Unit I

Introduction

Product Life Cycles

- Products also have life cycles
- The Systems Development Life Cycle (SDLC) is a framework for describing the phases involved in developing and maintaining information systems
- Typical SDLC phases include planning, analysis, design, implementation, and support

Steps in SDLC

- Concept Exploration
- System exploration
- Requirements
- Design
- Implementation
- Installation
- Operations and support
- Maintenance
- Retirement

Process & Process Model

- Software Process
 - the set of activities, methods, and practices that are used in the production and evolution of software
- Software Process Model
 - one specific embodiment of a software process architecture

Why Modeling?

- To provide a common understanding
- To locate any inconsistencies, redundancies and omissions
- To reflect the development goals and provide early evaluation
- To assist development team to understand any special situation

Sample SDLC Models

- Waterfall model: has well-defined, linear stages of systems development and support
- Spiral model: shows that software is developed using an iterative or spiral approach rather than a linear approach
- Incremental release model: provides for progressive development of operational software
- RAD model: used to produce systems quickly without sacrificing quality
- Prototyping model: used for developing prototypes to clarify user requirements

Waterfall Model (cont'd)

- classical
- one-shot approach
- effective control
- limited scope of iteration
- long cycle time
- not suitable for system of high uncertainty

V Model (cont'd)

- Additional validation process introduced
- Relate testing to analysis and design
- Loop back in case of discrepancy

Spiral Model (adapted from Boehm 1987)

Spiral Model (cont'd)

- Evolutionary approach
- Iterative development combined with risk management
- Risk analysis results in "go, no-go" decision

Spiral Model (cont'd)

► Four major activities

- Planning
- Risk analysis
- Engineering
- Customer evaluation

Prototyping Model

Goals

- meet users' requirements in early stage
- reduce risk and uncertainty

Classification of Prototype

Throw-away

- After users agree the requirements of the system, the prototype will be discarded.
- Evolutionary
 - Modifications are based on the existing prototype.
- Incremental
 - Functions will be arranged and built accordingly.

Benefits of Prototyping

- Learning by doing
- Improved communication
- Improved user involvement
- Clarification of partially-known requirements

Prototyping Sequences

- Requirements gathering
- Quick design
- Prototype construction
- Customer evaluation
- Refinement
- Loop back to quick design for fine tuning
- Product engineering

Benefits of Prototyping

- Demonstration of the consistency and completeness of a specification
- Reduced need for documentation
- Reduced maintenance costs
- Feature constraint
- Production of expected results

Drawbacks of Prototyping

- Users sometimes misunderstand the role of the prototype
- Lack of project standards possible
- Lack of control
- Additional expense
- Close proximity of developers

Forms of Prototypes

- Mock-ups
- Simulated interaction
- Partial working model

Incremental Model

- Break system into small components
- Implement and deliver small components in sequence
- Every delivered component provides extra functionality to user

Iterative Model

- Deliver full system in the beginning
- Enhance functionality in new releases

