reduces the cost of Route Discovery and Route Maintenance

Route Discovery

- When to perform a Route Discovery ?
- Every route request packet (RREQ) contains <target address, initiator address, route record, request ID>
- Each node maintains a list of the < initiator address, request ID>
- When a node Y receives a RREQ
 - Discards the route request packet
 - if < initiator address, request ID> is in its list
 - * Return a route reply packet which contains a route from initiator to target
 - If Y is target
 - If Y has an entry in its route cache for a route to target
 - Append itself address to the route record in RREQ and re-broadcast RREQ

Represents a node that has received RREQ for D from S

Route Discovery in DSR

Represents transmission of RREQ

[X,Y] Represents route record stored in RREQ

Route Discovery in DSR

• Node H receives packet RREQ from two neighbors: potential for collision

• C receives RREQ from G and H, but does not forward it again, because C has already forwarded RREQ once

Route Discovery in DSR

J and K both broadcast RREQ to D Their transmissions may collide at D

D does not forward RREQ, because **D** is the intended target

Route Reply in DSR

More Details For Route Reply in DSR

- Destination D on receiving the first RREQ, sends a Route Reply (RREP)
- RREP includes the route from S to D
- How Route Reply packet is sent to S?
 - Route Reply can be sent by reversing the route in Route Request (RREQ)
 If links are bi-directional
 - * If unidirectional (asymmetric) links are allowed, then a route to S is needed
 - Local route cache has a route to S
 - Piggybacking Route Reply in Route Request packet for S

J sends a route error to S along route J-F-E-S when it finds link [J-D] broken

Nodes hearing RERR update their route cache to remove all invalid routes related with link J-D

More Details about Route Maintenance

Route [S, node-1, node-2,, node-k, D]

Hop-by-hop maintenance (MAC or network layer)

- ✤ How to find link [node-i,node(i+1)] is down ?
 - Utilize MAC level acknowledgement
 - Passive acknowledge (overhearing node(i+1) re-transmission)
 - Insert a bit in packet header to ask an explicit acknowledgement from node(i+1)
- How to send route error packet to S?
 - o Use the reverse route [node-i,node(i-1),,node-1, S]
 - ${\scriptstyle o}$ Use node-i route cache to get a route to ${\scriptstyle S}$
 - o Piggybacking route error packet in route discovery packet S

End-to-end maintenance (transport or application layer)

* D sends ACK to S to indicate the route status

* But S does not know which link is broken

DSR Optimization: Route Caching

Each node caches a new route it learns by *any means*

- When S finds route [S,E,F,J,D] to D, S also learns route [S,E,F] to F
- When K receives Route Request [S,C,G] destined for some node D, K learns route [K,G,C,S] to S if links are bi-directional
- F forwards Route Reply RREP [S,E,F,J,D], F learns route [F,J,D] to D
- When E forwards Data [S,E,F,J,D] it learns route [E,F,J,D] to D

Use of Route Caching Can Speed up Route Discovery

When node Z sends a route request for node C, node K sends back a route reply [Z,K,G,C] to node Z using a locally cached route

Use of Route Caching Can Reduce Propagation of Route Requests

Route Replies (RREP) from node K and D limit flooding of RREQ.

Route Caching: Beware!

• With time passing and node moving, cached routes may become invalid

Stale caches can adversely affect on network performance

Stale or invalid information may be propagated to whole network

Other DSR Optimizations (1)

Avoid Route Reply Storm problem

When intermediate nodes reply Route Request by using local route cache

• Pick a random number d=H*(h-1+r)

H= average per hop delay; h= length of the route; r = random num in [0,1]

- o Delay transmitting the route reply for a period of d
- During this period, cancel the route reply if overhearing a packet contains a route from the same initiator to the same target with length no longer than h

Other DSR Optimizations (2)

Expanding Ring (limits the propagation of RREQ packets)

- First, set TTL = 1 for first route request packet
- If no route reply is received after some time period, set TTL = maximum for next route request packet

Other DSR Optimizations (3)

Reflecting shorter route

D may find that route may be shortened by excluding the intermediate hop C, D then sends an unsolicited route reply packet to A to inform the shorter route

Improved handling of errors due to network partitions

- Limit the rate of route discovery packet transmission
 - Exponential backoff

Other DSR Optimizations (4)

Improved handling of route errors if links are unidirectional

S retransmits route error packet along the original route if links are unidirectional

Simulation Parameters

C= 100 kbpsMedium size room: 9 by 9 metersVelocity: 0.3~0.7 meter/secondTransceiver range 3 metersError Rate = 5%Packet sizes: 1000 Bytes (75%) or 32 Bytes (25%)Packet inter arrival time in a conversation : exponential distribution with mean 2~5 packets/secondConversation life time: exponential distribution with mean 15 second

Total packets of a conversation : geometric distribution with mean 1000 packets

Parameter	Value
Period between nonpropagating route requests	5 sec.
Nonpropagating route request time out	100 msec.
Route request time out	500 msec.
Route request slot length	500 msec.
Maximum route request period	10 sec.
Route reply holdoff per-hop delay (H)	4 msec.

Table 1 Parameter values used in the simulation

Low Overhead

Mobility pattern: Each node pauses at its current position for a period (pause time) and then randomly choose a new location to move to. This behavior is repeated by every node

Num transmits: sum of (packet)*(route length) Optimal num transmits: sum of (data packet)* (optimal route length)

Figure 5 Average total number of transmissions performed relative to optimal (20 runs)

Suboptimal Route

Average route length: DSR routes Optimal route length : ideal routes

Figure 7 Average route length used relative to optimal (20 runs)

Dynamic Source Routing: Advantages

Routes are discovered only they are needed
 Reduces overhead of route maintenance

Route caching reduce the cost of route discovery

A single route discovery may yield many routes to the destination, due to intermediate nodes may reply route request from local caches

Does not require symmetric links

Dynamic Source Routing: Disadvantages

- Packet header size grows with route length due to source routing
 Inefficiency
- Route request packet may potentially reach all nodes in the network
 * RREQ flooding
- Route requests may collide at the targeted node
 Pay so much but get nothing
- Every node needs to turn on its receiver all the time
 No energy saving
- Increased contention if too many route replies come back
 Route Reply *Storm*
- An intermediate node may send Route Reply using a stale cached route, thus polluting other nodes' caches
 Mess up routing and forwarding