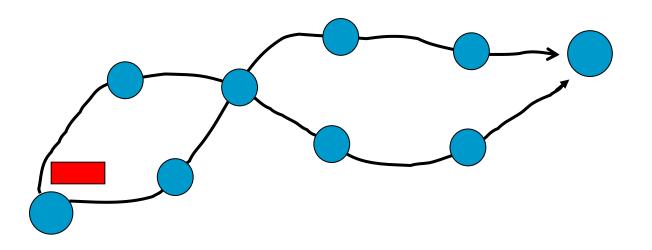
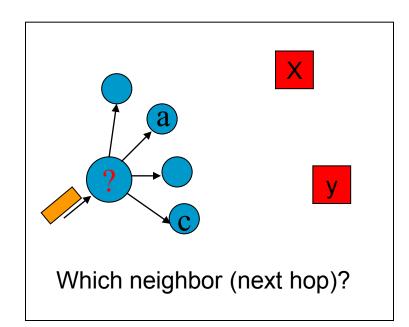


Routing Protocols In Ad Hoc Networks

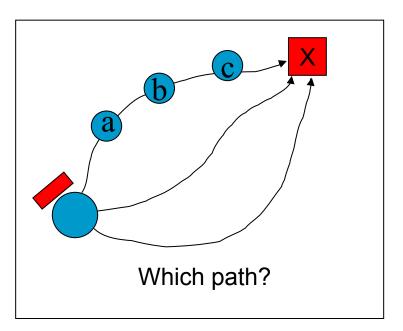

Two Approaches

Traditional routing algorithms adapted to ad hoc networks

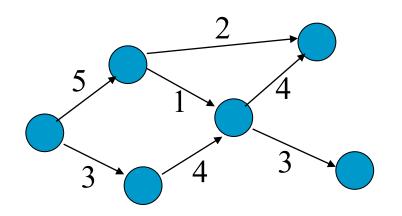
Geographical routing


Review of Routing

Next-hop routingSource routingFlooding

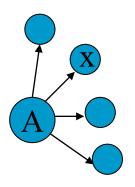

Next-Hop Routing

destination	next hop	cost
X	а	3
У	с	5
•••		


Source Routing

destination	path	cost
X	(a, b, c)	
У		
•••		

Link-State Routing


- Each node periodically broadcasts the link states of its outgoing links to the entire network (by flooding).
- As a node receives this information, it updates its view of the network topology and routing table.

Distance-Vector Routing

 least-cost(A,B) = min {cost(A,x) + least-cost(x,B): for all neighbors, x, of A}
 Neighbors exchange distance vectors

Destination	A	В	С	D	E	F	G
Distance	0	10	• • •				

Routing in MANETs

Every node works as a router

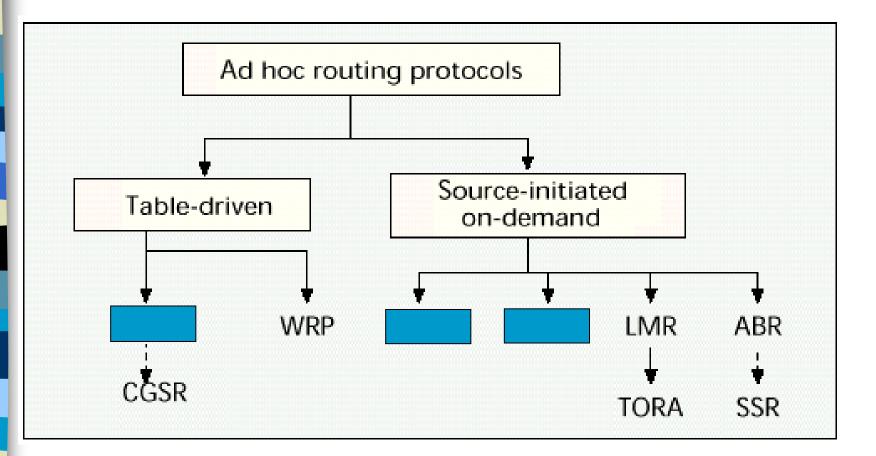
Challenges

- Quick topology changes
- Scalability

Two Approaches

Like existing Internet routing protocols

On-demand


Table-Driven Routing Protocols

- Also called proactive routing protocols
- Continuously evaluate the routes
- Attempt to maintain consistent, up-to-date routing information
 - >when a route is needed, it is ready immediately
- When the network topology changes
 - The protocol responds by propagating updates throughout the network to maintain a consistent view

On-Demand Routing Protocols

- Also called reactive routing protocols
- Discover routes when needed by the source node.
- Longer delay

Early Ad Hoc Routing Protocols

DSDV: Destination Sequence Distance Vector

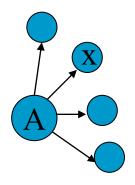
- "Highly Dynamic Destination-Sequence Distance-Vector Routing (DSDV) for Mobile Computers"
- Charles E. Perkins & Pravin Bhagwat
- Computer Communications Review, 1994pp. 234-244

DSDV Overview

- DSDV = destination-sequenced distancevector
- Distance-vector routing
- Each entry is tagged with a sequence number originated by the destination node.

Destination	A	В	C	D	E	F	G
Distance	0	10	•••				
Sequence #							

DSDV Route Advertisement


- Each node periodically broadcasts its distance vector.
 - * "broadcast" is limited to one hop.
 - sequence numbers
 - For the sender's entry: Sender's new sequence number (typically, +1)
 - For other entries: originally "stamped" by the destination nodes

Destination	A	В	C	D	E	F	G
Distance	0	10	•••				
Sequence #							

DSDV Route Updating Rules

Paths with more recent seq. nos. are always preferred.

least-cost(A,B) = min {cost(A,x) + least-cost(x,B): for all neighbors, x, of A}

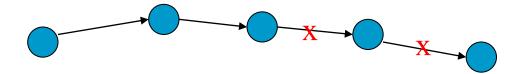
DSR
AODV
ABR
SSR
ZRP

DSR: Dynamic Source Routing

- "Dynamic Source Routing in Ad-Hoc Wireless Networks"
- D. B. Johnson and D. A. Maltz
- Mobile Computing, 1996
- **pp.** 153-181

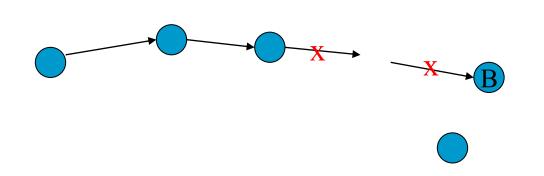
DSR : Outline

- Source Routing
- On-demand
- Each host maintains a route cache containing all routes it has learned.
- Two major parts:
 - route discovery
 - route maintenance


Route Discovery of DSR

- To send a packet, a source node first consults its route cache.
- ✤ If there is an unexpired route, use it.
- Otherwise, initiate a route discovery.
- Route Discovery:
 - Source node launches a ROUTE_REQUEST by flooding.
 - ✤ A ROUTE_REPLY is generated when
 - b the route request reaches the destination
 - an intermediate node has an unexpired route to the destination

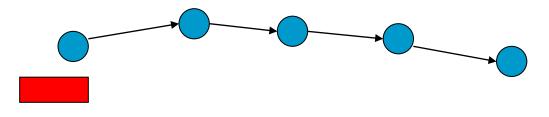
Stale Route Cache Problem


Definition:

A cached route may become stale before it expires.

Route Maintenance of DSR

- When a node detects a link breakage, it generates a ROUTE_ERROR packet.
 - The packet traverses to the source in the backward direction.
 - The source removes all contaminated routes, and if necessary, initiates another ROUTE_REQUEST.


AODV: Ad-Hoc On-Demand Distance Vector Routing

- "Ad-hoc On-Demand Distance Vector Routing"
- Charles E Perkins, Elizabeth M Royer
- Proc. 2nd IEEE Wksp. Mobile Comp. Sys. and Apps., Feb. 1999.

AODV : Outline

- Next-hop Routing (cf. DSR: source routing)
- On-demand
- Each host maintains a routing table
- Two major parts:
 - route discovery (by flooding)
 - route maintenance

AODV vs. DSR

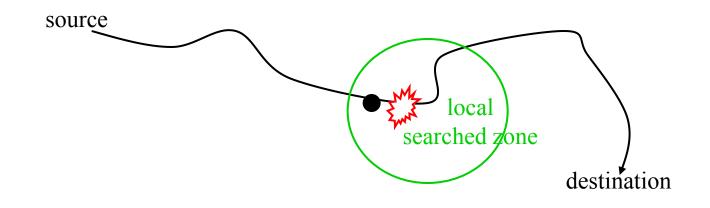
DSR: Routes are discovered and cachedAODV: Next-hop info is stored

Performance Comparison of Two On-Demand Routing Protocols for Ad Hoc Networks," Personal Communications, February 2001

ABR: Associativity-Based Routing

"Associativity-Based Routing for Ad-Hoc Mobile Networks," C.K. Toh.

- ABR considers the stability of a link.
 called the degree of association stability.
 - measured by the number of beacons received from the other end of the link.
 - The higher degree of a link's stability, the lower mobility of the node at the link's other end.


ABR Outline

Route Discovery:

- Same as DSR except the following.
- Each ROUTE_REQUEST packet collects the association stability information along its path to the destination.
- The destination node selects the best route in terms of association stability.

Route Reconstruction:

- On route error, a node performs a local search in hope of repairing the path.
- If the local search fails, a ROUTE_ERROR is reported to the source.

SSA: Signal Stability-Based Adaptive Routing

- "Signal Stability-Based Adaptive Routing (SSA) for Ad Hoc Wireless Networks"
- University of Maryland
- R. Dube, C. D. Rais, K.-Y. Wang & S. K. Tripathi
- IEEE Personal Communications, '97

Basic Idea of SSA

Observation:

The ABR only considers the connectivity stability.

Two more metrics:

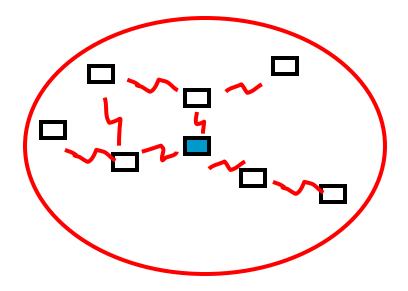
signal stability:

> the strength of signal over a link

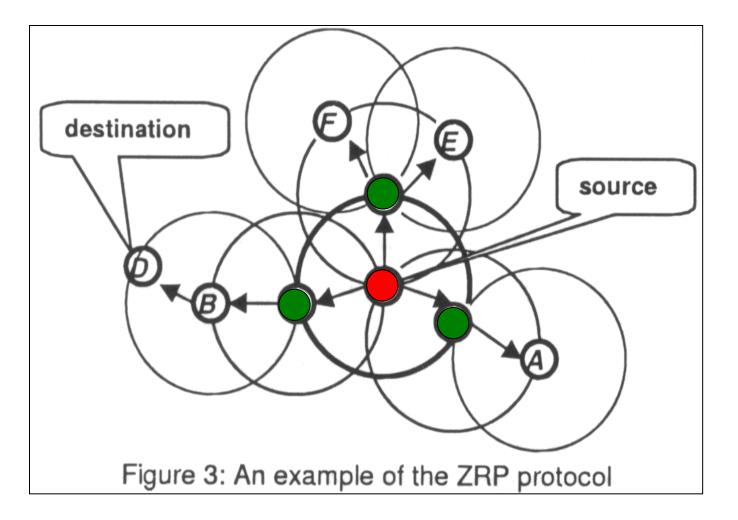
Iocation stability

≻how fast a host moves

ZRP: Zone Routing Protocol

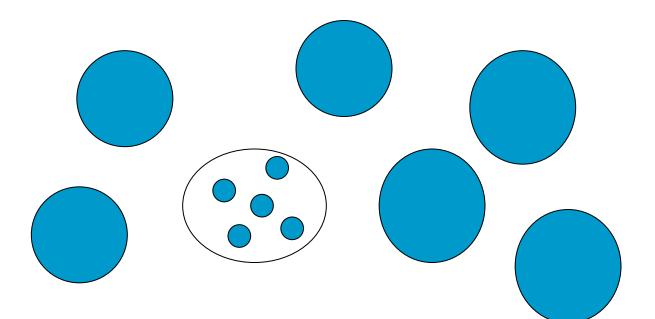

- The Zone Routing Protocol (ZRP) for Ad Hoc Networks
- Cornell University
- Z.J. Haas and M.R. Pearlman
- draft-ietf-manet-zone-zrp-01.txt, 1998

ZRP Outline


- Hybrid of table-driven and on-demand!!
- Each node is associated with a zone.
- Within a zone: table-driven (proactive) routing.
- Inter-zone: on-demand routing (similar to DSR).

Route Discovery

By an operation called "boardercast":
 sending the route-request to boarder nodes


ZRP Example

Scalability Problem in Large-Scale Network Routing

Internet solution

Geographic Routing

Assumptions

Each node knows of its own location.
 • outdoor positioning device:
 • GPS: global positioning system
 • accuracy: in about 5 to 50 meters

indoor positioning device:

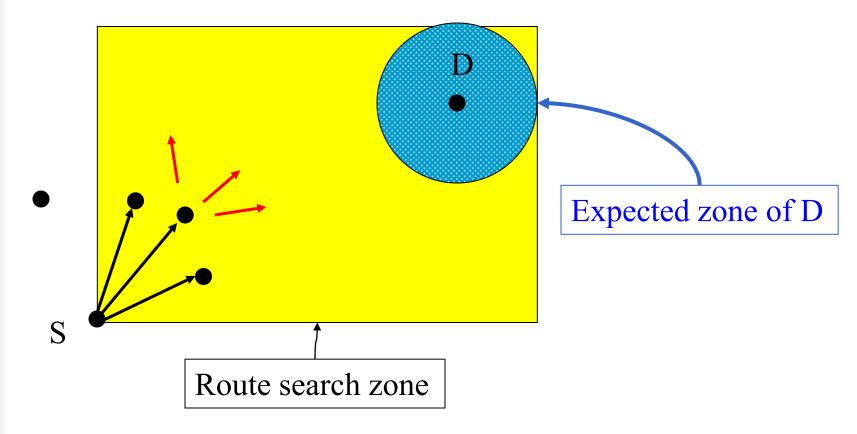
>Infrared

➢ short-distance radio

The destination's location is also known.
 How? (via a location service)

LAR: Location-Aided Routing

- Location-Aided Routing (LAR) in mobile ad hoc networks
- Young-Bae Ko and Nitin H. Vaidya
- Texas A&M University
- Wireless Networks 6 (2000) 307–321


Basic Idea of LAR

All packets carry sender's current location.

This info enables nodes to learn of each other's location.

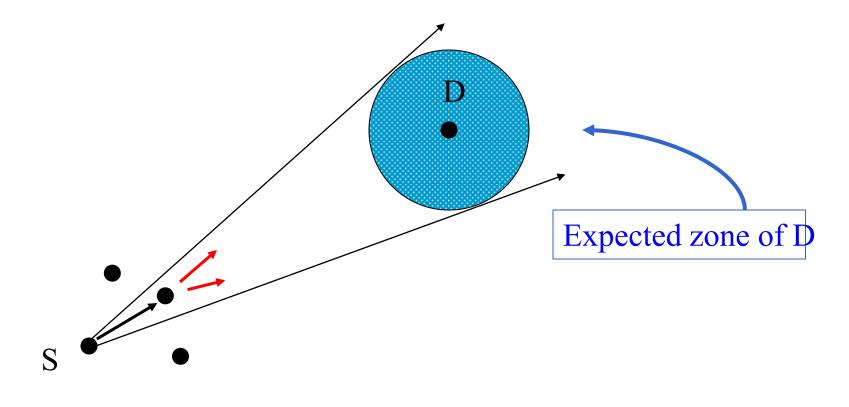
Basic Idea of LAR (cont.)

Same as DSR, except that if the destination's location is known, the ROUTE_REQ is only flooded over the "route search zone."

DREAM

- A Distance Routing Effect Algorithm for Mobility (DREAM)
- S. Basagni, I. Chlamtac, V.R. Syrotiuk,
 B.A. Woodward
- The University of Texas at Dallas
- Mobicom'98

Basic Idea of DREAM

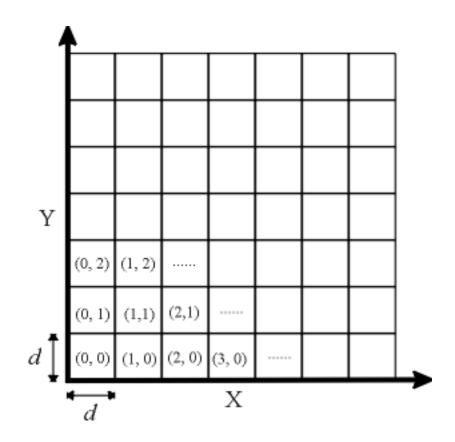

Dissemination of location information:

 Each node periodically advertises its location (and movement information) by flooding.

This way, nodes have knowledge of one another's location.

Basic Idea of DREAM

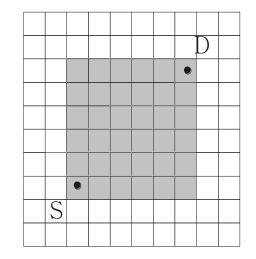
- Data Packet carries D's and S's locations.
- Forwarded toward only a certain direction.

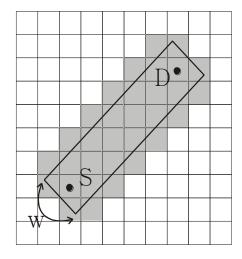


GRID Routing

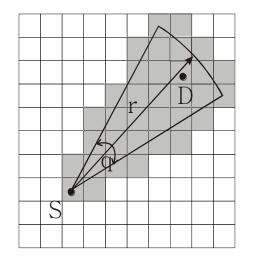
- GRID: A Fully Location-Aware Routing Protocol for Mobile Ad Hoc Networks"
- Wen-Hwa Liao, Yu-Chee Tseng, Jang-Ping Sheu
- NCTU
- Telecommunication Systems, 2001.

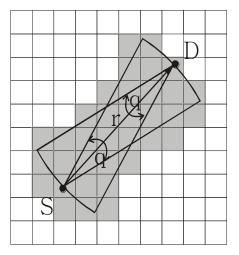
Basic Idea of GRID Routing


Partition the physical area into d x d squares called grids.

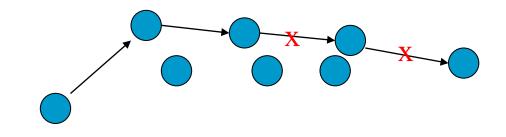

Protocol Overview

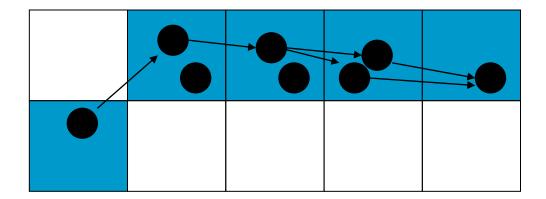
- In each grid, a leader is elected, called gateway.
- Responsibility of gateways:
 - forward route discovery packets
 - propagate data packets to neighbor grids
 - maintain routes which passes the grid
- Routing is performed in a grid-by-grid manner.


Route Search Range Options


(a) Rectangle

(b) Bar(w)





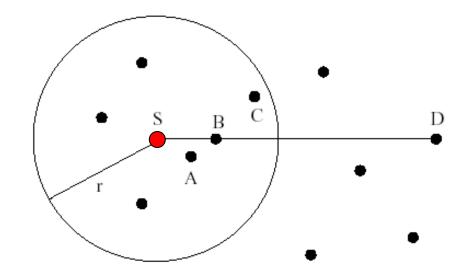
(d) Two_Fan(q, r)

Strength of Grid Routing

Gateway Election in a Grid

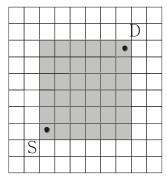
- Any "leader election" protocol in distributed computing can be used.
- Multiple leaders in a grid are acceptable.
- Preference in electing a gateway:
 - \diamond near the physical center of the grid
 - >likely to remain in the grid for longer time
 - once elected, a gateway remains so until leaving the grid

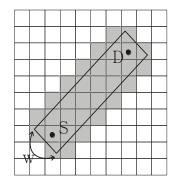
Taxonomy of Geographic Routing Algorithms


- Also called position-based routing
- Three major components of geographic routing:
 - Location services (dissemination of location information)
 - ≻Next topic
 - Forwarding strategies
 - Recovery schemes

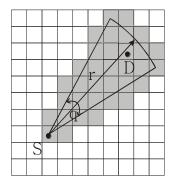
Forwarding Strategies

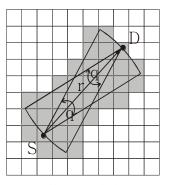
- Basic greedy methods
- Directional flooding
- Geographical source routing
- Power-aware routing


Basic greedy methods


- Most Forward within Radius (C), 1984
- Nearest Forward Progress (A), 1986
- Compass Routing (B), 1999
- Random Progress (X), 1984
- The above schemes' 2-hop variants

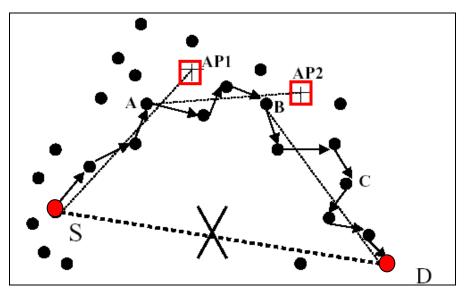
Directional Flooding

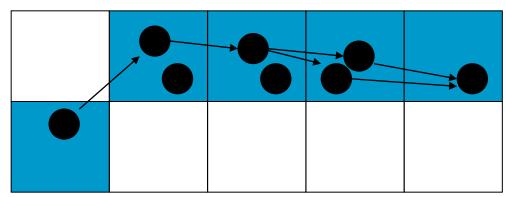

- DREAM (in data packet routing)
- LAR (in route discovery)
- GRID (in route discovery)



(b) Bar(w)

(a) Rectangle

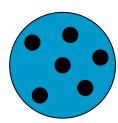



(d) Two_Fan(q, r)

(c) Fan(q, r)

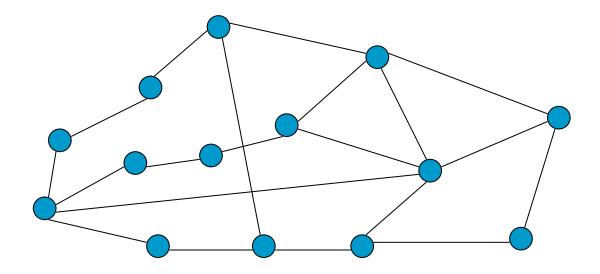
Geographical Source Routing

- Source specifies a geographical path
 - Needs an anchor path discovery protocol
- Terminode routingGRID

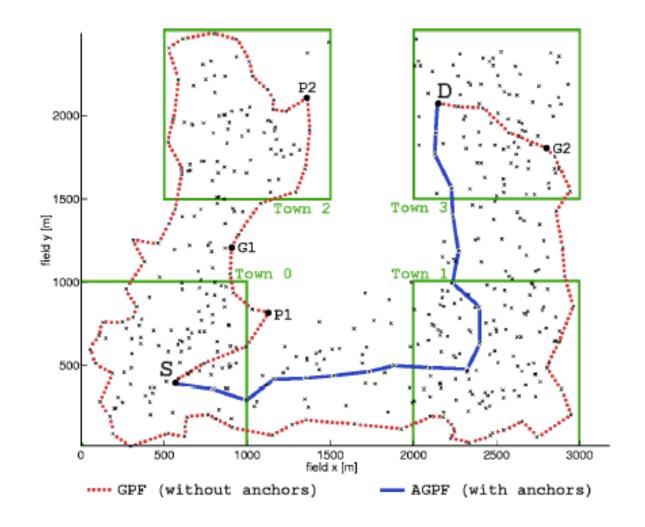

Terminode Routing

- "Self Organized Terminode Routing," Blazevic, Giordano, Le Boudec Cluster Computing Journal, Vol.5, No.2, April 2002
- Remote destinations:
 - Use geographical routing
- Local destinations:
 - Use non-geographical, proactive routing
- Similar to Zone Routing in this sense

Terminode Routing


Remote Routing

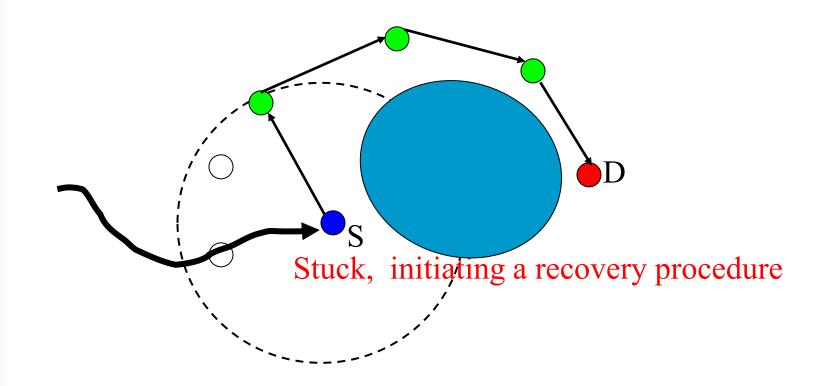
- Anchored Geodesic Packet Forwarding
- Geodesic Packet Forwarding (if no anchored path known)
- Friend Assisted Path Discovery
 - ≻Based on Small World Graphs



Small World Graphs

- Two nodes are connected if they are acquainted
- Sparse, small diameter

Terminode routing



Power-Aware Routing

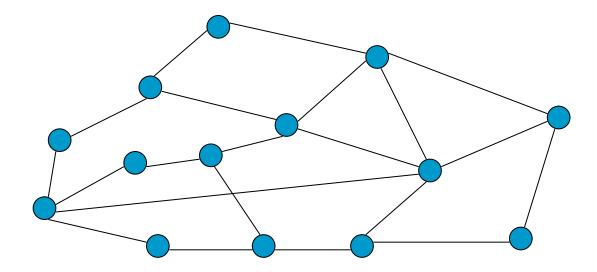
- Geographical and Energy Aware Routing: a recursive data dissemination protocol for wireless sensor networks"
- Y. Yu, R. Govindan, D. Estrin
- UCLA

Recovery Schemes

- With any of the above forwarding strategies, packets may get stuck (hitting a hole).
- A recovery scheme is invoked to get around the hole.
 - Initiate a route discovery
 - GPSR (enter the perimeter mode)

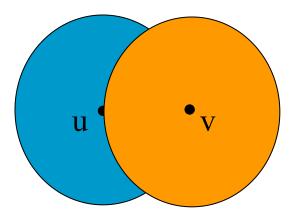
GPSR

- GPSR: Greedy Perimeter Stateless Routing for Wireless Networks"
- Brad Karp, H.T. Kung
- Harvard University
- MobiCom 2000
- Two modes:
 - Greedy (for regular forwarding)
 - Perimeter (for recovery)


Perimeter Mode of GPSR

- Suppose nodes x and D are connected by a planar graph.
- The graph divides the plane into faces.
- Line xD crosses one or more faces.

Х

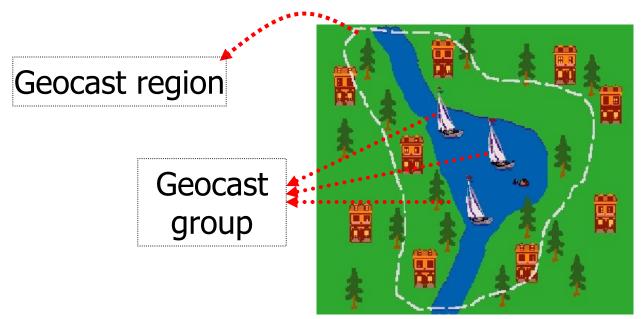

Graphs without crossing edges.

Not Planar

Planar Subgraph

- G: communication graph
- Relative neighborhood graph (RNG):
 - Subgraph of G
 - Keep edge (u, v) iff there are no nodes in the overlapped area.
- RNG is planar

Evolution


- Distance Vector, Link State
- Proactive
- On demand
- Hybrid (zone routing)
- Geographical routing
 - Location Service
 - Location-based Forwarding
 - Recovery

Next?

Location service

- Geographical routing without location services
- Geocasting:

sending a message to every node within a region.

