
Software Project
Management
Intro to Project Management

Course Objectives

 Understand the fundamental principles of Software
Project management & will also have a good
knowledge of responsibilities of project manager and
how to handle these.

 Be familiar with the different methods and techniques
used for project management.

 By the end of this course student will have good
knowledge of the issues and challenges faced while
doing the Software project Management and will also
be able to understand why majority of the software
projects fails and how that failure probability can be
reduced effectively. Will be able to do the Project
Scheduling, tracking, Risk analysis, Quality
management and Project Cost estimation using
different techniques

Unit I

 Introduction

Project – Definition

In the broadest sense, a project is a
specific, finite task to be
accomplished. Any activity that results
in a deliverable or a product.

Projects always begin with a problem.
The project is to provide the solution
to this problem.

When the project is finished it must be
evaluated to determine whether it
satisfies the objectives and goals.

What is Management?

Management can be defined as all activities
and tasks undertaken by one or more
persons for the purpose of planning and
controlling the activities of others in order to
achieve objectives or complete an activity
that could not be achieved by others acting
independently.

 Management functions can be categorized as

 Planning

 Organizing

 Staffing

 Directing

 Controlling

Management Functions

 Planning
Predetermining a course of action for accomplishing
organizational Objectives

 Organizing
Arranging the relationships among work units for
accomplishment of objectives and the granting of
responsibility and authority to obtain those objectives

 Staffing
Selecting and training people for positions in the
organization

 Directing
Creating an atmosphere that will assist and motivate
people to achieve desired end results

 Controlling
Establishing, measuring, and evaluating performance
of activities toward planned objectives

What is Project Management

 “The application of knowledge, skills,
tools and techniques to project
activities in order to meet project
requirements”

What is Project Management

Project management is a system of

management procedures,

 practices,

 technologies,

 skills, and

 experience

 that are necessary to successfully
manage a project.

Software Project Management

Concerned with activities involved in
ensuring
that software is delivered:

on time

on schedule

 in accordance with the requirements
of the organization developing and
procuring the software

Project Stakeholders

Stakeholders are the people involved
in or affected by the project actives

 Stakeholders include

 The project sponsor and project team

 Support staff

 Customers

 Users

 Suppliers

 Opponents to the project

Project Characteristics

 One clear objective
 A well defined set of end results
 Goal oriented
 End product or service must result

 Finite
 Fixed timeline, start date, end date, milestone dates

 Limited
 Budget, Resources, Time

 Life Cycle
 Recognizable sequence of phases

Management Project Software

23. Appraising Performance

24. Handling Intellectual Property

25. Holding Effective Meetings

26. Interaction and Communication

27. Leadership

28. Managing Change

29. Negotiating Successfully

30. Planning Careers

31. Presenting Effectively

32. Recruiting

33. Selecting a Team

34. Teambuilding

12. Building a WBS

13. Documenting Plans

14. Estimating Costs

15. Estimating Effort

16. Managing Risks

17. Monitoring Development

18. Scheduling

19. Selecting Metrics

20. Selecting Project Mgmt Tools

21. Tracking Process

22. Tracking Project Progress

1. Assessing Processes

2. Awareness of Process Standards

3. Defining the Product

4. Evaluating Alternative Processes

5. Managing Requirements

6. Managing Subcontractors

7. Performing the Initial Assessment

8. Selecting Methods and Tools

9. Tailoring Processes

10. Tracking Product Quality

11. Understanding Development Activities

34 Competencies Every Software Project Manager Needs to Know

People Project Product

People Project

Product

Product Life Cycles

Products also have life cycles

The Systems Development Life Cycle
(SDLC) is a framework for describing
the phases involved in developing and
maintaining information systems

Typical SDLC phases include planning,
analysis, design, implementation, and
support

Steps in SDLC

 Concept Exploration

 System exploration

 Requirements

 Design

 Implementation

 Installation

 Operations and support

 Maintenance

 Retirement

Process & Process Model

Software Process

 the set of activities, methods, and
practices that are used in the production
and evolution of software

Software Process Model

 one specific embodiment of a software
process architecture

Why Modeling?

To provide a common understanding

To locate any inconsistencies,
redundancies and omissions

To reflect the development goals and
provide early evaluation

To assist development team to
understand any special situation

Sample SDLC Models

Waterfall model: has well-defined, linear
stages of systems development and support

Spiral model: shows that software is
developed using an iterative or spiral
approach rather than a linear approach

 Incremental release model: provides for
progressive development of operational
software

RAD model: used to produce systems
quickly without sacrificing quality

Prototyping model: used for developing
prototypes to clarify user requirements

Waterfall Model

Requirement
Analysis

System
Design

Coding

Testing

Maintenance

Waterfall Model (cont’d)

classical

one-shot approach

effective control

limited scope of iteration

long cycle time

not suitable for system of high
uncertainty

V Model

Requirements
Analysis

System Design

Program Design

Coding

Unit and
Integration Testing

System Testing

Maintenance

User Acceptance
Testing

V Model (cont’d)

Additional validation process
introduced

Relate testing to analysis and design

Loop back in case of discrepancy

Spiral Model (adapted from Boehm 1987)

Spiral Model (cont’d)

Evolutionary approach

Iterative development combined with
risk management

Risk analysis results in “go, no-go”
decision

Spiral Model (cont’d)

Four major activities

Planning

Risk analysis

Engineering

Customer evaluation

Prototyping Model

Goals

meet users’ requirements in early stage

reduce risk and uncertainty

Classification of Prototype

Throw-away
After users agree the requirements of the

system, the prototype will be discarded.

Evolutionary
Modifications are based on the existing

prototype.

Incremental
Functions will be arranged and built

accordingly.

Prototyping Model

Build prototype
User

satisfaction

YES

NO

User feedback

Benefits of Prototyping

Learning by doing

Improved communication

Improved user involvement

Clarification of partially-known
requirements

Prototyping Sequences

Requirements gathering

Quick design

Prototype construction

Customer evaluation

Refinement

Loop back to quick design for fine tuning

Product engineering

Benefits of Prototyping

Demonstration of the consistency and
completeness of a specification

Reduced need for documentation

Reduced maintenance costs

Feature constraint

Production of expected results

Drawbacks of Prototyping

Users sometimes misunderstand the
role of the prototype

Lack of project standards possible

Lack of control

Additional expense

Close proximity of developers

Forms of Prototypes

Mock-ups

Simulated interaction

Partial working model

Incremental Model

Break system into small components

Implement and deliver small
components in sequence

Every delivered component provides
extra functionality to user

Incremental Model (cont’d)

Requirements
Analysis

Arrange
requirements
in increments

Validate
increment

Design and
develop

increment

Integrate
increment

YES

NO

System
OK?

Iterative Model

Deliver full system in the beginning

Enhance functionality in new releases

Iterative Model (cont’d)

Develop system
version n

Validate system
version n

YES

NO

Design system
version n

System
complete

 n = n+1

Why Have Project Phases and
Management Reviews?

A project should successfully pass
through each of the project phases in
order to continue on to the next

Management reviews (also called
phase exits or kill points) should occur
after each phase to evaluate the
project’s progress, likely success, and
continued compatibility with
organizational goals

Distinguishing Project Life Cycles and
Product Life Cycles

The project life cycle applies to all
projects, regardless of the products
being produced

Product life cycle models vary
considerably based on the nature of the
product

Most large IT products are developed
as a series of projects

Project management is done in all of
the product life cycle phases

Capability Maturity Model

 The CMM is a process model based on software best-
practices effective in large-scale, multi-person projects.

The CMM has been used to assess the maturity levels
of organization areas as diverse as software
engineering, system engineering, project management,
risk management, system acquisition, information
technology (IT) or personnel management, against a
scale of five key processes, namely:
 Initial,
 Repeatable,
 Defined,
 Managed and
 Optimized.

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/System_engineering
http://en.wikipedia.org/wiki/Project_management
http://en.wikipedia.org/wiki/Risk_management
http://en.wikipedia.org/wiki/Information_technology
http://en.wikipedia.org/wiki/Information_technology

Level 1 - Initial

 At maturity level 1, processes are
usually ad hoc, and the organization
usually does not provide a stable
environment. Success in these
organizations depends on the
competence and heroics of the people
in the organization, and not on the
use of proven processes

http://en.wikipedia.org/wiki/Ad_hoc

 Level 2 - Repeatable

 At maturity level 2, software
development successes are
repeatable. The processes may not
repeat for all the projects in the
organization. The organization may
use some basic project management
to track cost and schedule.

http://en.wikipedia.org/wiki/Project_management

 Level 3 - Defined

 The organization’s set of standard
processes, which are the basis for level 3,
are established and improved over time.
These standard processes are used to
establish consistency across the
organization. Projects establish their
defined processes by applying the
organization’s set of standard processes,
tailored, if necessary, within similarly
standardized guidelines.

 Level 4 - Quantitatively Managed

 Using precise measurements,
management can effectively control
the software development effort. In
particular, management can identify
ways to adjust and adapt the process
to particular projects without
measurable losses of quality or
deviations from specifications

 Level 5 - Optimizing

 Maturity level 5 focuses on continually
improving process performance through
both incremental and innovative
technological improvements. Quantitative
process-improvement objectives for the
organization are established, continually
revised to reflect changing business
objectives, and used as criteria in
managing process improvement.

International Organization for
Standardization(ISO)

12 Engineering Activities
• Systems requirement analysis

• System architectural design

• Software requirement analysis

• Software architectural design

• Software detailed design

• Software coding and testing

• Software Integration

• Software qualification testing

• System integration

• System qualification testing

• Software installation

• Software acceptance test

Unit II

 Domain Processes

Scope Planning and the Scope
Statement

A scope statement is a document used
to develop and confirm a common
understanding of the project scope. It
should include

 a project justification

 a brief description of the project’s products

 a summary of all project deliverables

 a statement of what determines project
success

Scope Planning and the Work
Breakdown Structure

After completing scope planning, the
next step is to further define the work
by breaking it into manageable pieces

Good scope definition

 helps improve the accuracy of time, cost,
and resource estimates

 defines a baseline for performance
measurement and project control

 aids in communicating clear work
responsibilities

The Work Breakdown
Structure

A work breakdown structure (WBS) is
an outcome-oriented analysis of the
work involved in a project that defines
the total scope of the project

It is a foundation document in project
management because it provides the
basis for planning and managing
project schedules, costs, and changes

WBS

WBS was initially developed by the U.S.
defense establishment, and it is described in
Military Standard (MIL-STD) 881B (25 Mar
93) as follows:

 "A work breakdown structure is a product-
oriented family tree composed of hardware,
software, services, data and facilities [it]
displays and defines the product(s) to be
developed and/or produced and relates the
elements of work to be accomplished to
each other and to the end product(s)."

Sample Intranet WBS Organized by

Product

Sample Intranet WBS Organized by
Phase

Intranet WBS in Tabular Form
1.0 Concept

 1.1 Evaluate current systems

 1.2 Define Requirements

 1.2.1 Define user requirements

 1.2.2 Define content requirements

 1.2.3 Define system requirements

 1.2.4 Define server owner requirements

 1.3 Define specific functionality

 1.4 Define risks and risk management approach

 1.5 Develop project plan

 1.6 Brief web development team

2.0 Web Site Design

3.0 Web Site Development

4.0 Roll Out

5.0 Support

Approaches to Developing
WBSs

Using guidelines: Some organizations,
like the DOD, provide guidelines for
preparing WBSs

The analogy approach: It often helps to
review WBSs of similar projects

The top-down approach: Start with the
largest items of the project and keep
breaking them down

The bottoms-up approach: Start with
the detailed tasks and roll them up

Basic Principles for Creating WBSs*
1. A unit of work should appear at only one place in the WBS.

2. The work content of a WBS item is the sum of the WBS items below
it.

3. A WBS item is the responsibility of only one individual, even though
many people may be working on it.

4. The WBS must be consistent with the way in which work is actually
going to be performed; it should serve the project team first and
other purposes only if practical.

5. Project team members should be involved in developing the WBS to
ensure consistency and buy-in.

6. Each WBS item must be documented to ensure accurate
understanding of the scope of work included and not included in that
item.

7. The WBS must be a flexible tool to accommodate inevitable changes
while properly maintaining control of the work content in the project
according to the scope statement. *Cleland, David I. Project Management: Strategic Design and Implementation, 1994

Scope Verification and Scope
Change Control

It is very difficult to create a good scope
statement and WBS for a project

It is even more difficult to verify project
scope and minimize scope changes

Many IT projects suffer from scope
creep and poor scope verification

Factors Causing IT Project
Problems*

Factor Rank

Lack of user input 1

Incomplete requirements and specifications 2

Changing requirements and specifications 3

Lack of executive support 4

Technology incompetence 5

Lack of resources 6

Unrealistic expectations 7

Unclear objectives 8

Unrealistic time frames 9

New Technology 10

*Johnson, Jim, "CHAOS: The Dollar Drain of IT Project Failures," Application Development Trends,

January 1995, www.stadishgroup.com/chaos.html

Suggestions for Improving User
Input

Insist that all projects have a sponsor
from the user organization

Have users on the project team

Have regular meetings

Deliver something to project users and
sponsor on a regular basis

Co-locate users with the developers

Suggestions for Reducing
Incomplete and Changing
Requirements

 Develop and follow a requirements management process

 Employ techniques such as prototyping, use case
modeling, and Joint Application Design to thoroughly
understand user requirements

 Put all requirements in writing and current

 Create a requirements management database

 Provide adequate testing

 Use a process for reviewing requested changes from a
systems perspective

 Emphasize completion dates

Unit III

 Software Development

Software Size and Reuse
Estimating

Software Size and Reuse Estimating

”Predicting the size of a software

system becomes progressively easier

as the project advances”

”At no other time are the

estimates so important than at the

beginning of a project”

Product Development Life Cycle

Estimating size and effort will occur
many times during the life cycle

After requirements, after analysis,
after design, and so on...

Learning Objectives

Explain why the sizing of software is an
important estimating technique

Describe how Work Breakdown Structure
can be used to estimate software size

List, explain and describe several models
used to estimate size

Summarize the advantages and
disadvantages of the models

Explain the impact of reused software
components upon the size estimate

Problems with Estimating

Problem is not well understood

Little or no historical data

No standards

Management uses estimates as
performance goals

Developers are optimistic

Customer demands quick estimates

etc...

Risks of Estimating

If incomplete or incorrect estimate:

disappointing the customer

possibly losing future business

 too optimistic fixed-price contract result in
the contractor losing money and losing
face

How to tackle size-related risks

Produce a WBS, decomposed to the lowest
level possible smaller is easier to
estimate

Review assumptions with all stakeholders

Research past organizational experiences
and historical data

Stay in close communication with other
developers, common language

Update estimates

Use many size estimating methods

Educate staff in estimation methods

Getting Started
Sizing is the prediction of product

deliverables needed to fulfill requirements

Estimation is the prediction of effort
needed to produce the deliverables

WBS is a description of the work to be
performed, broken down into key elements

WBS is our TOC, a hierarchical list of the
work activities required to complete a
project

Choose a method and stick with it

Compare actual data to planned estimates

Everything should be counted, any
observable physical piece of software

Size measures

Lines of Code (LOC)

Function Points

Feature Points

Object Points

Model Blitz

Wideband Delphi

Lines of Code

Very difficult to know how many LOC will be
produced before they are written or even
designed

LOC measure has become infamous

Still the most used metric

Average programmer productivity rate
remains despite of new languages

Functionality and quality are the real
concerns, not the LOC

Lines of Code 2

WBS should be decomposed to the lowest
level possible

Estimating using expert opinions, asking
experts who have developed similar
systems

Estimating using Bottom-Up summing,
asking developers to estimate the size of
each decomposed level

Ask for an optimistic (200), pessimistic
(400) and realistic size (250) estimate
(200+400+(4*250)) / 6 = 266 LOC

What exactly is a line of code? Standards
and rules needed

Lines of Code 3

Translate the number of LOC to assembly
language line in order to make comparisons
between programming languages

e.g.
convert 50,000 LOC system written in C to
Java
Assembler level for C = 2.5, Java = 6
50,000 * 2.5 = 125,000 if written in
assembler
125,000 / 6 = 20,833 LOC if written in Java

Advantages of LOC

Widely used and accepted

Allows for comparison between diverse
development groups

Directly relates to the end product

Easily measured upon project completion

Measure from the developer’s point of view

Continuous improvement

Disadvantages of LOC
Difficult to estimate early in the life cycle

Source instructions variate with language,
design, programmer etc.

No industry standars for counting LOC

Fixed costs are not included with coding

Programmers may be rewarded for large
LOC counts

Distinguish between generated code and
hand-crafted code

Can not be used for normalizing if
languages are different

Only existing products and expert opinions
can be used to predict a LOC count

Function Points

Idea:
software is better measured in terms
of the number and complexity of the
functions that it performs

Function points measure categories of
end-user business functions

Function Point Process Steps
1. Count number of functions in each

category (outputs, inputs, interfaces
etc..)

2. Apply complexity weighting factors
(simple, medium, complex)

3. Apply environmental factors

4. Calculate complexity adjustment factor

5. Compute adjusted function points

6. Convert to Lines of Code (optional)

Advantages of Function Point Analysis

Can be applied early in the life cycle

 Independent of language and technology

Provide a reliable relationship to effort

Can be used as a productivity goal

Users understand better

Provide a mechanism to track and monitor
scope

Environmental factors are considered

Disadvantages of Function Point Analysis

Requires subjective evaluations

Results depend on technology used
to implement the analysis

Many effort and cost models depend
on LOC, must be converted

Best after the creation of a design
specification

Not good to non-MIS applications

Feature Points

Extension of the function point
method

Designed to deal with different kinds
of applications, like embedded or real-
time systems

A feature point is a new category of
function point that represent complex
algorithms

Areas where Feature Points are
used …

RTS such as missile defense systems

System software

Embedded Systems like radar
navigation packages

CAD & CAM

Feature Point Process Steps

1. Count number of feature points in each
category

2. Count feature points (algorithms)

3. Weigh Complexity (avg for feature points,
simple/avg/complex for algorithms)

4. Evaluate environmental factors

5. Calculate complexity adjustment factor

6. Adjust feature points

7. Convert to LOC (optional)

Advantages of Feature Point
Analysis

Same as in function point analysis

Additional advantage for
algorithmically intensive systems

Disadvantages of Feature Point
Analysis

Primary disadvantage:

subjective classification of algorithmic
complexity

Object Points

Method developed for object-oriented
technology

Counting ”object points” to determine
software size

Conducted at a more macro level than
function points

Assigns one object point to each unique
class or object

Otherwise similar to function and feature
points

Model Blitz

Estimating gets better with each passing
phase

Concept of blitz modelling is counting
number of process (object classes) *
number of programs per class * avg
program size = Estimated size (LOC)

A historical database is essential

Function-strong systems and data-strong
systems are calculated separately

Contd…

20 object classes implemented to 5
procedural programs & on an avg 75
LOC per procedural prg

No. of Process X no. of programs per
class X Avg Prg Size = Estimated Size

20 X 5 X 75 = ?

7500 LOC

Advantages of Model Blitz

Easy to use with structured methods
and with object-oriented classes

Accuracy increases with historical data

Continuous improvement activities
used for estimation techniques

Disadvantages of Model Blitz

Requires use of design methodology

Estimation can not begin until design
is complete

Requires historical data

Does not evaluate environmental
factors

Wideband Delphi

Popular and simple technique to
estimate size and effort

Group consensus approach

Uses experience of several people to
reach an estimate

Wideband Delphi steps

1. Present experts with the problem
and a response form

2. Group discussion

3. Collect opinions anonymously

4. Feed back a summary of results

5. Another group discussion

6. Iterate until consensus

Advantages of Wideband Delphi

Easy and inexpensive

Expertise of several people

Participants become better educated
about the software and project

Does not require historical data

Used for high-level and detailed
estimation

Results more accurate than in LOC

Disadvantages of Wideband
Delphi
Difficult to repeat with different group of

experts

Possible to reach consensus on an incorrect
estimate, people may not be skeptical
enough

Can develop a false sense of confidence

May fail to reach a consensus

Experts may be biased in the same
subjective direction

Effects of Reuse on Software Size

Many softwares are derived from previous
programs

Result in savings of cost and time, increased
quality

Can also cost more, take longer time and
yield lower quality

First step in code reuse is to separate new
code from modified and reused code

Effects of Reuse continues

 If the unit has changed, it is modified

 If more than 50% of the unit is changed, it
is considered to be ”new”

Reused code will be converted to
equivalent new code

Conversion factor reflects the amount of
effort saved by reuse

Reuse factors come from experience (e.g.
30% for reused, 60% for modified)

Can also be done on more accurate level

Unit IV

 Scheduling Activities

Project management resource
activities.

 Inference management is the process of

managing all the different interfaces with
other people and groups related to the
product and the project, it includes
identifying, documenting, scheduling,
communicating, and monitoring these
interfaces throughout the course of project.

Kinds of interfaces:

• Personal

• Organizational

• System

• PERSONAL

 It deals with all conflicts involving people in or
related to the project.

• ORGANIZATIONAL

 It deals with conflicts due to varying
organizational goals and the different management
styles of the
project and resource supplying organizations.

• SYSTEM
It deals with the product, facility, or other
non people interfaces developed by the project.

Organizational structure:

 "An organization is a system that

exchanges materials,
personnel, manpower, and energy
with the environment“

TYPES OF ORGANIZATIONS:

 Functional organizations

 Matrix organizations

 Projectized organizations

 Combination of all the above

FUNCTIONAL ORGANIZATIONS

 The functional organization is a
standard old-fashioned
organization. It is the style in which
people are divided into their
functional specialties and report to a
functional area manager.

MATRIX ORGANIZATIONS

 In the matrix organizations there is a
balance of power
established between the functional
and project managers.
· The project worker in a matrix
organization has a multiple
command system of accountability
and responsibility.

PROJECTIZED ORGANISATIONS:

 In projectized organizations the

project manger has total
authority and acts like a mini-CEO.
· All personnel assigned to the project
report to project
manager.

Software development
dependencies

 "Dependencies are any relationship
connections between activities in
a project that may impact their
scheduling".

 External vs Internal Dependencies

 Resource vs Activity Dependencies

DEPENDENCY RELATIONSHIPS:

 Finish-to-start(FS)
 Start-to-start(SS)
 Finish-to-finish(FF)
 Start-to-finish(SF)

Scheduling fundamentals:

 The three most common forms of

presenting a project schedule are:
Ø Table.
Ø Gantt chart.
Ø Network diagram.

Critical Path Method (CPM)
CPM is a project network analysis

technique used to predict total project
duration

A critical path for a project is the series
of activities that determines the
earliest time by which the project can
be completed

The critical path is the longest path
through the network diagram and has
the least amount of slack or float

Finding the Critical Path

First develop a good project network
diagram

Add the durations for all activities on
each path through the project network
diagram

The longest path is the critical path

Simple Example of Determining the
Critical Path

Consider the following project network
diagram. Assume all times are in days.

2 3

4

5

A=2 B=5
C=2

D=7

1 6

F=2

E=1

start finish

a. How many paths are on this network diagram?

 b. How long is each path?

 c. Which is the critical path?

 d. What is the shortest amount of time needed to

complete this project?

Determining the Critical Path
for Project X

More on the Critical Path

 If one of more activities on the critical path
takes longer than planned, the whole project
schedule will slip unless corrective action is
taken

Misconceptions:

 The critical path is not the one with all the critical
activities; it only accounts for time

 There can be more than one critical path if the
lengths of two or more paths are the same

 The critical path can change as the project
progresses

Using Critical Path Analysis to
Make Schedule Trade-offs
Knowing the critical path helps you

make schedule trade-offs

Free slack or free float is the amount of
time an activity can be delayed without
delaying the early start of any
immediately following activities

Total slack or total float is the amount
of time an activity may be delayed
from its early start without delaying the
planned project finish date

Techniques for Shortening a
Project Schedule
Shortening durations of critical tasks for

adding more resources or changing
their scope

Crashing tasks by obtaining the
greatest amount of schedule
compression for the least incremental
cost

Fast tracking tasks by doing them in
parallel or overlapping them

Importance of Updating Critical
Path Data

It is important to update project
schedule information

The critical path may change as you
enter actual start and finish dates

If you know the project completion date
will slip, negotiate with the project
sponsor

Critical Chain Scheduling
Technique that addresses the challenge of

meeting or beating project finish dates and an
application of the Theory of Constraints (TOC)

Developed by Eliyahu Goldratt in his books The
Goal and Critical Chain

Critical chain scheduling is a method of
scheduling that takes limited resources into
account when creating a project schedule and
includes buffers to protect the project
completion date

Critical chain scheduling assumes resources do
not multitask because it often delays task
completions and increases total durations

Multitasking Example

Buffers and Critical Chain
A buffer is additional time to complete a task

Murphy’s Law states that if something can go
wrong, it will, and Parkinson’s Law states that
work expands to fill the time allowed. In
traditional estimates, people often add a buffer
and use it if it’s needed or not

Critical chain schedule removes buffers from
individual tasks and instead creates
 A project buffer, which is additional time added

before the project’s due date

 Feeding buffers, which are addition time added
before tasks on the critical path

Program Evaluation and Review
Technique (PERT)

PERT is a network analysis technique
used to estimate project duration when
there is a high degree of uncertainty
about the individual activity duration
estimates

PERT uses probabilistic time estimates
based on using optimistic, most likely,
and pessimistic estimates of activity
durations

PERT Formula and Example

PERT weighted average formula:
optimistic time + 4X most likely time + pessimistic time

 6

Example:

PERT weighted average =
 8 workdays + 4 X 10 workdays + 24 workdays =

12 days 6

where 8 = optimistic time, 10 = most likely time, and 24
= pessimistic time

Controlling Changes to the
Project Schedule

Perform reality checks on schedules

Allow for contingencies

Don’t plan for everyone to work at
100% capacity all the time

Hold progress meetings with
stakeholders and be clear and honest in
communicating schedule issues

Working with People Issues

Strong leadership helps projects
succeed more than good PERT charts

Project managers should use

 empowerment

 incentives

 discipline

 negotiation

Using Software to Assist in
Time Management
Software for facilitating

communications helps people exchange
schedule-related information

Decision support models help analyze
trade-offs that can be made

Project management software can help
in various time management areas

Words of Caution on Using
Project Management Software
Many people misuse project

management software because they
don’t understand important concepts
and have not had good training

You must enter dependencies to have
dates adjust automatically and to
determine the critical path

You must enter actual schedule
information to compare planned and
actual progress

Unit V

Quality Assurance

Integrated Change Control
Integrated change control involves

identifying, evaluating, and managing
changes throughout the project life
cycle (Note: 1996 PMBOK called this
process “overall change control”)

Three main objectives of change
control:

Influence the factors that create
changes to ensure they are agreed
upon

Determine that a change has
occurred

Manage actual changes when and as
they occur

Integrated Change Control

Integrated change control requires

Maintaining the integrity of the
performance measurement baseline

 Ensuring that changes to the product
scope are reflected in the definition of the
project scope

 Coordinating changes across the
knowledge areas

Integrated Change Control --
Coordination

10.3: Performance

Reporting

Communications

4.3: Integrated

Change control

Integration

•Scope change control

•Schedule change control

•Cost change control

•Quality control

•Risk change control

•Contract Administration

Subsidiary Change Control

Coordinating changes Across the Entire Project

Change Control on Information
Technology Projects

Former view: The project team should strive
to do exactly what was planned on time and
within budget

Problem: Stakeholders rarely agreed up-
front on the project scope, and time and
cost estimates were inaccurate

Modern view: Project management is a
process of constant communication and
negotiation

Solution: Changes are often beneficial, and
the project team should plan for them

Integrated Change Control --
Process

Integrated Change Control
Process

Change Control System

A formal, documented process that
describes when and how official
project documents and work may be
changed

Describes who is authorized to make
changes and how to make them

Often includes a change control board
(CCB), configuration management,
and a process for communicating
changes

Change Control Boards (CCBs)

A formal group of people responsible
for approving or rejecting changes on
a project

Provides guidelines for preparing
change requests, evaluates them, and
manages the implementation of
approved changes

Includes stakeholders from the entire
organization

Making Timely Changes

Some CCBs only meet occasionally, so
it may take too long for changes to
occur

Some organizations have policies in
place for time-sensitive changes

“48 hour policy” allowed project team
members to make decisions, then they
had 48 hours reverse the decision
pending senior management approval

Delegate changes to the lowest level
possible, but keep everyone informed of
changes

Configuration Management
Ensures that the products and their

descriptions are correct and complete

Concentrates on the management of
technology by identifying and controlling the
functional and physical design characteristics
of products

Configuration management specialists
identify and document configuration
requirements, control changes, record and
report changes, and audit the products to
verify conformance to requirements

Suggestions for Managing
Integrated Change Control

 View project management as a process of
constant communications and negotiations

 Plan for change

 Establish a formal change control system,
including a Change Control Board (CCB)

 Use good configuration management

 Define procedures for making timely decisions on
smaller changes

 Use written and oral performance reports to help
identify and manage change

 Use project management and other software to
help manage and communicate changes

