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 Proposed by Agrawal et al in 1993.  

 It is an important data mining model studied 
extensively by the database and data mining 
community.  

 Assume all data are categorical. 

 No good algorithm for numeric data. 

 Initially used for Market Basket Analysis to find 
how items purchased by customers are related. 

  Bread  Milk    [sup = 5%, conf = 100%] 



 I = {i1, i2, …, im}: a set of items. 

 Transaction t :  

 t a set of items, and t  I. 

 Transaction Database T: a set of transactions T = {t1, t2, 
…, tn}. 

 



 Market basket transactions: 
 t1: {bread, cheese, milk} 
 t2: {apple, eggs, salt, yogurt} 
 …   … 
 tn: {biscuit, eggs, milk} 

 Concepts: 
 An item:  an item/article in a basket 
 I: the set of all items sold in the store 
 A transaction: items purchased in a basket; it may have 

TID (transaction ID) 
 A transactional dataset: A set of transactions 



 A text document data set. Each document is 
treated as a “bag” of keywords 

 doc1:  Student, Teach, School    

 doc2:  Student, School     

 doc3:  Teach, School, City, Game    

 doc4:  Baseball, Basketball   

 doc5:  Basketball, Player, Spectator    

 doc6:  Baseball, Coach, Game, Team 

 doc7:  Basketball, Team, City, Game   



 Association rule mining: 
 Finding frequent patterns, associations, correlations, or 

causal structures among sets of items or objects in 
transaction databases, relational databases, and other 
information repositories. 

 Applications: 
 Basket data analysis, cross-marketing, catalog design, 

loss-leader analysis, clustering, classification, etc. 

 Examples.  
 Rule form:  “Body ead [support, confidence]”. 
 buys(x, “diapers”)  buys(x, “beers”) [0.5%, 60%] 
 major(x, “CS”) ^ takes(x, “DB”) grade(x, “A”) [1%, 75%] 



 Given: (1) database of transactions, (2) each transaction is a 
list of items (purchased by a customer in a visit) 

 Find: all rules that correlate the presence of one set of items 
with that of another set of items 
 E.g., 98% of people who purchase tires and auto accessories 

also get automotive services done 

 Applications 
 *    Maintenance Agreement (What the store should do 

to boost Maintenance Agreement sales) 
Home Electronics   *  (What other products should the 

store stocks up?) 
 Attached mailing in direct marketing 



Based on the types of values, the association rules can be 
classified into two categories:  

Boolean Association Rules and 

Quantitative Association Rules 

Example:  

   Boolean Association Rule 

Keyboard ⇒ Mouse [support = 6%, confidence = 70%] 

   Quantitative Association Rule 

(Age = 26…30) ⇒ (Cars =1, 2) [Support 3%, confidence = 
36%] 



 Boolean vs. quantitative associations  

 (Based on the types of values handled) 

 buys(x, “SQLServer”) ^ buys(x, “DMBook”) 

buys(x, “DBMiner”) [0.2%, 60%] 

 age(x, “30..39”) ^ income(x, “42..48K”) buys(x, 
“PC”) [1%, 75%] 

 Single dimension vs. multiple dimensional associations 

 Single level vs. multiple-level analysis 

 What brands of beers are associated with what 
brands of diapers? 



 A transaction t contains X, a set of items (itemset) in I, 
if X  t. 

 An association rule is an implication of the form: 
  X  Y, where X, Y  I, and X Y  =  
 

 An itemset is a set of items. 
 E.g., X = {milk, bread, cereal} is an itemset. 

 A k-itemset is an itemset with k items. 
 E.g., {milk, bread, cereal} is a 3-itemset 



The support of an association pattern is the percentage 
of task-relevant data transactions for which the pattern is 
true. 

IF A ⇒ B 



Confidence is defined as the measure of certainty or 
trustworthiness associated with each discovered 
pattern. 

IF A ⇒ B 



 Support: The rule holds with support sup in T (the 
transaction data set) if sup% of transactions contain X 
 Y.  
 sup = Pr(X  Y).  

 Confidence: The rule holds in T with confidence conf 
if conf% of transactions that contain X also contain Y. 
 conf = Pr(Y | X) 

 An association rule is a pattern that states when X 
occurs, Y occurs with certain probability.  



 Support count: The support count of an itemset X, 
denoted by X.count, in a data set T is the number of 
transactions in T that contain X. Assume T has n 
transactions.  

 Then,  
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countYX
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 Goal: Find all rules that satisfy the user-specified 
minimum support (minsup) and minimum confidence 
(minconf). 

 Key Features 
 Completeness: find all rules. 

 No target item(s) on the right-hand-side 

 Mining with data on hard disk (not in memory)  



 Transaction data 
 Assume: 
  minsup = 30% 
  minconf = 80% 

 An example frequent itemset:     
   {Chicken, Clothes, Milk}     [sup = 3/7] 

 Association rules from the itemset:  
  Clothes  Milk, Chicken [sup = 3/7, conf = 3/3] 

  …    … 

  Clothes, Chicken  Milk,  [sup = 3/7, conf = 3/3] 

t1: Beef, Chicken, Milk 
t2: Beef, Cheese 
t3: Cheese, Boots 
t4: Beef, Chicken, Cheese 
t5: Beef, Chicken, Clothes, Cheese, Milk 
t6: Chicken, Clothes, Milk 
t7: Chicken, Milk, Clothes 



 A simplistic view of shopping baskets,  

 Some important information not considered. E.g,  
 the quantity of each item purchased and  

 the price paid.  



 A set of items is referred to as itemset. 

 An itemset containing k items is called k-itemset. 

 An itemset can also be seen as a conjunction of items 
(or a predicate) 



Suppose min_sup is the minimum support threshold. 

An itemset satisfies minimum support if the 
occurrence frequency of the itemset is greater than or 
equal to min_sup. 

 If an itemset satisfies minimum support, then it is a 
frequent itemset. 



   Rules that satisfy both a minimum support threshold 
and a minimum confidence threshold are called 
strong. 



    Find all frequent itemsets  

    Generate strong association rules from the frequent    

       itemsets 



 There are a large number of them!!  
 They use different strategies and data structures.  

 Their resulting sets of rules are all the same.  
 Given a transaction data set T, and a minimum support and a 

minimum confident, the set of association rules existing in T 
is uniquely determined.  

 Any algorithm should find the same set of rules 
although their computational efficiencies and memory 
requirements may be different.  

 We study only one: the Apriori Algorithm 

 



   The Apriori Algorithm is an influential algorithm for 
mining frequent itemsets for boolean association 
rules. 

 
Key Concepts : 
 
• Frequent Itemsets: The sets of item which has minimum    
  support (denoted by Li for ith-Itemset). 
• Apriori Property: Any subset of frequent itemset must be  
  frequent.   
• Join Operation: To find Lk, a set of candidate k-itemsets is  
  generated by joining Lk-1with itself.  



   Reducing the search space to avoid finding of each 
Lk requires one full scan of the database 

 

    If an itemset I does not satisfy the minimum 
support threshold, min_sup, the I is not frequent, 
that is, P (I) < min_sup. 

    

   If an item A is added to the itemset I, then the 
resulting itemset (i.e.,I∪A) cannot occur more 
frequently than I. Therefore, I ∪ A is not frequent 
either, that is, P (I ∪A) < min_sup. 



  Find the frequent itemsets: the sets of items that have 
minimum support 

 –A subset of a frequent itemset must also be a frequent  
itemset 

  i.e., if {AB} is a frequent itemset, both {A} and {B}     

           should be a frequent itemset 

  –Iteratively find frequent itemsets with cardinality from 1 
to k (k-itemset) 

  – Use the frequent itemsets to generate association rules. 



Consider a database, D , consisting of 
9 transactions. 
 
Suppose min. support count required 
is 2 (i.e. min_sup = 2/9 = 22 % ) 
 
Let minimum confidence required is 
70%. 
 
We have to first find out the frequent 
itemset using Apriori algorithm. 
 
Then, Association rules will be 
generated using min. support & min. 
confidence. 



The set of frequent 1-itemsets, L1, consists of the 
candidate 1-itemsets satisfying minimum support. 
 
In the first iteration of the algorithm, each item is a 
member of the set of candidate. 





The generation of the set of candidate 3-itemsets, C3, involves use of 
the Apriori Property. 
 
In order to find C3, we compute L2 Join  L2. 
 
C3= L2 Join L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2, 
I3, I5}, {I2, I4, I5}}. 
 
Now, Join step is complete and Prune step will be used to reduce the 
size of C3. Prune step helps to avoid heavy computation due to large 
Ck. 



Based on the Apriori property that all subsets of a frequent itemset 
must also be frequent, we can determine that four latter candidates 
cannot possibly be frequent. How ? 

For example , lets take {I1, I2, I3}.The 2-item subsets of it are {I1, I2}, 
{I1, I3} & {I2, I3}. Since all 2-item subsets of {I1, I2, I3} are members 
of L2, We will keep {I1, I2, I3} in C3. 

•Lets take another example of {I2, I3, I5}which shows how the pruning 
is performed. The 2-item subsets are {I2, I3}, {I2, I5} & {I3,I5}.  

•BUT, {I3, I5} is not a member of L2 and hence it is not frequent 
violating Apriori Property. Thus We will have to remove {I2, I3, I5} 
from C3. 

•Therefore, C3= {{I1, I2, I3}, {I1, I2, I5}} after checking for all members 
of result of Join operation for Pruning. 

•Now, the transactions in D are scanned in order to determine L3, 
consisting of those candidates 3-itemsets in C3having minimum 
support. 



   The algorithm uses L3 Join L3 to generate a candidate 
set of 4-itemsets, C4. Although the join results in {{I1, 
I2, I3, I5}}, this itemset is pruned since its subset {{I2, 
I3, I5}} is not frequent.  

•  Thus, C4= φ, and algorithm terminates, having found 
all of the frequent items. This completes our Apriori 
Algorithm. 

•  What’s Next ?  

   These frequent itemsets will be used to generate strong 
association rules (where strong association rules 
satisfy both minimum support & minimum 
confidence). 



Procedure: 

•  For each frequent itemset “ l ”, generate all nonempty 
subsets of l. 

•  For every nonempty subset s of  l, output the rule 

 “s ->(l-s)”  if  

    support_count(l) / support_count(s) >= min_conf 
where min_conf is minimum confidence threshold. 



 

   We had L = {{I1}, {I2}, {I3}, {I4}, {I5}, {I1,I2}, {I1,I3}, {I1,I5}, 
{I2,I3}, {I2,I4}, {I2,I5}, {I1,I2,I3}, {I1,I2,I5}}. 

 

 – Lets take l = {I1,I2,I5} 

 – Its all nonempty subsets are {I1,I2}, {I1,I5}, {I2,I5}, 
 {I1}, {I2}, {I5} 



Let minimum confidence threshold  is , say 70%. 

    The resulting association rules are shown below, each listed with 
its  confidence. 

  –R1: I1 ^ I2 ->I5 

   Confidence = sc{I1,I2,I5}/sc{I1,I2} = 2/4 = 50% 

   R1 is Rejected. 

  –R2: I1 ^ I5 ->I2  

   Confidence = sc{I1,I2,I5}/sc{I1,I5} = 2/2 = 100% 

   R2 is Selected. 

  –R3: I2 ^ I5 ->I1 

   Confidence = sc{I1,I2,I5}/sc{I2,I5} = 2/2 = 100% 

   R3 is Selected. 

 



  –R4: I1 -> I2 ^ I5 

   Confidence = sc{I1,I2,I5}/sc{I1} = 2/6 = 33% 

   R4 is Rejected. 

  –R5: I2 -> I1 ^ I5 

   Confidence = sc{I1,I2,I5}/{I2} = 2/7 = 29% 

   R5 is Rejected. 

  –R6: I5-> I1 ^ I2 

   Confidence = sc{I1,I2,I5}/ {I5} = 2/2 = 100% 

   R6 is Selected. 

 

In this way, We have found three strong association rules. 



Dataset T 
  

TID Items 

T100 1, 3, 4 

T200 2, 3, 5 

T300 1, 2, 3, 5 

T400 2, 5 

minsup=0.5 





 Join Step: Ck is generated by joining Lk-1with itself 

 Prune Step:  Any (k-1)-itemset that is not frequent cannot be a 
subset of a frequent k-itemset 

 Pseudo-code: 
Ck: Candidate itemset of size k 
Lk : frequent itemset of size k 

 

L1 = {frequent items}; 
for (k = 1; Lk !=; k++) do begin 
     Ck+1 = candidates generated from Lk; 
    for each transaction t in database do 

       increment the count of all candidates in Ck+1                            
that are contained in t 

    Lk+1  = candidates in Ck+1 with min_support 
    end 
return k Lk; 



Seems to be very expensive 

 Level-wise search 

 K = the size of the largest itemset 

 It makes at most K passes over data 

 In practice, K is bounded (10).  

 The algorithm is very fast. Under some conditions, all 
rules can be found in linear time. 

 Scale up to large data sets 



Advantages 
 Uses large itemset property 
 Easily parallelized 
 Easy to implement 

Disadvantages  
 Assumes transaction database is memory 

resident. 
 Requires many database scans.   

 
 



 Clearly the space of all association rules is exponential, 
O(2m), where m is the number of items in I.  

 The mining exploits sparseness of data, and high 
minimum support and high minimum confidence 
values.  

 Still, it always produces a huge number of rules, 
thousands, tens of thousands, millions, ...  

 



An example with a transactional data D contents a list of 
5 transactions in a supermarket. 



Step 1 min_sup = 40% (2/5) 

C1      L1 



Step 2 

Step 3 

C2 

L2 



Step 4: L2 is not Null, so repeat Step2 

C3 =Null 



Step 5 
min_sup=40% min_conf=70% 





Step 6 
min_sup = 40% min_conf = 70% 



Some rules are believable, like Baby powder ⇒Diaper. 

Some rules need additional analysis, like Milk ⇒Beer. 

Some rules are unbelievable, like Diaper ⇒ Beer. 

 

   Note this example could contain unreal results because 
its small data. 



 Association rule mining 

Mining single-dimensional Boolean association rules 

from transactional databases 

Mining multilevel association rules from transactional 

databases 

Mining multidimensional association rules from 

transactional databases and data warehouse 

 From association mining to correlation analysis 

 Constraint-based association mining 

 Summary 



 Hash-based itemset counting: A k-itemset whose corresponding 

hashing bucket count is below the threshold cannot be frequent 

 Transaction reduction: A transaction that does not contain any 

frequent k-itemset is useless in subsequent scans 

 Partitioning: Any itemset that is potentially frequent in DB must be 

frequent in at least one of the partitions of DB 

 Sampling: mining on a subset of given data, lower support threshold 

+ a method to determine the completeness 

 Dynamic itemset counting: add new candidate itemsets only when all 

of their subsets are estimated to be frequent 



 The core of the Apriori algorithm: 
 Use frequent (k – 1)-itemsets to generate candidate frequent k-

itemsets 

 Use database scan and pattern matching to collect counts for the 
candidate itemsets 

 

 The bottleneck of Apriori: candidate generation 

 Huge candidate sets: 

 Multiple scans of database:  



 Reduce the number of candidates: 

 A k-itemset whose corresponding hashing bucket count is 
below the threshold cannot be frequent. 

 While scanning to generate 1-itemsets , we can generate 2-
itemsets for each transaction and hash(map) them into 
different buckets of a hash table structure and increase the 
corresponding bucket counts. A 2-itemset whose 
corresponding bucket count is below the support threshold 
can not be frequent. 

 



Generate candidate set 

Count support 

Make new hash table 

Generate candidate set 

Count support 

Apriori 

DHP 



 Consider two item sets, all items are numbered as i1, i2, …in.  
For any pair (x, y), has according to  

 
 Hash function bucket #=  

h({x y}) = ((order of x)*10+(order of y)) % 7 

 Example: 
 Items = A, B, C, D, E,  Order  =  1, 2,  3 , 4, 5,  
 H({C, E})= (3*10 + 5)% 7 = 0 
 Thus, {C, E} belong to bucket 0. 



 In k-iteration, hash all “appearing”  k+1 itemsets in a 
hashtable, count all the occurrences of an itemset in 
the correspondent bucket. 

 

 

 In k+1 iteration, examine each of the candidate itemset 
to see if its correspondent bucket value is above the 
support ( necessary condition ) 



TID Items 

100 A C D 

200 B C E 

300 A B C E 

400 B E 



Itemset Sup 

{A} 2 

{B} 3 

{C} 3 

{D} 1 

{E} 3 

Itemset Sup 

{A} 2 

{B} 3 

{C} 3 

{E} 3 

          C1                                                L1 



 Find all 2-itemset of each transaction 

 
TID 2-itemset 

100 {A C} {A D} {C D} 

200 {B C} {B E} {C E} 

300 {A B} {A C} {A E} {B C} {B E} {C E} 

400 {B E} 



 Hash function 

h({x y}) = ((order of x)*10+(order of y)) % 7 

 
 Hash table 
                  {C E}    {A E}      {B C}                {B E}    {A B}    {A C} 

                   {C E}                   {B C}                {B E}                  {C D} 

                   {A D}                                             {B E}                  {A C} 

 

 

    

                 bucket 0        1            2             3           4            5             6 

3 1 2 0 3 1 3 



                                        
L1*L1 

# in the 
bucket 

{A B} 1 

{A C} 3 

{A E} 1 

{B C} 2 

{B E} 3 

{C E} 3 

Resulted 
C2 

{A C} 

{B C} 

{B E} 

{C E} 

C2 of 
Apriori 

{A B} 

{A C} 

{A E} 

{B C} 

{B E} 

{C E} 



 Compress a large database into a compact,  Frequent-

Pattern tree (FP-tree) structure 

 highly condensed, but complete for frequent pattern 

mining 

 avoid costly database scans 

 Develop an efficient, FP-tree-based frequent pattern mining 

method 

 A divide-and-conquer methodology: decompose mining 

tasks into smaller ones 

 Avoid candidate generation: sub-database test only! 



 A transaction that does not contain any frequent k-
item sets cannot contain any frequent (k+1) item sets. 

 Such transactions can be marked or remoned from 
further considerations. 





 Use a compressed representation of the database using 
an FP-tree 

 

 Once an FP-tree has been constructed, it uses a 
recursive divide-and-conquer approach to mine the 
frequent itemsets 







 ECLAT(Equivalence CLASS Transformation Algorithm) :  

  Developed by Zaki 2000. 

 

 For each item, store a list of transaction ids (tids); vertical 
data layout 

 

Instead of {TID: itemset}  it stores {item: TID_set} 

 



TID Items

1 A,B,E

2 B,C,D

3 C,E

4 A,C,D

5 A,B,C,D

6 A,E

7 A,B

8 A,B,C

9 A,C,D

10 B

Horizontal

Data Layout

A B C D E

1 1 2 2 1

4 2 3 4 3

5 5 4 5 6

6 7 8 9

7 8 9

8 10

9

Vertical Data Layout

TID-list 



 Determine support of any k-itemset by intersecting tid-
lists of two of its (k-1) subsets. 
 
 
 
 
 

 
 

 3 traversal approaches:  
 top-down, bottom-up and hybrid 

 Advantage: very fast support counting 
 Disadvantage: intermediate tid-lists may become too large 

for memory 

A

1

4

5

6

7

8

9

B

1

2

5

7

8

10

  

AB

1

5

7

8







 Choice of minimum support threshold 
  lowering support threshold results in more frequent itemsets 
  this may increase number of candidates and max length of 

frequent itemsets 

 Dimensionality (number of items) of the data set 
  more space is needed to store support count of each item 
  if number of frequent items also increases, both computation and 

I/O costs may also increase 

 Size of database 
  since Apriori makes multiple passes, run time of algorithm may 

increase with number of transactions 

 Average transaction width 
  transaction width increases with denser data sets 
 This may increase max length of frequent itemsets and traversals of 

hash tree (number of subsets in a transaction increases with its 
width) 
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 Mining single-dimensional Boolean association rules 
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 Mining multilevel association rules from transactional 

databases 

 Mining multidimensional association rules from 
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 Summary 



 Items often form hierarchy. 

 Items at the lower level are expected to have lower support. 

 Rules regarding itemsets at appropriate levels could be quite useful. 

 ARs generated form mining data at multiple levels of abstraction 
are called multiple-level or multilevel AR 

 Multilevel ARs can be mined under a support-confidence 
framework. 





 Top-down strategy is employed, counts are 
accumulated for the calculation of frequent itemsets at 
each concept level, starting from level1 and working 
downward in the hierarchy for more specific concept 
levels until no frequent itemsets may be used. 

 The variations are : 

 Uniform minimum support for all levels 

 Using reduced minimum support at lower levels 



 The same min.support is used when mining at each 
level of abstraction. 

 Example: 

 



 Advantages: 

 -   The search procedure is simplified 

 -   Users are only required to specify min. support threshold. 

 -   Apriori like optimization technique can be applied. 
 -   No need to examine itemsets containing any item whose ancestors do not    
         have minimum support.    
 
 Disadvantages: 
 -  Unlikely that items at lower levels of abstraction will occur as frequently as    
         those at higher levels of abstraction. 
     -  If min. Sup. is too high : It could miss some meaningful associations  
         occurring at low abstraction levels. 
     -  If min. Sup. is too low :  It may generate uninteresting associations occurring  
         at high abstraction levels. 
           



 Each level of abstraction has its own minimum 
support threshold. 

 The deeper the level of abstraction , the smaller the 
corresponding threshold. 



 Single dimensional or Inter-dimensional AR : It contains a single 
predicate (i.e. buys) with multiple occurrences. 

 Ex: buys(X, “digital camera”) => buys(X, “HP Printer”) 

 Such rules are generally used for transactional data. 

 Such data can be stored in relational database or data warehouse 
(which is multidimensional  by definition) 

 Each database attribute or warehouse dimension can be referred as 
predicate. 

 So we, mine AR containing multiple predicates: 

 Ex: age(X, “20….24”) ^ occupation(X, “student”)=> buys(X, “laptop”) 

 Multidimensional AR: ARs that involve two or more dimensions or 
predicates  ({ age, occupation, buys}) 



 Each of which occurs only once in the rule , it has no 
repeated predicates : Inter-dimensional AR 

 Hybrid dimensional AR: Multidimensional AR with 
repeated predicates. 

 Ex: age(X, “20….29”) ^ buys(X, “laptop”)=> buys (X, “HP Printer”) 

 Database attributes  can be: 

 Categorical (finite no. of values with no ordering among 
the values, occupation, brand, color), are also called 
nominal attributes. 

 Quantitative (numeric and have implicit ordering among 
values ,(ex: age , income, price) 
 



 Techniques for mining multidimensional ARs for 
quantitative attributes are : 

(a) Discretized using predefined concept hierarchy 

 
 Ex: income attribute may be discretized as: 

     “0…...20k”, “21…..30k”, “31…..40k” and so on. 
 The discretization occurs before mining hence known as static 

discretization. 

 Referred as mining multidimensional AR using static 
discretization of quantitative attributes. 



(b)  Discretized using bins 

 
 Bins may be further combined during mining process 

 The process is dynamic 

 Strategy treats the numeric attribute values as quantities rather 
that ranges or categories 

 Referred to as Dynamic quantitative ARs. 



 Discretized prior to mining 
using concept hierarchy. 

 Numeric values are replaced by 
ranges. 

 In relational database, finding 
all frequent k-predicate sets will 
require k or k+1 table scans. 

 Data cube is well suited for 
mining. 

 The cells of an n-dimensional 
cuboid correspond to the  
predicate sets. 

 Mining from data cubes can be 
much faster. 



 Association rule mining 

 Mining single-dimensional Boolean association rules 

from transactional databases 

 Mining multilevel association rules from transactional 

databases 

 Mining multidimensional association rules from 

transactional databases and data warehouse 

 From association mining to correlation analysis 

 Constraint-based association mining 

 Summary 



 
Two popular measurements:  
 support;  and   
Confidence 

 
   Ex: If A=> B is a rule , then 
   Support=P(A U B) 
   Confidence = P(A U B)/ P (B/A) 



 Example 1: (Aggarwal & Yu, PODS98) 

 Among 5000 students 
 3000 play basketball 
 3750 eat cereal 
 2000 both play basket ball and eat cereal 

 play basketball   eat cereal [40%, 66.7%]  is misleading because the 
overall percentage of students eating cereal is 75% which is higher 
than 66.7%. 

 play basketball   not eat cereal [20%, 33.3%] is far more accurate, 
although with lower support and confidence 

 
basketball not basketball sum(row)

cereal 2000 1750 3750

not cereal 1000 250 1250

sum(col.) 3000 2000 5000



Example 2: Of 10,000 transactions analyzed , the data show 6,000 
transactions included Computer Games , while 7,500 included Videos, 
and 4,000 included both Computer Games and Videos. (Min. Sup= 30 
% and Min. Conf= 60%). Rule is : 
buys(X, “Computer Games”) => buys (X, “Videos”) [40 %, 66%] 
Misleading: 

•Because probability of purchasing Videos is 75% which is larger 
than 66%. 
•Computer Games and Videos are negatively associated because , 
the purchase of one item actually decreases the likelihood of 
purchasing the other. 
•It does not measure the real strength of correlation and 
implication between A and B. 

 
This may lead to unwise business decision. 
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To tackle the weakness , a correlation measure can be used : 
Correlation Rules 

A => B [ Support, Confidence, Correlation] 
 

Various correlation measures are there : 
  -Lift measure 
  -Chi-square correlation analysis 
  -All-confidence 
  -Cosine measure 



 The occurrence of itemset A is independent of the 
occurrence of itemset B , if 

    P(A U B) = P(A). P(B) 

  Otherwise, itemsets A and B are dependent and correlated 
as events. 

The lift between A and B can be measured as :  

 

If value < 1 : The occurrence of A and B are –vely correlated 

If value > 1 : The occurrence of A and B are +vely correlated 

If value = 1 : The occurrence of A and B are independent 
      and no correlation exists between them. 
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Is equivalent to :  
P(B/A)/ P(B)  

or 
    confidence (A=> B)/ Support(B) 

In other words, it asses the degree to which the occurrence of 
one lifts the occurrence of other. 
 
Example:  
If A=Computer Games & B= Videos then,  
Given the market conditions , the sale of games is said to 
increase or lift the likelihood of the sale of videos by a factor 
of the value  returned by the equation. 



From the table : 

P( {game})=0.60 

P({video})=0.75 

P({game, video})=0.40 

Lift (game, video)=P({ game, video})/P( {game}). P({video}) 

          = 0.40/(0.60 * 0.75) = 0.89 

o.89 < 1 , -ve correlation between occurrence of {game} and {video} 

The numerator => likelihood of a customer purchasing both while,  

denominator => what the likelihood have been if the two purchases are completely 
independent. 

Such negative correlations can not be found using support and confidence 
framework. 

 



   Because Chi-square value > 1 and the observed value of 
the slot ( game, video)=4,000, which is less than the 
expected value 4,500, buying game and buying video 
are negatively correlated. 



 Interactive, exploratory mining giga-bytes of data?   
 Could it be real? — Making good use of constraints! 

 What kinds of constraints can be used in mining? 
 Knowledge type constraint: classification, association, 

etc. 
 Data constraint: Specify the task relevant data, SQL-like 

queries  
 Dimension/level constraints: Specify the desired 

dimension of data. 
 in relevance to region, price, brand, customer category. 

 Rule constraints: Specify the form of rules to be mined 
 small sales (price  < $10) triggers big sales (sum > $200). 

 Interestingness constraints: Specify thresholds or 
statistical measures 
 strong rules (min_support   3%, min_confidence   60%). 
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