

 Association rule mining

 Mining single-dimensional Boolean association rules

from transactional databases

 Mining multilevel association rules from transactional

databases

 Mining multidimensional association rules from

transactional databases and data warehouse

 From association mining to correlation analysis

 Constraint-based association mining

 Summary

 Proposed by Agrawal et al in 1993.

 It is an important data mining model studied
extensively by the database and data mining
community.

 Assume all data are categorical.

 No good algorithm for numeric data.

 Initially used for Market Basket Analysis to find
how items purchased by customers are related.

 Bread Milk [sup = 5%, conf = 100%]

 I = {i1, i2, …, im}: a set of items.

 Transaction t :

 t a set of items, and t I.

 Transaction Database T: a set of transactions T = {t1, t2,
…, tn}.

 Market basket transactions:
 t1: {bread, cheese, milk}
 t2: {apple, eggs, salt, yogurt}
 … …
 tn: {biscuit, eggs, milk}

 Concepts:
 An item: an item/article in a basket
 I: the set of all items sold in the store
 A transaction: items purchased in a basket; it may have

TID (transaction ID)
 A transactional dataset: A set of transactions

 A text document data set. Each document is
treated as a “bag” of keywords

 doc1: Student, Teach, School

 doc2: Student, School

 doc3: Teach, School, City, Game

 doc4: Baseball, Basketball

 doc5: Basketball, Player, Spectator

 doc6: Baseball, Coach, Game, Team

 doc7: Basketball, Team, City, Game

 Association rule mining:
 Finding frequent patterns, associations, correlations, or

causal structures among sets of items or objects in
transaction databases, relational databases, and other
information repositories.

 Applications:
 Basket data analysis, cross-marketing, catalog design,

loss-leader analysis, clustering, classification, etc.

 Examples.
 Rule form: “Body ead [support, confidence]”.
 buys(x, “diapers”) buys(x, “beers”) [0.5%, 60%]
 major(x, “CS”) ^ takes(x, “DB”) grade(x, “A”) [1%, 75%]

 Given: (1) database of transactions, (2) each transaction is a
list of items (purchased by a customer in a visit)

 Find: all rules that correlate the presence of one set of items
with that of another set of items
 E.g., 98% of people who purchase tires and auto accessories

also get automotive services done

 Applications
 * Maintenance Agreement (What the store should do

to boost Maintenance Agreement sales)
Home Electronics * (What other products should the

store stocks up?)
 Attached mailing in direct marketing

Based on the types of values, the association rules can be
classified into two categories:

Boolean Association Rules and

Quantitative Association Rules

Example:

 Boolean Association Rule

Keyboard ⇒ Mouse [support = 6%, confidence = 70%]

 Quantitative Association Rule

(Age = 26…30) ⇒ (Cars =1, 2) [Support 3%, confidence =
36%]

 Boolean vs. quantitative associations

 (Based on the types of values handled)

 buys(x, “SQLServer”) ^ buys(x, “DMBook”)

buys(x, “DBMiner”) [0.2%, 60%]

 age(x, “30..39”) ^ income(x, “42..48K”) buys(x,
“PC”) [1%, 75%]

 Single dimension vs. multiple dimensional associations

 Single level vs. multiple-level analysis

 What brands of beers are associated with what
brands of diapers?

 A transaction t contains X, a set of items (itemset) in I,
if X t.

 An association rule is an implication of the form:
 X Y, where X, Y I, and X Y =

 An itemset is a set of items.
 E.g., X = {milk, bread, cereal} is an itemset.

 A k-itemset is an itemset with k items.
 E.g., {milk, bread, cereal} is a 3-itemset

The support of an association pattern is the percentage
of task-relevant data transactions for which the pattern is
true.

IF A ⇒ B

Confidence is defined as the measure of certainty or
trustworthiness associated with each discovered
pattern.

IF A ⇒ B

 Support: The rule holds with support sup in T (the
transaction data set) if sup% of transactions contain X
 Y.
 sup = Pr(X Y).

 Confidence: The rule holds in T with confidence conf
if conf% of transactions that contain X also contain Y.
 conf = Pr(Y | X)

 An association rule is a pattern that states when X
occurs, Y occurs with certain probability.

 Support count: The support count of an itemset X,
denoted by X.count, in a data set T is the number of
transactions in T that contain X. Assume T has n
transactions.

 Then,

n

countYX
support

). (

countX

countYX
confidence

.

). (

 Goal: Find all rules that satisfy the user-specified
minimum support (minsup) and minimum confidence
(minconf).

 Key Features
 Completeness: find all rules.

 No target item(s) on the right-hand-side

 Mining with data on hard disk (not in memory)

 Transaction data
 Assume:
 minsup = 30%
 minconf = 80%

 An example frequent itemset:
 {Chicken, Clothes, Milk} [sup = 3/7]

 Association rules from the itemset:
 Clothes Milk, Chicken [sup = 3/7, conf = 3/3]

 … …

 Clothes, Chicken Milk, [sup = 3/7, conf = 3/3]

t1: Beef, Chicken, Milk
t2: Beef, Cheese
t3: Cheese, Boots
t4: Beef, Chicken, Cheese
t5: Beef, Chicken, Clothes, Cheese, Milk
t6: Chicken, Clothes, Milk
t7: Chicken, Milk, Clothes

 A simplistic view of shopping baskets,

 Some important information not considered. E.g,
 the quantity of each item purchased and

 the price paid.

 A set of items is referred to as itemset.

 An itemset containing k items is called k-itemset.

 An itemset can also be seen as a conjunction of items
(or a predicate)

Suppose min_sup is the minimum support threshold.

An itemset satisfies minimum support if the
occurrence frequency of the itemset is greater than or
equal to min_sup.

 If an itemset satisfies minimum support, then it is a
frequent itemset.

 Rules that satisfy both a minimum support threshold
and a minimum confidence threshold are called
strong.

 Find all frequent itemsets

 Generate strong association rules from the frequent

 itemsets

 There are a large number of them!!
 They use different strategies and data structures.

 Their resulting sets of rules are all the same.
 Given a transaction data set T, and a minimum support and a

minimum confident, the set of association rules existing in T
is uniquely determined.

 Any algorithm should find the same set of rules
although their computational efficiencies and memory
requirements may be different.

 We study only one: the Apriori Algorithm

 The Apriori Algorithm is an influential algorithm for
mining frequent itemsets for boolean association
rules.

Key Concepts :

• Frequent Itemsets: The sets of item which has minimum
 support (denoted by Li for ith-Itemset).
• Apriori Property: Any subset of frequent itemset must be
 frequent.
• Join Operation: To find Lk, a set of candidate k-itemsets is
 generated by joining Lk-1with itself.

 Reducing the search space to avoid finding of each
Lk requires one full scan of the database

 If an itemset I does not satisfy the minimum
support threshold, min_sup, the I is not frequent,
that is, P (I) < min_sup.

 If an item A is added to the itemset I, then the
resulting itemset (i.e.,I∪A) cannot occur more
frequently than I. Therefore, I ∪ A is not frequent
either, that is, P (I ∪A) < min_sup.

 Find the frequent itemsets: the sets of items that have
minimum support

 –A subset of a frequent itemset must also be a frequent
itemset

 i.e., if {AB} is a frequent itemset, both {A} and {B}

 should be a frequent itemset

 –Iteratively find frequent itemsets with cardinality from 1
to k (k-itemset)

 – Use the frequent itemsets to generate association rules.

Consider a database, D , consisting of
9 transactions.

Suppose min. support count required
is 2 (i.e. min_sup = 2/9 = 22 %)

Let minimum confidence required is
70%.

We have to first find out the frequent
itemset using Apriori algorithm.

Then, Association rules will be
generated using min. support & min.
confidence.

The set of frequent 1-itemsets, L1, consists of the
candidate 1-itemsets satisfying minimum support.

In the first iteration of the algorithm, each item is a
member of the set of candidate.

The generation of the set of candidate 3-itemsets, C3, involves use of
the Apriori Property.

In order to find C3, we compute L2 Join L2.

C3= L2 Join L2 = {{I1, I2, I3}, {I1, I2, I5}, {I1, I3, I5}, {I2, I3, I4}, {I2,
I3, I5}, {I2, I4, I5}}.

Now, Join step is complete and Prune step will be used to reduce the
size of C3. Prune step helps to avoid heavy computation due to large
Ck.

Based on the Apriori property that all subsets of a frequent itemset
must also be frequent, we can determine that four latter candidates
cannot possibly be frequent. How ?

For example , lets take {I1, I2, I3}.The 2-item subsets of it are {I1, I2},
{I1, I3} & {I2, I3}. Since all 2-item subsets of {I1, I2, I3} are members
of L2, We will keep {I1, I2, I3} in C3.

•Lets take another example of {I2, I3, I5}which shows how the pruning
is performed. The 2-item subsets are {I2, I3}, {I2, I5} & {I3,I5}.

•BUT, {I3, I5} is not a member of L2 and hence it is not frequent
violating Apriori Property. Thus We will have to remove {I2, I3, I5}
from C3.

•Therefore, C3= {{I1, I2, I3}, {I1, I2, I5}} after checking for all members
of result of Join operation for Pruning.

•Now, the transactions in D are scanned in order to determine L3,
consisting of those candidates 3-itemsets in C3having minimum
support.

 The algorithm uses L3 Join L3 to generate a candidate
set of 4-itemsets, C4. Although the join results in {{I1,
I2, I3, I5}}, this itemset is pruned since its subset {{I2,
I3, I5}} is not frequent.

• Thus, C4= φ, and algorithm terminates, having found
all of the frequent items. This completes our Apriori
Algorithm.

• What’s Next ?

 These frequent itemsets will be used to generate strong
association rules (where strong association rules
satisfy both minimum support & minimum
confidence).

Procedure:

• For each frequent itemset “ l ”, generate all nonempty
subsets of l.

• For every nonempty subset s of l, output the rule

 “s ->(l-s)” if

 support_count(l) / support_count(s) >= min_conf
where min_conf is minimum confidence threshold.

 We had L = {{I1}, {I2}, {I3}, {I4}, {I5}, {I1,I2}, {I1,I3}, {I1,I5},
{I2,I3}, {I2,I4}, {I2,I5}, {I1,I2,I3}, {I1,I2,I5}}.

 – Lets take l = {I1,I2,I5}

 – Its all nonempty subsets are {I1,I2}, {I1,I5}, {I2,I5},
 {I1}, {I2}, {I5}

Let minimum confidence threshold is , say 70%.

 The resulting association rules are shown below, each listed with
its confidence.

 –R1: I1 ^ I2 ->I5

 Confidence = sc{I1,I2,I5}/sc{I1,I2} = 2/4 = 50%

 R1 is Rejected.

 –R2: I1 ^ I5 ->I2

 Confidence = sc{I1,I2,I5}/sc{I1,I5} = 2/2 = 100%

 R2 is Selected.

 –R3: I2 ^ I5 ->I1

 Confidence = sc{I1,I2,I5}/sc{I2,I5} = 2/2 = 100%

 R3 is Selected.

 –R4: I1 -> I2 ^ I5

 Confidence = sc{I1,I2,I5}/sc{I1} = 2/6 = 33%

 R4 is Rejected.

 –R5: I2 -> I1 ^ I5

 Confidence = sc{I1,I2,I5}/{I2} = 2/7 = 29%

 R5 is Rejected.

 –R6: I5-> I1 ^ I2

 Confidence = sc{I1,I2,I5}/ {I5} = 2/2 = 100%

 R6 is Selected.

In this way, We have found three strong association rules.

Dataset T

TID Items

T100 1, 3, 4

T200 2, 3, 5

T300 1, 2, 3, 5

T400 2, 5

minsup=0.5

 Join Step: Ck is generated by joining Lk-1with itself

 Prune Step: Any (k-1)-itemset that is not frequent cannot be a
subset of a frequent k-itemset

 Pseudo-code:
Ck: Candidate itemset of size k
Lk : frequent itemset of size k

L1 = {frequent items};
for (k = 1; Lk !=; k++) do begin
 Ck+1 = candidates generated from Lk;
 for each transaction t in database do

 increment the count of all candidates in Ck+1
that are contained in t

 Lk+1 = candidates in Ck+1 with min_support
 end
return k Lk;

Seems to be very expensive

 Level-wise search

 K = the size of the largest itemset

 It makes at most K passes over data

 In practice, K is bounded (10).

 The algorithm is very fast. Under some conditions, all
rules can be found in linear time.

 Scale up to large data sets

Advantages
 Uses large itemset property
 Easily parallelized
 Easy to implement

Disadvantages
 Assumes transaction database is memory

resident.
 Requires many database scans.

 Clearly the space of all association rules is exponential,
O(2m), where m is the number of items in I.

 The mining exploits sparseness of data, and high
minimum support and high minimum confidence
values.

 Still, it always produces a huge number of rules,
thousands, tens of thousands, millions, ...

An example with a transactional data D contents a list of
5 transactions in a supermarket.

Step 1 min_sup = 40% (2/5)

C1 L1

Step 2

Step 3

C2

L2

Step 4: L2 is not Null, so repeat Step2

C3 =Null

Step 5
min_sup=40% min_conf=70%

Step 6
min_sup = 40% min_conf = 70%

Some rules are believable, like Baby powder ⇒Diaper.

Some rules need additional analysis, like Milk ⇒Beer.

Some rules are unbelievable, like Diaper ⇒ Beer.

 Note this example could contain unreal results because
its small data.

 Association rule mining

Mining single-dimensional Boolean association rules

from transactional databases

Mining multilevel association rules from transactional

databases

Mining multidimensional association rules from

transactional databases and data warehouse

 From association mining to correlation analysis

 Constraint-based association mining

 Summary

 Hash-based itemset counting: A k-itemset whose corresponding

hashing bucket count is below the threshold cannot be frequent

 Transaction reduction: A transaction that does not contain any

frequent k-itemset is useless in subsequent scans

 Partitioning: Any itemset that is potentially frequent in DB must be

frequent in at least one of the partitions of DB

 Sampling: mining on a subset of given data, lower support threshold

+ a method to determine the completeness

 Dynamic itemset counting: add new candidate itemsets only when all

of their subsets are estimated to be frequent

 The core of the Apriori algorithm:
 Use frequent (k – 1)-itemsets to generate candidate frequent k-

itemsets

 Use database scan and pattern matching to collect counts for the
candidate itemsets

 The bottleneck of Apriori: candidate generation

 Huge candidate sets:

 Multiple scans of database:

 Reduce the number of candidates:

 A k-itemset whose corresponding hashing bucket count is
below the threshold cannot be frequent.

 While scanning to generate 1-itemsets , we can generate 2-
itemsets for each transaction and hash(map) them into
different buckets of a hash table structure and increase the
corresponding bucket counts. A 2-itemset whose
corresponding bucket count is below the support threshold
can not be frequent.

Generate candidate set

Count support

Make new hash table

Generate candidate set

Count support

Apriori

DHP

 Consider two item sets, all items are numbered as i1, i2, …in.
For any pair (x, y), has according to

 Hash function bucket #=

h({x y}) = ((order of x)*10+(order of y)) % 7

 Example:
 Items = A, B, C, D, E, Order = 1, 2, 3 , 4, 5,
 H({C, E})= (3*10 + 5)% 7 = 0
 Thus, {C, E} belong to bucket 0.

 In k-iteration, hash all “appearing” k+1 itemsets in a
hashtable, count all the occurrences of an itemset in
the correspondent bucket.

 In k+1 iteration, examine each of the candidate itemset
to see if its correspondent bucket value is above the
support (necessary condition)

TID Items

100 A C D

200 B C E

300 A B C E

400 B E

Itemset Sup

{A} 2

{B} 3

{C} 3

{D} 1

{E} 3

Itemset Sup

{A} 2

{B} 3

{C} 3

{E} 3

 C1 L1

 Find all 2-itemset of each transaction

TID 2-itemset

100 {A C} {A D} {C D}

200 {B C} {B E} {C E}

300 {A B} {A C} {A E} {B C} {B E} {C E}

400 {B E}

 Hash function

h({x y}) = ((order of x)*10+(order of y)) % 7

 Hash table
 {C E} {A E} {B C} {B E} {A B} {A C}

 {C E} {B C} {B E} {C D}

 {A D} {B E} {A C}

 bucket 0 1 2 3 4 5 6

3 1 2 0 3 1 3

L1*L1

in the
bucket

{A B} 1

{A C} 3

{A E} 1

{B C} 2

{B E} 3

{C E} 3

Resulted
C2

{A C}

{B C}

{B E}

{C E}

C2 of
Apriori

{A B}

{A C}

{A E}

{B C}

{B E}

{C E}

 Compress a large database into a compact, Frequent-

Pattern tree (FP-tree) structure

 highly condensed, but complete for frequent pattern

mining

 avoid costly database scans

 Develop an efficient, FP-tree-based frequent pattern mining

method

 A divide-and-conquer methodology: decompose mining

tasks into smaller ones

 Avoid candidate generation: sub-database test only!

 A transaction that does not contain any frequent k-
item sets cannot contain any frequent (k+1) item sets.

 Such transactions can be marked or remoned from
further considerations.

 Use a compressed representation of the database using
an FP-tree

 Once an FP-tree has been constructed, it uses a
recursive divide-and-conquer approach to mine the
frequent itemsets

 ECLAT(Equivalence CLASS Transformation Algorithm) :

 Developed by Zaki 2000.

 For each item, store a list of transaction ids (tids); vertical
data layout

Instead of {TID: itemset} it stores {item: TID_set}

TID Items

1 A,B,E

2 B,C,D

3 C,E

4 A,C,D

5 A,B,C,D

6 A,E

7 A,B

8 A,B,C

9 A,C,D

10 B

Horizontal

Data Layout

A B C D E

1 1 2 2 1

4 2 3 4 3

5 5 4 5 6

6 7 8 9

7 8 9

8 10

9

Vertical Data Layout

TID-list

 Determine support of any k-itemset by intersecting tid-
lists of two of its (k-1) subsets.

 3 traversal approaches:
 top-down, bottom-up and hybrid

 Advantage: very fast support counting
 Disadvantage: intermediate tid-lists may become too large

for memory

A

1

4

5

6

7

8

9

B

1

2

5

7

8

10

AB

1

5

7

8

 Choice of minimum support threshold
 lowering support threshold results in more frequent itemsets
 this may increase number of candidates and max length of

frequent itemsets

 Dimensionality (number of items) of the data set
 more space is needed to store support count of each item
 if number of frequent items also increases, both computation and

I/O costs may also increase

 Size of database
 since Apriori makes multiple passes, run time of algorithm may

increase with number of transactions

 Average transaction width
 transaction width increases with denser data sets
 This may increase max length of frequent itemsets and traversals of

hash tree (number of subsets in a transaction increases with its
width)

 Association rule mining

 Mining single-dimensional Boolean association rules

from transactional databases

 Mining multilevel association rules from transactional

databases

 Mining multidimensional association rules from

transactional databases and data warehouse

 From association mining to correlation analysis

 Constraint-based association mining

 Summary

 Items often form hierarchy.

 Items at the lower level are expected to have lower support.

 Rules regarding itemsets at appropriate levels could be quite useful.

 ARs generated form mining data at multiple levels of abstraction
are called multiple-level or multilevel AR

 Multilevel ARs can be mined under a support-confidence
framework.

 Top-down strategy is employed, counts are
accumulated for the calculation of frequent itemsets at
each concept level, starting from level1 and working
downward in the hierarchy for more specific concept
levels until no frequent itemsets may be used.

 The variations are :

 Uniform minimum support for all levels

 Using reduced minimum support at lower levels

 The same min.support is used when mining at each
level of abstraction.

 Example:

 Advantages:

 - The search procedure is simplified

 - Users are only required to specify min. support threshold.

 - Apriori like optimization technique can be applied.
 - No need to examine itemsets containing any item whose ancestors do not
 have minimum support.

 Disadvantages:
 - Unlikely that items at lower levels of abstraction will occur as frequently as
 those at higher levels of abstraction.
 - If min. Sup. is too high : It could miss some meaningful associations
 occurring at low abstraction levels.
 - If min. Sup. is too low : It may generate uninteresting associations occurring
 at high abstraction levels.

 Each level of abstraction has its own minimum
support threshold.

 The deeper the level of abstraction , the smaller the
corresponding threshold.

 Single dimensional or Inter-dimensional AR : It contains a single
predicate (i.e. buys) with multiple occurrences.

 Ex: buys(X, “digital camera”) => buys(X, “HP Printer”)

 Such rules are generally used for transactional data.

 Such data can be stored in relational database or data warehouse
(which is multidimensional by definition)

 Each database attribute or warehouse dimension can be referred as
predicate.

 So we, mine AR containing multiple predicates:

 Ex: age(X, “20….24”) ^ occupation(X, “student”)=> buys(X, “laptop”)

 Multidimensional AR: ARs that involve two or more dimensions or
predicates ({ age, occupation, buys})

 Each of which occurs only once in the rule , it has no
repeated predicates : Inter-dimensional AR

 Hybrid dimensional AR: Multidimensional AR with
repeated predicates.

 Ex: age(X, “20….29”) ^ buys(X, “laptop”)=> buys (X, “HP Printer”)

 Database attributes can be:

 Categorical (finite no. of values with no ordering among
the values, occupation, brand, color), are also called
nominal attributes.

 Quantitative (numeric and have implicit ordering among
values ,(ex: age , income, price)

 Techniques for mining multidimensional ARs for
quantitative attributes are :

(a) Discretized using predefined concept hierarchy

 Ex: income attribute may be discretized as:

 “0…...20k”, “21…..30k”, “31…..40k” and so on.
 The discretization occurs before mining hence known as static

discretization.

 Referred as mining multidimensional AR using static
discretization of quantitative attributes.

(b) Discretized using bins

 Bins may be further combined during mining process

 The process is dynamic

 Strategy treats the numeric attribute values as quantities rather
that ranges or categories

 Referred to as Dynamic quantitative ARs.

 Discretized prior to mining
using concept hierarchy.

 Numeric values are replaced by
ranges.

 In relational database, finding
all frequent k-predicate sets will
require k or k+1 table scans.

 Data cube is well suited for
mining.

 The cells of an n-dimensional
cuboid correspond to the
predicate sets.

 Mining from data cubes can be
much faster.

 Association rule mining

 Mining single-dimensional Boolean association rules

from transactional databases

 Mining multilevel association rules from transactional

databases

 Mining multidimensional association rules from

transactional databases and data warehouse

 From association mining to correlation analysis

 Constraint-based association mining

 Summary

Two popular measurements:
 support; and
Confidence

 Ex: If A=> B is a rule , then
 Support=P(A U B)
 Confidence = P(A U B)/ P (B/A)

 Example 1: (Aggarwal & Yu, PODS98)

 Among 5000 students
 3000 play basketball
 3750 eat cereal
 2000 both play basket ball and eat cereal

 play basketball eat cereal [40%, 66.7%] is misleading because the
overall percentage of students eating cereal is 75% which is higher
than 66.7%.

 play basketball not eat cereal [20%, 33.3%] is far more accurate,
although with lower support and confidence

basketball not basketball sum(row)

cereal 2000 1750 3750

not cereal 1000 250 1250

sum(col.) 3000 2000 5000

Example 2: Of 10,000 transactions analyzed , the data show 6,000
transactions included Computer Games , while 7,500 included Videos,
and 4,000 included both Computer Games and Videos. (Min. Sup= 30
% and Min. Conf= 60%). Rule is :
buys(X, “Computer Games”) => buys (X, “Videos”) [40 %, 66%]
Misleading:

•Because probability of purchasing Videos is 75% which is larger
than 66%.
•Computer Games and Videos are negatively associated because ,
the purchase of one item actually decreases the likelihood of
purchasing the other.
•It does not measure the real strength of correlation and
implication between A and B.

This may lead to unwise business decision.

)()(

)(
,

BPAP

BAP
corr BA

To tackle the weakness , a correlation measure can be used :
Correlation Rules

A => B [Support, Confidence, Correlation]

Various correlation measures are there :
 -Lift measure
 -Chi-square correlation analysis
 -All-confidence
 -Cosine measure

 The occurrence of itemset A is independent of the
occurrence of itemset B , if

 P(A U B) = P(A). P(B)

 Otherwise, itemsets A and B are dependent and correlated
as events.

The lift between A and B can be measured as :

If value < 1 : The occurrence of A and B are –vely correlated

If value > 1 : The occurrence of A and B are +vely correlated

If value = 1 : The occurrence of A and B are independent
 and no correlation exists between them.

)()(

)(
,

BPAP

BAP
lift BA

)()(

)(
,

BPAP

BAP
lift BA

Is equivalent to :
P(B/A)/ P(B)

or
 confidence (A=> B)/ Support(B)

In other words, it asses the degree to which the occurrence of
one lifts the occurrence of other.

Example:
If A=Computer Games & B= Videos then,
Given the market conditions , the sale of games is said to
increase or lift the likelihood of the sale of videos by a factor
of the value returned by the equation.

From the table :

P({game})=0.60

P({video})=0.75

P({game, video})=0.40

Lift (game, video)=P({ game, video})/P({game}). P({video})

 = 0.40/(0.60 * 0.75) = 0.89

o.89 < 1 , -ve correlation between occurrence of {game} and {video}

The numerator => likelihood of a customer purchasing both while,

denominator => what the likelihood have been if the two purchases are completely
independent.

Such negative correlations can not be found using support and confidence
framework.

 Because Chi-square value > 1 and the observed value of
the slot (game, video)=4,000, which is less than the
expected value 4,500, buying game and buying video
are negatively correlated.

 Interactive, exploratory mining giga-bytes of data?
 Could it be real? — Making good use of constraints!

 What kinds of constraints can be used in mining?
 Knowledge type constraint: classification, association,

etc.
 Data constraint: Specify the task relevant data, SQL-like

queries
 Dimension/level constraints: Specify the desired

dimension of data.
 in relevance to region, price, brand, customer category.

 Rule constraints: Specify the form of rules to be mined
 small sales (price < $10) triggers big sales (sum > $200).

 Interestingness constraints: Specify thresholds or
statistical measures
 strong rules (min_support 3%, min_confidence 60%).

 R. Agarwal, C. Aggarwal, and V. V. V. Prasad. A tree projection algorithm for generation of frequent
itemsets. In Journal of Parallel and Distributed Computing (Special Issue on High Performance Data
Mining), 2000.

 R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases.
SIGMOD'93, 207-216, Washington, D.C.

 R. Agrawal and R. Srikant. Fast algorithms for mining association rules. VLDB'94 487-499, Santiago, Chile.

 R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95, 3-14, Taipei, Taiwan.

 R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98, 85-93, Seattle, Washington.

 S. Brin, R. Motwani, and C. Silverstein. Beyond market basket: Generalizing association rules to
correlations. SIGMOD'97, 265-276, Tucson, Arizona.

 S. Brin, R. Motwani, J. D. Ullman, and S. Tsur. Dynamic itemset counting and implication rules for market
basket analysis. SIGMOD'97, 255-264, Tucson, Arizona, May 1997.

 K. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg cubes. SIGMOD'99, 359-370,
Philadelphia, PA, June 1999.

 D.W. Cheung, J. Han, V. Ng, and C.Y. Wong. Maintenance of discovered association rules in large
databases: An incremental updating technique. ICDE'96, 106-114, New Orleans, LA.

 M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman. Computing iceberg queries
efficiently. VLDB'98, 299-310, New York, NY, Aug. 1998.

 G. Grahne, L. Lakshmanan, and X. Wang. Efficient mining of constrained correlated sets. ICDE'00, 512-521,
San Diego, CA, Feb. 2000.

 Y. Fu and J. Han. Meta-rule-guided mining of association rules in relational databases. KDOOD'95, 39-46,
Singapore, Dec. 1995.

 T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized
association rules: Scheme, algorithms, and visualization. SIGMOD'96, 13-23, Montreal, Canada.

 E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for association rules. SIGMOD'97, 277-
288, Tucson, Arizona.

 J. Han, G. Dong, and Y. Yin. Efficient mining of partial periodic patterns in time series database. ICDE'99,
Sydney, Australia.

 J. Han and Y. Fu. Discovery of multiple-level association rules from large databases. VLDB'95, 420-431,
Zurich, Switzerland.

 J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. SIGMOD'00, 1-12, Dallas,
TX, May 2000.

 T. Imielinski and H. Mannila. A database perspective on knowledge discovery. Communications of ACM,
39:58-64, 1996.

 M. Kamber, J. Han, and J. Y. Chiang. Metarule-guided mining of multi-dimensional association rules using
data cubes. KDD'97, 207-210, Newport Beach, California.

 M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo. Finding interesting rules from
large sets of discovered association rules. CIKM'94, 401-408, Gaithersburg, Maryland.

 F. Korn, A. Labrinidis, Y. Kotidis, and C. Faloutsos. Ratio rules: A new paradigm for fast, quantifiable data

mining. VLDB'98, 582-593, New York, NY.

 B. Lent, A. Swami, and J. Widom. Clustering association rules. ICDE'97, 220-231, Birmingham, England.

 H. Lu, J. Han, and L. Feng. Stock movement and n-dimensional inter-transaction association rules.

SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery (DMKD'98), 12:1-12:7,

Seattle, Washington.

 H. Mannila, H. Toivonen, and A. I. Verkamo. Efficient algorithms for discovering association rules.

KDD'94, 181-192, Seattle, WA, July 1994.

 H. Mannila, H Toivonen, and A. I. Verkamo. Discovery of frequent episodes in event sequences. Data

Mining and Knowledge Discovery, 1:259-289, 1997.

 R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association rules. VLDB'96, 122-133,

Bombay, India.

 R.J. Miller and Y. Yang. Association rules over interval data. SIGMOD'97, 452-461, Tucson, Arizona.

 R. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning optimizations of

constrained associations rules. SIGMOD'98, 13-24, Seattle, Washington.

 N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed itemsets for association
rules. ICDT'99, 398-416, Jerusalem, Israel, Jan. 1999.

 J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining association rules.
SIGMOD'95, 175-186, San Jose, CA, May 1995.

 J. Pei, J. Han, and R. Mao. CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets.
DMKD'00, Dallas, TX, 11-20, May 2000.

 J. Pei and J. Han. Can We Push More Constraints into Frequent Pattern Mining? KDD'00. Boston, MA.
Aug. 2000.

 G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In G. Piatetsky-Shapiro and
W. J. Frawley, editors, Knowledge Discovery in Databases, 229-238. AAAI/MIT Press, 1991.

 B. Ozden, S. Ramaswamy, and A. Silberschatz. Cyclic association rules. ICDE'98, 412-421, Orlando, FL.

 J.S. Park, M.S. Chen, and P.S. Yu. An effective hash-based algorithm for mining association rules.
SIGMOD'95, 175-186, San Jose, CA.

 S. Ramaswamy, S. Mahajan, and A. Silberschatz. On the discovery of interesting patterns in association
rules. VLDB'98, 368-379, New York, NY..

 S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database
systems: Alternatives and implications. SIGMOD'98, 343-354, Seattle, WA.

 A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large
databases. VLDB'95, 432-443, Zurich, Switzerland.

 A. Savasere, E. Omiecinski, and S. Navathe. Mining for strong negative associations in a large database of
customer transactions. ICDE'98, 494-502, Orlando, FL, Feb. 1998.

 C. Silverstein, S. Brin, R. Motwani, and J. Ullman. Scalable techniques for mining causal structures.
VLDB'98, 594-605, New York, NY.

 R. Srikant and R. Agrawal. Mining generalized association rules. VLDB'95, 407-419, Zurich,

Switzerland, Sept. 1995.

 R. Srikant and R. Agrawal. Mining quantitative association rules in large relational tables.

SIGMOD'96, 1-12, Montreal, Canada.

 R. Srikant, Q. Vu, and R. Agrawal. Mining association rules with item constraints. KDD'97, 67-73,

Newport Beach, California.

 H. Toivonen. Sampling large databases for association rules. VLDB'96, 134-145, Bombay, India, Sept.

1996.

 D. Tsur, J. D. Ullman, S. Abitboul, C. Clifton, R. Motwani, and S. Nestorov. Query flocks: A

generalization of association-rule mining. SIGMOD'98, 1-12, Seattle, Washington.

 K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, and T. Tokuyama. Computing optimized rectilinear

regions for association rules. KDD'97, 96-103, Newport Beach, CA, Aug. 1997.

 M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. Parallel algorithm for discovery of association

rules. Data Mining and Knowledge Discovery, 1:343-374, 1997.

 M. Zaki. Generating Non-Redundant Association Rules. KDD'00. Boston, MA. Aug. 2000.

 O. R. Zaiane, J. Han, and H. Zhu. Mining Recurrent Items in Multimedia with Progressive

Resolution Refinement. ICDE'00, 461-470, San Diego, CA, Feb. 2000.

