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GENERAL APPLICATIONS OF CLUSTERING  

 Pattern Recognition 

 Spatial Data Analysis  

 Create thematic maps in GIS by clustering feature spaces 

 Detect spatial clusters and explain them in spatial data mining 

 Image Processing 

 Economic Science (especially market research) 

 WWW 

 Document classification 

 Cluster Weblog data to discover groups of similar access 
patterns 



EXAMPLES OF CLUSTERING APPLICATIONS 

 Marketing: Help marketers discover distinct groups in their 

customer bases, and then use this knowledge to develop 

targeted marketing programs 

 Land use: Identification of areas of similar land use in an 

earth observation database 

 Insurance: Identifying groups of motor insurance policy 

holders with a high average claim cost 

 City-planning: Identifying groups of houses according to 

their house type, value, and geographical location 

 Earth-quake studies: Observed earth quake epicenters 

should be clustered along continent faults 



WHAT IS GOOD CLUSTERING? 

 A good clustering method will produce high quality 

clusters with 

 High intra-class similarity 

 Low inter-class similarity  

 The quality of a clustering result depends on both 

the similarity measure used by the method and its 

implementation. 

 The quality of a clustering method is also 

measured by its ability to discover some or all of 

the hidden patterns. 



REQUIREMENTS OF CLUSTERING IN DATA MINING  

 Scalability 

 Ability to deal with different types of attributes 

 Discovery of clusters with arbitrary shape 

 Minimal requirements for domain knowledge to 

determine input parameters 

 Able to deal with noise and outliers 

 Insensitive to order of input records 

 High dimensionality 

 Incorporation of user-specified constraints 

 Interpretability and usability 
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DATA STRUCTURES 

 Data matrix 

 (two modes) 

 

 

 

 Dissimilarity matrix 

 (one mode) 
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MEASURE THE QUALITY OF CLUSTERING 

 Dissimilarity/Similarity metric : Similarity is expressed in 
terms of a distance function, which is typically metric: 
d(i, j) 

 There is a separate “quality” function that measures 
the “goodness” of a cluster. 

 The definitions of distance functions are usually very 
different for interval-scaled, Boolean, Categorical, 
Ordinal and Ratio variables. 

 Weights should be associated with different variables 
based on applications and data semantics. 

 It is hard to define “similar enough” or “good enough”  

  the answer is typically highly subjective. 



TYPE OF DATA IN CLUSTERING ANALYSIS 

 Interval-scaled variables: 

 Binary variables: 

 Nominal, ordinal, and ratio variables: 

 Variables of mixed types: 



INTERVAL-VALUED VARIABLES 

 Standardize data 

 Calculate the mean absolute deviation: 

 

where 

 Calculate the standardized measurement (z-score) 

 

 Using mean absolute deviation is more robust 

than using standard deviation  
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SIMILARITY AND DISSIMILARITY BETWEEN OBJECTS 

 Distances are normally used to measure the similarity 

or dissimilarity between two data objects 

 Some popular ones include: Minkowski distance: 

 

where  i = (xi1, xi2, …, xip) and j = (xj1, xj2, …, xjp) are two p-

dimensional data objects, and q is a positive integer 

 If q = 1, d is Manhattan distance 
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SSIMILARITYIMILARITY  ANDAND  DDISSIMILARITYISSIMILARITY  BBETWEENETWEEN  OOBJECTSBJECTS  

(C(CONTONT.).)  

 If q = 2, d is Euclidean distance: 

 

 Properties 

 d(i,j)  0 

 d(i,i) = 0 

 d(i,j) = d(j,i) 

 d(i,j)  d(i,k) + d(k,j) 

 Also one can use weighted distance, parametric Pearson 

product moment correlation, or other dissimilarity 

measures. 

)||...|||(|),( 22

22

2

11 pp j
x

i
x

j
x

i
x

j
x

i
xjid 



 A Binary variable has only two states (0 or 1) 

 0 means variable is absent 

 1 means variable is present 

 Ex: variable smoker (1 indicates patient smokes and 0 

indicates patient does not) 

 Treating binary variables as interval-scaled can lead to 

misleading results 

 There may be symmetric and asymmetric binary 

variables 

 

BBINARYINARY  VVARIABLESARIABLES  

 To compute the dissimilarity between two binary 

variables 

 If all binary variables are thought of as having same weight 

, construct a 2-by-2 contingency table. 



BBINARYINARY  VVARIABLESARIABLES  (C(CONTDONTD…)…)  

 A contingency table for binary data 

 

 

 

Where, p is total no of variable and  p= a + b + c + d 
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 A binary variable is symmetric if both of states are equally valuable 

and carry the same weight, no preference on the outcome should 

be coded as 0 or 1. 

 Ex: gender (male or female) 

 Dissimilarity based on symmetric binary variable is called 

symmetric binary dissimilarity 
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BBINARYINARY  VVARIABLESARIABLES  (C(CONTDONTD…)…)  

 A binary variable is asymmetric if the states are not equally 

important.  

 Ex: test (positive or negative) 

 By convention, we shall code the most important outcome, which is 

usually the rarest one by 1 (e.g. HIV positive) and the other by 0 

(e.g. HIV negative)  

 Given two asymmetric variables , the agreement of two 1s (a 

positive match) is considered more significant than two 0s (a 

negative match)  

 Dissimilarity based on asymmetric binary variable is called 

asymmetric binary dissimilarity where the no. of  –ve  matches d is 

considered unimportant and thus ignored in the computation. 

 

 



BBINARYINARY  VVARIABLESARIABLES  (C(CONTDONTD…)…)  

 Complementarily , we can measure the distance 

between two binary variables based on notion of 

similarity instead of dissimilarity 

 Jaccard coefficient ,  

       sim (i, j) =  ),(1 jid
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DDISSIMILARITYISSIMILARITY  BETWEENBETWEEN  BBINARYINARY  VVARIABLESARIABLES  

 Example 

 

 

 

 

 gender is a symmetric attribute 

 the remaining attributes are asymmetric binary 

 let the values Y and P be set to 1, and the value N be set to 0 

Name Gender Fever Cough Test-1 Test-2 Test-3 Test-4

Jack M Y N P N N N

Mary F Y N P N P N

Jim M Y P N N N N
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NNOMINALOMINAL  VVARIABLESARIABLES  ((OROR  CATEGORICALCATEGORICAL) )   

 A categorical variable (sometimes called a nominal 

variable) is one that has two or more categories 

 But there is no intrinsic ordering to the categories 

 For example, gender is a categorical variable having two 

categories (male and female) and there is no intrinsic 

ordering to the categories 

 Hair colour is also a categorical variable having a number 

of categories (blonde, brown, brunette, red, etc.) and again, 

there is no agreed way to order these from highest to 

lowest. 

 A purely categorical variable is one that simply allows you 

to assign categories but you cannot clearly order the 

variables.  If the variable has a clear ordering, then that 

variable would be an ordinal variable 

 



 A generalization of the binary variable is that it can 

take more than 2 states, e.g., red, yellow, blue, 

green 

 Let no. of states of a categorical variable be M 

 The states can be denoted as 1,2,….,M 

 Method : Simple matching 

 m: # of matches, p: total # of variables 
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NNOMINALOMINAL  VVARIABLESARIABLES  ((OROR  CATEGORICALCATEGORICAL) ) CONTDCONTD……  



Object 

Identifier 

Test-1 

(categorical) 

Test-2 

(ordinal) 

Test-3 

(ratio-scaled) 

1 Code-A Excellent 445 

2 Code-B Fair 22 

3 Code-C Good 164 

4 Code-A Excellent 1,210 

NNOMINALOMINAL  VVARIABLESARIABLES  ((OROR  CATEGORICALCATEGORICAL) ) CONTDCONTD……  

Example: Dissimilarity between categorical variables 

Suppose, we have object identifier and test-1 are the variables. 

The dissimilarity matrix is : 

0 

d(2,1) 0 

d(3,1) d(3,2) 0 

d(4,1) d(4,2) d(4,3) 0 

Since, we have one 

categorical variable 

test-1, we set p=1 in 

equation and d(i, j) is 

0 if objects i and j 

match, and 1 if differ. 

0 

1   0 

1   1   0 

0   1   1   0 



 An ordinal variable is similar to a categorical variable.  

 The difference between the two is that there is a clear 

ordering of the variables 

 For example, suppose you have a variable, economic 

status, with three categories (low, medium and high). 

 In addition to being able to classify people into these three 

categories, you can order the categories as low, medium 

and high 

 Now consider a variable like educational experience (with 

values such as elementary school graduate, high school 

graduate, some college and college graduate). 

 Even though we can order these from lowest to highest, 

the spacing between the values may not be the same 

across the levels of the variables. 

 

OORDINALRDINAL  VVARIABLESARIABLES  



 Say we assign scores 1, 2, 3 and 4 to these four levels of 

educational experience and we compare the difference in 

education between categories one and two with the 

difference in educational experience between categories 

two and three, or the difference between categories three 

and four. 

  The difference between categories one and two 

(elementary and high school) is probably much bigger than 

the difference between categories two and three (high 

school and some college).   

 In this example, we can order the people in level of 

educational experience but the size of the difference 

between categories is inconsistent (because the spacing 

between categories one and two is bigger than categories 

two and three). 

OORDINALRDINAL  VVARIABLESARIABLES  (C(CONTDONTD…)…)  



HHOWOW  AREARE  OORDINALRDINAL  VVARIABLESARIABLES  HANDLEDHANDLED  ??  

 Quite similar as interval-scaled variable while 

computing the dissimilarity between objects 

 Let f is a variable from a set of ordinal variables 

describing n objects 

 The dissimilarity w.r.t f involves the following steps: 

 replacing xif  by their rank 

 map the range of each variable onto [0, 1] by replacing i-th 

object in the f-th variable by 

 

 compute the dissimilarity using methods for interval-scaled 

variables 
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OORDINALRDINAL  VVARIABLESARIABLES  (E(EXAMPLEXAMPLE))  

 Example: Dissimilarity between ordinal variables 

 Suppose, we have object identifier and test-2 are the 

variables. 

 There are 3 states for test-2 i.e  Mf = 3 

 Step1 : Replace each value of test-2 by its rank, i.e 3,1,2,3 

 Step2: Normalize the ranking by mapping rank 1 to 0, rank 2 

to 0.5 and rank 3 to 1. 

 Step3: Use Euclidian distance to find the dissimilarity matrix 

   0 

   1         0 

   0.5      0.5    0 

   0         1.0    0.5    0 



RRATIOATIO--SSCALEDCALED  VVARIABLESARIABLES  

 Ratio-scaled variable: a positive measurement on a 

nonlinear scale, approximately at exponential scale, 

such as AeBt or Ae-Bt  

 Methods: 

 treat them like interval-scaled variables — not a good 

choice! (since it is likely that the scale may be distorted) 

 apply logarithmic transformation 

    yif = log(xif) 

 treat them as continuous ordinal data treat their rank as 

interval-scaled. 



 Ratio variables are those in which the ratio of 

two of the numbers have meaning, such as 

miles per gallon, for example. If car A gets 15 

mpg and car B gets 20 mpg, you can take the 

ratio of the two: 15/20 and compute 0.75, 

meaning car A gets 75% of the mileage of car B. 

RRATIOATIO--SSCALEDCALED  VVARIABLESARIABLES  (E(EXAMPLEXAMPLE))  



RRATIOATIO--SSCALEDCALED  VVARIABLESARIABLES  (E(EXAMPLEXAMPLE))  

 Example: Dissimilarity between ratio-scaled variables 

 Suppose, we have object identifier and test-3 are the 

variables. 

 Step1 : Let us try logarithmic transformation( the results are 

2.65 , 1.34, 2.21 and 3.08) 

 Step3: Use Euclidian distance to find the dissimilarity matrix 

   0 

   1.31         0 

   0.44         0.87     0 

   0.43         1.74    0.87    0 



WWHYHY  DOESDOES  ITIT  MATTERMATTER  WHETHERWHETHER  AA  VARIABLEVARIABLE  ISIS  

CATEGORICALCATEGORICAL, , ORDINALORDINAL  OROR  INTERVALINTERVAL??  

 Statistical computations and analyses assume that the 

variables have a specific levels of measurement.  

 For example, it would not make sense to compute an average 

hair colour.   

 An average of a categorical variable does not make much 

sense because there is no intrinsic ordering of the levels of the 

categories.   

 Moreover, if you tried to compute the average of educational 

experience as defined in the ordinal section above, you would 

also obtain a nonsensical result.  

 Because the spacing between the four levels of educational 

experience is very uneven, the meaning of this average would 

be very questionable.  



 In short, an average requires a variable to be interval.   

 Sometimes you have variables that are "in between" 

ordinal and interval, for example, a five-point scale with 

values "strongly agree", "agree", "neutral", "disagree" and 

"strongly disagree".   

 If we cannot be sure that the intervals between each of 

these five values are the same, then we would not be 

able to say that this is an interval variable, but we would 

say that it is an ordinal variable.   

 However, in order to be able to use statistics that assume 

the variable is interval, we will assume that the intervals 

are equally spaced.   

 

WWHYHY  DOESDOES  ITIT  MATTERMATTER  WHETHERWHETHER  AA  VARIABLEVARIABLE  ISIS  

CATEGORICALCATEGORICAL, , ORDINALORDINAL  OROR  INTERVALINTERVAL??  



VVARIABLESARIABLES  OFOF  MMIXEDIXED  TTYPESYPES  

 A database may contain all the six types of 
variables 

 symmetric binary, asymmetric binary, nominal, ordinal, 
interval and ratio. 

 One may use a weighted formula to combine their 
effects. 

 

 f  is binary or nominal: 
dij

(f) = 0  if xif = xjf , or dij
(f) = 1 

 f  is interval-based: use the normalized distance 

 f  is ordinal or ratio-scaled 
 compute ranks rif and   

 and treat zif as interval-scaled 
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MMAJORAJOR  CCLUSTERINGLUSTERING  AAPPROACHESPPROACHES  

 Partitioning algorithms: Construct various partitions and then 

evaluate them by some criterion 

 Hierarchy algorithms: Create a hierarchical decomposition of the 

set of data (or objects) using some criterion 

 Density-based: based on connectivity and density functions 

 Grid-based: based on a multiple-level granularity structure 

 Model-based: A model is hypothesized for each of the clusters 

and the idea is to find the best fit of that model to each other 



CCLUSTERLUSTER  AANALYSISNALYSIS  
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PPARTITIONINGARTITIONING  AALGORITHMSLGORITHMS: B: BASICASIC  CCONCEPTONCEPT  

 Partitioning method: Construct a partition of a 

database D of n objects into a set of k clusters 

 Given a k, find a partition of k clusters that 

optimizes the chosen partitioning criterion 

 Global optimal: exhaustively enumerate all partitions 

 Heuristic methods: k-means and k-medoids algorithms 

 k-means (MacQueen’67): Each cluster is represented 

by the center of the cluster 

 k-medoids or PAM (Partition around medoids) 

(Kaufman & Rousseeuw’87): Each cluster is 

represented by one of the objects in the cluster   



TTHEHE  KK--MMEANSEANS  CCLUSTERINGLUSTERING  MMETHODETHOD    

 Given k, the k-means algorithm is implemented in 4 

steps: 

 Partition objects into k nonempty subsets 

 Compute seed points as the centroids of the clusters of the 

current partition.  The centroid is the center (mean point) of 

the cluster. 

 Assign each object to the cluster with the nearest seed 

point.   

 Go back to Step 2, stop when no more new assignment. 



THE K-MEANS CLUSTERING METHOD  

 Example 
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TTHEHE  KK--MMEANSEANS  CCLUSTERINGLUSTERING  FFLOWCHARTLOWCHART  



   Suppose we have several objects (4 types of medicines) and 

each object have two attributes or features as shown in table 

below. Our goal is to group these objects into K=2 group of 

medicine based on the two features (pH and weight index).  

 

THE K-MEANS CLUSTERING NUMERICAL EXAMPLE 

Object attribute 1 (X): 

weight index  

attribute 2 (Y): 

pH  

Medicine A  1 1 

Medicine B  2 1 

Medicine C 4 3 

Medicine D  5 4 

Each medicine represents one point with two attributes (X, Y) that 

we can represent it as coordinate in an attribute space as shown in 

the figure next slide.  



TTHEHE  KK--MMEANSEANS  CCLUSTERINGLUSTERING  NNUMERICALUMERICAL  EEXAMPLEXAMPLE  

1. Initial value of centroids : Suppose 

we use medicine A and medicine B as 

the first centroids. Let c1 and c2 denote 

the coordinate of the centroids, then 

c1=(1,1) and c2= (2,1) 
 

2.Objects-Centroids distance : we 

calculate the distance between 

cluster centroid to each object. Let 

us use Euclidean distance, then we 

have distance matrix at iteration 0 is  

http://people.revoledu.com/kardi/tutorial/Similarity/EuclideanDistance.html
http://people.revoledu.com/kardi/tutorial/Similarity/EuclideanDistance.html
http://people.revoledu.com/kardi/tutorial/Similarity/EuclideanDistance.html


TTHEHE  KK--MMEANSEANS  CCLUSTERINGLUSTERING  NNUMERICALUMERICAL  EEXAMPLEXAMPLE  

 Each column in the distance matrix symbolizes the object. The first 

row of the distance matrix corresponds to the distance of each 

object to the first centroid and the second row is the distance of 

each object to the second centroid.  

 For example, distance from medicine C = (4, 3) to the first centroid  

c1=(1,1) is  

 and its distance to the second centroid c2= (2,1) is  



3. Objects clustering : We assign each object based on the 

minimum distance. Thus, medicine A is assigned to group 1, 

medicine B to group 2, medicine C to group 2 and medicine D to 

group 2. The element of Group matrix below is 1 if and only if the 

object is assigned to that group.  

TTHEHE  KK--MMEANSEANS  CCLUSTERINGLUSTERING  NNUMERICALUMERICAL  EEXAMPLEXAMPLE  

4. Iteration-1, determine centroids : Knowing the members of 

each group, now we compute the new centroid of each group 

based on these new memberships. Group 1 only has one member 

thus the centroid remains in i.e c1= (1,1) and  



   Group 2 now has three members, thus the centroid is the 

average coordinate among the three members: c1=(1,1) and   

TTHEHE  KK--MMEANSEANS  CCLUSTERINGLUSTERING  NNUMERICALUMERICAL  EEXAMPLEXAMPLE  



 5. Iteration-1, Objects-Centroids distances : The next step is to 

compute the distance of all objects to the new centroids. Similar 

to step 2, we have distance matrix at iteration 1 is  

TTHEHE  KK--MMEANSEANS  CCLUSTERINGLUSTERING  NNUMERICALUMERICAL  EEXAMPLEXAMPLE  



 6. Iteration-1, Objects clustering: Similar to step 3, we 

assign each object based on the minimum distance. Based on 

the new distance matrix, we move the medicine B to Group 1 

while all the other objects remain. The Group matrix is shown 

below  

 

TTHEHE  KK--MMEANSEANS  CCLUSTERINGLUSTERING  NNUMERICALUMERICAL  EEXAMPLEXAMPLE  



7. Iteration 2, determine centroids: Now we repeat step 4 to 

calculate the new centroids coordinate based on the clustering of 

previous iteration. Group1 and group 2 both has two members, 

thus the new centroids are             and  

TTHEHE  KK--MMEANSEANS  CCLUSTERINGLUSTERING  NNUMERICALUMERICAL  EEXAMPLEXAMPLE  



8.Iteration-2,Objects-Centroids distances : Repeat 

step 2 again, we have new distance matrix at iteration 

2 as  

9.Iteration-2, Objects clustering : Again, we assign 

each object based on the minimum distance.  

TTHEHE  KK--MMEANSEANS  CCLUSTERINGLUSTERING  NNUMERICALUMERICAL  EEXAMPLEXAMPLE  



 We obtain result that G2 = G1. Comparing the grouping 

of last iteration and this iteration reveals that the objects 

does not move group anymore. Thus, the computation 

of the k-mean clustering has reached its stability and no 

more iteration is needed. We get the final grouping as 

the results  

 

TTHEHE  KK--MMEANSEANS  CCLUSTERINGLUSTERING  NNUMERICALUMERICAL  EEXAMPLEXAMPLE  

Object attribute 1 (X): 

weight index  

attribute 2 

(Y): pH  
Group 

(result)  

Medicine A  1 1 1 

Medicine B  2 1 1 

Medicine C 4 3 2 

Medicine D  5 4 2 



SSTRENGTHSTRENGTHS  OFOF  KK--MMEANSEANS  MMETHODETHOD  

 Strength  

 It is sensitive with respect to data ordering 

 Easily understood 

 k-means is most used method 

 Relatively efficient: O(tkn), where n is # objects, 

k is # clusters, and t  is # iterations. Normally, k, 

t << n. 

 



 Weakness 

 Applicable only when mean is defined, then what about 

categorical data? 

 Need to specify k, the number of clusters, in advance 

 It is not obvious what is a good k to use 

 The process is sensitive with respect to outliers 

 The algorithm lacks scalability 

 Only numerical attributes are covered 

 Resulting clusters can be unbalanced  

 Unable to handle noisy data and outliers 

 Not suitable to discover clusters with non-convex shapes 

 The result strongly depends on the initial guess of 

centroids (or assignments) 

 

WWEAKNESSESEAKNESSES    OFOF  KK--MMEANSEANS  MMETHODETHOD  



 Complexity:  

 K-Means: O(kn) per iteration 

 

 Uses:  

 All data sizes, 

 Best with well separated clusters 

 

 Examples:  

  PAM, CLARA, CLARANS, HMETIS, BAG 

 

 

CCOMMENTSOMMENTS  ONON  KK--MMEANSEANS  MMETHODETHOD  



VVARIATIONSARIATIONS  OFOF  THETHE  KK--MMEANSEANS  MMETHODETHOD  

 K-medoids – instead of mean, use medians of 

each cluster 

 Mean of 1, 3, 5, 7, 9 is  

 Mean of 1, 3, 5, 7, 1009 is 

 Median of 1, 3, 5, 7, 1009 is  

 Median advantage: not affected by extreme values 

 For large databases, use sampling 
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TTHEHE  KK--MMEDOIDSEDOIDS  CCLUSTERINGLUSTERING  MMETHODETHOD  

 Find representative objects, called medoids, in 

clusters 

 PAM (Partitioning Around Medoids, 1987) 

 Starts from an initial set of medoids and iteratively 

replaces one of the medoids by one of the non-

medoids if it improves the total distance of the resulting 

clustering 

 PAM works effectively for small data sets, but does not 

scale well for large data sets 

 CLARA (Kaufmann & Rousseeuw, 1990) 

 CLARANS (Ng & Han, 1994): Randomized 

sampling 



KK--MEDOIDSMEDOIDS  



PAM (PPAM (PARTITIONINGARTITIONING  AAROUNDROUND  MMEDOIDSEDOIDS))  

K-Medoids 
 Handles outliers well. 

 Ordering of input does not impact results. 

 Does not scale well. 

 Each cluster represented by one item, called 

the medoid. 

 Initial set of k medoids randomly chosen. 



PAM: BPAM: BASICASIC  SSTRATEGYTRATEGY  

 First find a representative object (the medoid) for 

each cluster 

 Each remaining object is clustered with the 

medoid to which it is most “similar” 

 Iteratively replace one of the medoids by a non-

medoid as long as the “quality” of the clustering 

is improved 



DDEMONSTRATIONEMONSTRATION  OFOF  PAMPAM  

 Cluster the following data set of ten objects into two 

clusters i.e k = 2. 

 Consider a data set of ten objects as follows: 

 



Step 1 
 Initialise k centre 

 Let us assume c1 = (3,4) and c2 = (7,4) 

 So here c1 and c2 are selected as medoid. 

 Calculating distance so as to associate each data object to its 

nearest medoid. Cost is calculated using Minkowski distance 

metric with r = 1. 

DDEMONSTRATIONEMONSTRATION  OFOF  PAM (CPAM (CONTONT…)…)  

http://en.wikipedia.org/wiki/Minkowski_distance


Then so the clusters become: 

Cluster1 = {(3,4)(2,6)(3,8)(4,7)} 

Cluster2 = {(7,4)(6,2)(6,4)(7,3)(8,5)(7,6)} 

Since the points (2,6) (3,8) and (4,7) are close to c1 hence they 

form one cluster whilst remaining points form another cluster. 

So the total cost involved is 20. 

Where cost between any two points is found using formula 

DDEMONSTRATIONEMONSTRATION  OFOF  PAM (CPAM (CONTONT…)…)  



where x is any data object, c is the medoid, and d is the 

dimension of the object which in this case is 2. 

 

Total cost is the summation of the cost of data object from 

its medoid in its cluster so here: 

DDEMONSTRATIONEMONSTRATION  OFOF  PAM (CPAM (CONTONT…)…)  



 Step 2 
 Selection of nonmedoid O′ randomly 

 Let us assume O′ = (7,3) 

 So now the medoids are c1(3,4) and O′(7,3) 

 If c1 and O′ are new medoids, calculate the total cost involved 

 By using the formula in the step 1 

 

DDEMONSTRATIONEMONSTRATION  OFOF  PAM (CPAM (CONTONT…)…)  



DDEMONSTRATIONEMONSTRATION  OFOF  PAM (CPAM (CONTONT…)…)  



PAM (PPAM (PARTITIONINGARTITIONING  AAROUNDROUND  MMEDOIDSEDOIDS))  

 PAM (Kaufman and Rousseeuw, 1987), built in Splus 

 Use real object to represent the cluster 

 Select k representative objects arbitrarily 

 For each pair of non-selected object h and selected object 

i, calculate the total swapping cost TCih 

 For each pair of i and h,  

 If TCih < 0, i is replaced by h 

 Then assign each non-selected object to the most similar 

representative object 

 repeat steps 2-3 until there is no change 



o  PAM is more robust than k-means in the   

 presence of noise and outliers 

o  Medoids are less influenced by outliers 

o  PAM is efficiently for small data sets  but does 

 not scale well for large data  sets 

o  For each iteration Cost TCih for k(n-k)  pairs is 

 to be determined 

o  Sampling based method: CLARA 

Adv & Disadvantages  of PAMAdv & Disadvantages  of PAM  



CLARACLARA  (C(CLUSTERINGLUSTERING  LLARGEARGE  AAPPLICATIONSPPLICATIONS) (1990)) (1990)  

 CLARA (Kaufmann and Rousseeuw in 1990) 

 Built in statistical analysis packages, such as S+ 

 It draws multiple samples of the data set, applies PAM on 

each sample, and gives the best clustering as the output 

 Strength: deals with larger data sets than PAM 

 Weakness: 

 Efficiency depends on the sample size 

 A good clustering based on samples will not necessarily represent 

a good clustering of the whole data set if the sample is biased 



CLARANS CLARANS (“R(“RANDOMIZEDANDOMIZED” CLARA)” CLARA)  (1994)(1994)  

 CLARANS (A Clustering Algorithm based on 

Randomized Search)  (Ng and Han’94) 

 CLARANS draws sample of neighbors dynamically 

 The clustering process can be presented as 

searching a graph where every node is a potential 

solution, that is, a set of k medoids 



CHAPTER 8. CLUSTER ANALYSIS 

 What is Cluster Analysis? 

 Types of Data in Cluster Analysis 

 A Categorization of Major Clustering Methods 

 Partitioning Methods 

 Hierarchical Methods 

 Density-Based Methods 

 Grid-Based Methods 

 Model-Based Clustering Methods 

 Outlier Analysis 

 Summary  



HHIERARCHICALIERARCHICAL  CCLUSTERINGLUSTERING  

Clusters are created in levels actually 
creating sets of clusters at each level. 

Agglomerative Nesting( AGNES) 
 Initially each item in its own cluster 

 Iteratively clusters are merged together 

 Bottom Up 

Divisive Analysis(DIANA) 
 Initially all items in one cluster 

 Large clusters are successively divided 

 Top Down  

 



EEXAMPLEXAMPLE  



DDIFFICULTIESIFFICULTIES  WITHWITH  HHIERARCHICALIERARCHICAL  

CCLUSTERINGLUSTERING  

 Can never undo. 

 No object swapping is allowed 

 Merge or split decisions ,if not well chosen may lead to 

poor quality clusters. 

 do not scale well: time complexity of at least O(n2), 

where n is the number of total objects. 



HHIERARCHICALIERARCHICAL  AALGORITHMSLGORITHMS  

 Single Link 

 Complete Link 

 Average Link 

 



DDENDROGRAMENDROGRAM  

 Dendrogram: a tree data 

structure which illustrates 

hierarchical clustering 

techniques. 

 Each level shows clusters 

for that level. 

 Leaf – individual clusters 

 Root – one cluster 

 A cluster at level i is the 

union of its children clusters 

at level i+1. 



LLEVELSEVELS  OFOF  CCLUSTERINGLUSTERING  



SSINGLEINGLE  LLINKINK  

 View all items with links (distances) between 

them. 

 Finds maximal connected components in this 

graph. 

 Two clusters are merged if there is at least 

one edge which connects them. 

 Uses threshold distances at each level. 

 Could be agglomerative or divisive. 



SSINGLEINGLE  LLINKAGEINKAGE  CCLUSTERINGLUSTERING  

 It is an example of agglomerative hierarchical 

clustering. 

 We consider the distance between one cluster 

and another cluster to be equal to the shortest 

distance from any member of one cluster to any 

member of the other cluster.  



AALGORITHMLGORITHM  

   Given a set of N items to be clustered, and an NxN distance (or 
similarity) matrix, the basic process of single linkage clustering is 
this:  

  

 1. Start by assigning each item to its own cluster, so that if  we 
 have N items, we now have N clusters, each  containing  just 
 one item. Let the distances (similarities) between the 
 clusters equal the distances (similarities) between the 
 items they contain. 

 2. Find the closest (most similar) pair of clusters and merge 
 them into a single cluster, so that now you have one less 
 cluster. 

  3. Compute distances (similarities) between the new cluster and 
 each of the old clusters. 

 4. Repeat steps 2 and 3 until all items are clustered into a 
 single cluster of size N.  



HHOWOW  TOTO  CCOMPUTEOMPUTE  GGROUPROUP  SSIMILARITYIMILARITY??  

Given two groups g1 and g2, 
 
Single-link algorithm: s(g1,g2)= similarity of the closest pair 

Complete-link algorithm: s(g1,g2)= similarity of the farthest 
pair 

Average-link algorithm: s(g1,g2)= average of similarity of all 
pairs 

Three Popular Methods: 



Single-link algorithm 

? 

g1 g2 

complete-link algorithm 

…… 

average-link algorithm 

TTHREEHREE  MMETHODSETHODS  IILLUSTRATEDLLUSTRATED  



HHIERARCHICALIERARCHICAL: S: SINGLEINGLE  LLINKINK  

Cluster similarity = similarity of two most 
similar members 



EEXAMPLEXAMPLE: : SINGLESINGLE  LINKLINK  
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EEXAMPLEXAMPLE: : SINGLESINGLE  LINKLINK  
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HHIERARCHICALIERARCHICAL: C: COMPLETEOMPLETE  LLINKINK  

Cluster similarity = similarity of two least 

similar members 



EEXAMPLEXAMPLE: : COMPLETECOMPLETE  LINKLINK  
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EEXAMPLEXAMPLE: : COMPLETECOMPLETE  LINKLINK  
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EEXAMPLEXAMPLE: : COMPLETECOMPLETE  LINKLINK  























04589

07910

036

02

0

5

4

3

2

1

54321



















0459

0710

06

0

5

4

3

)2,1(

543)2,1(

















0710

06

0

)5,4(

3

)2,1(

)5,4(3)2,1(

1 

2 

3 

4 

5 

10},max{ )5,4(,3)5,4(),2,1()5,4(),3,2,1(  ddd



HHIERARCHICALIERARCHICAL: A: AVERAGEVERAGE  LLINKINK  

Cluster similarity = average similarity of all 

pairs 
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EEXAMPLEXAMPLE: : AVERAGEAVERAGE  LINKLINK  

























04589

07910

036

02

0

5

4

3

2

1

54321



















0455.8

075.9

05.4

0

5

4

3

)2,1(

543)2,1(

1 

2 

3 

4 

5 

















069

05.4

0

)5,4(

3

)2,1(

)5,4(3)2,1(

6)(
2

1

9)(
4

1

5,34,3)5,4(,3

5,24,25,14,1)5,4(),2,1(





ddd

ddddd

EEXAMPLEXAMPLE: : AVERAGEAVERAGE  LINKLINK  
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EEXAMPLEXAMPLE: : AVERAGEAVERAGE  LINKLINK  



MMOREORE  ONON  HHIERARCHICALIERARCHICAL  CCLUSTERINGLUSTERING  MMETHODSETHODS  

 Major weakness of agglomerative clustering 

methods 

 do not scale well: time complexity of at least O(n2), where 

n is the number of total objects 

 can never undo what was done previously 

 Integration of hierarchical with distance-based 

clustering 

 BIRCH (1996): uses CF-tree and incrementally adjusts 

the quality of sub-clusters 

 CURE (1998): selects well-scattered points from the 

cluster and then shrinks them towards the center of the 

cluster by a specified fraction 

 CHAMELEON (1999): hierarchical clustering using 

dynamic modeling 



BIRCH (1996)BIRCH (1996)  

 Birch: Balanced Iterative Reducing and Clustering using 
Hierarchies,  by Zhang, Ramakrishnan, Livny (SIGMOD’96) 

 Incrementally construct a CF (Clustering Feature) tree, a 
hierarchical data structure for multiphase clustering 

 Phase 1: scan DB to build an initial in-memory CF tree (a multi-
level compression of the data that tries to preserve the inherent 
clustering structure of the data)   

 Phase 2: use an arbitrary clustering algorithm to cluster the leaf 
nodes of the CF-tree  

 Scales linearly: finds a good clustering with a single scan 
and improves the quality with a few additional scans 

 Weakness: handles only numeric data, and sensitive to the 
order of the data record. 



Clustering Feature VectorClustering Feature Vector  

Clustering Feature:  CF = (N, LS, SS) 

N: Number of data points 

LS: N
i=1=Xi 

SS: N
i=1=Xi

2
 

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

CF = (5, (16,30),(54,190)) 

(3,4) 

(2,6) 

(4,5) 

(4,7) 

(3,8) 



CF TCF TREEREE  
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CURE CURE (C(CLUSTERINGLUSTERING  UUSINGSING  RREPRESENTATIVESEPRESENTATIVES))  

 CURE: proposed by Guha, Rastogi & Shim, 1998 

 Stops the creation of a cluster hierarchy if a level consists 

of k clusters 

 Uses multiple representative points to evaluate the 

distance between clusters, adjusts well to arbitrary 

shaped clusters and avoids single-link effect 



CCUREURE: T: THEHE  AALGORITHMLGORITHM  

 Draw random sample s. 

 Partition sample to p partitions with size s/p 

 Partially cluster partitions into s/pq clusters 

 Eliminate outliers 

 By random sampling 

 If a cluster grows too slow, eliminate it. 

 Cluster partial clusters. 

 Label data in disk 



DATA PARTITIONING AND CLUSTERING 

 s = 50 

 p = 2 

 s/p = 25 

x x 

x 

y 

y y 

y 

x 

y 

x 

s/pq = 5 



CCUREURE: S: SHRINKINGHRINKING  RREPRESENTATIVEEPRESENTATIVE  PPOINTSOINTS  

 Shrink the multiple representative points towards the gravity 

center by a fraction of . 

 Multiple representatives capture the shape of the cluster 

x 

y 

x 

y 



CCLUSTERINGLUSTERING  CCATEGORICALATEGORICAL  DDATAATA: ROCK: ROCK  

 ROCK: Robust Clustering using linKs, 

by S. Guha, R. Rastogi, K. Shim (ICDE’99).  

 Use links to measure similarity/proximity 

 Not distance based 

 Computational complexity: 

 Basic ideas: 

 Similarity function and neighbors:  

Let T1 = {1,2,3}, T2={3,4,5} 
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RROCKOCK: A: ALGORITHMLGORITHM  

 Links:  The number of common neighbours for the two 
points. 

 

 

 

 

 Algorithm 

 Draw random sample 

 Cluster with links 

 Label data in disk 

{1,2,3}, {1,2,4}, {1,2,5}, {1,3,4}, {1,3,5} 

{1,4,5}, {2,3,4}, {2,3,5}, {2,4,5}, {3,4,5} 

{1,2,3}   {1,2,4} 3 



CHAMELEONCHAMELEON  

 CHAMELEON: Hierarchical clustering using 
dynamic modeling, by G. Karypis, E.H. Han and V. 
Kumar’99  

 Measures the similarity based on a dynamic model 

 Two clusters are merged only if the interconnectivity and 
closeness (proximity) between two clusters are high 
relative to the internal interconnectivity of the clusters 
and closeness of items within the clusters 

 A two phase algorithm 

 1. Use a graph partitioning algorithm: cluster objects 
into a large number of relatively small sub-clusters 

 2. Use an agglomerative hierarchical clustering 
algorithm: find the genuine clusters by repeatedly 
combining these sub-clusters 



OOVERALLVERALL  FFRAMEWORKRAMEWORK  OFOF  CHAMELEONCHAMELEON  

Construct 

Sparse Graph Partition the Graph 

Merge Partition 

Final Clusters 

Data Set 
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DENSITY-BASED CLUSTERING METHODS 

 Clustering based on density (local cluster criterion), 

such as density-connected points 

 Major features: 
 Discover clusters of arbitrary shape 

 Handle noise 

 One scan 

 Need density parameters as termination condition 

 Several interesting studies: 

 DBSCAN: Ester, et al. (KDD’96) 

 OPTICS: Ankerst, et al (SIGMOD’99). 

 DENCLUE: Hinneburg & D. Keim  (KDD’98) 

 CLIQUE: Agrawal, et al. (SIGMOD’98) 



DENSITY-BASED CLUSTERING: BACKGROUND 

 Two parameters: 

 Eps: Maximum radius of the neighbourhood 

 MinPts: Minimum number of points in an Eps-neighbourhood of 
that point 

 NEps(p): {q belongs to D | dist(p,q) <= Eps} 

 Directly density-reachable: A point p is directly density-
reachable from a point q wrt. Eps, MinPts if   

 1) p belongs to NEps(q) 

 2) core point condition: 

              |NEps (q)| >= MinPts  
p 

q 

MinPts = 5 

Eps = 1 cm 



DENSITY-BASED CLUSTERING: BACKGROUND (II) 

 Density-reachable:  

 A point p is density-reachable from a 
point q wrt. Eps, MinPts if there is a 
chain of points p1, …, pn, p1 = q, pn = p 
such that pi+1 is directly density-
reachable from pi  

 Density-connected 

 A point p is density-connected to a point 
q wrt. Eps, MinPts if there is a point o 
such that both, p and q are density-
reachable from o wrt. Eps and MinPts. 

p 

q 
p1 

p q 

o 



DBSCAN: DENSITY BASED SPATIAL 

CLUSTERING OF APPLICATIONS WITH NOISE 

 Relies on a density-based notion of cluster:  A cluster is 

defined as a maximal set of density-connected points 

 Discovers clusters of arbitrary shape in spatial databases 

with noise 

Core 

Border 

Outlier 

Eps = 1cm 

MinPts = 5 



DBSCAN: THE ALGORITHM 

 Arbitrary select a point p 

 Retrieve all points density-reachable from p wrt Eps and 

MinPts. 

 If p is a core point, a cluster is formed. 

 If p is a border point, no points are density-reachable from p 

and DBSCAN visits the next point of the database. 

 Continue the process until all of the points have been 

processed. 



OPTICS:  A CLUSTER-ORDERING METHOD (1999) 

 OPTICS: Ordering Points To Identify the Clustering 

Structure 

 Ankerst, Breunig, Kriegel, and Sander (SIGMOD’99) 

 Produces a special order of the database wrt its density-based 

clustering structure   

 This cluster-ordering contains info equiv to the density-based 

clusterings corresponding to a broad range of parameter 

settings 

 Good for both automatic and interactive cluster analysis, 

including finding intrinsic clustering structure 

 Can be represented graphically or using visualization 

techniques 



OPTICS: SOME EXTENSION FROM DBSCAN 

 Index-based:  
 k = number of dimensions  

 N = 20 

 p = 75% 

 M = N(1-p) = 5 

 Complexity:  O(kN2) 

 Core Distance 

 

 Reachability Distance 
 

D 

p2 

MinPts = 5 

e  = 3 cm 

Max (core-distance (o), d (o, p)) 

r(p1, o) = 2.8cm.  r(p2,o) = 4cm 

o 

o 

p1 



e

e

Reachability
-distance 

Cluster-order 

of the objects 

undefined 

e‘ 



DENCLUE: USING DENSITY FUNCTIONS 

 DENsity-based CLUstEring by Hinneburg & Keim  (KDD’98) 

 Major features 

 Solid mathematical foundation 

 Good for data sets with large amounts of noise 

 Allows a compact mathematical description of arbitrarily shaped 

clusters in high-dimensional data sets 

 Significant faster than existing algorithm (faster than DBSCAN by 

a factor of up to 45) 

 But needs a large number of parameters 



DENCLUE: TECHNICAL ESSENCE 

 Uses grid cells but only keeps information about grid 

cells that do actually contain data points and manages 

these cells in a tree-based access structure. 

 Influence function: describes the impact of a data point 

within its neighborhood. 

 Overall density of the data space can be calculated as 

the sum of the influence function of all data points. 

 Clusters can be determined mathematically by 

identifying density attractors. 

 Density attractors are local maximal of the overall 

density function. 



GRADIENT:  THE STEEPNESS OF A SLOPE 

 Example 
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DENSITY ATTRACTOR 



CENTER-DEFINED AND ARBITRARY 
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GRID-BASED CLUSTERING METHOD  

 Using multi-resolution grid data structure 

 Several interesting methods 

 STING (a STatistical INformation Grid approach) by Wang, 

Yang and Muntz (1997) 

 WaveCluster by Sheikholeslami, Chatterjee, and Zhang 

(VLDB’98) 

 A multi-resolution clustering approach using wavelet method 

 CLIQUE: Agrawal, et al. (SIGMOD’98) 

 



STING: A STATISTICAL INFORMATION GRID 

APPROACH 

 Wang, Yang and Muntz (VLDB’97) 

 The spatial area area is divided into rectangular cells 

 There are several levels of cells corresponding to different 
levels of resolution 

 



STING: A STATISTICAL INFORMATION 

GRID APPROACH (2) 

 Each cell at a high level is partitioned into a number of smaller cells in 
the next lower level 

 Statistical info of each cell  is calculated and stored beforehand and is 
used to answer queries 

 Parameters of higher level cells can be easily calculated from 
parameters of lower level cell 
 count, mean, s, min, max  

 type of distribution—normal, uniform, etc. 

 Use a top-down approach to answer spatial data queries 

 Start from a pre-selected layer—typically with a small number of cells 

 For each cell in the current level compute the confidence interval 

     



STING: A STATISTICAL INFORMATION 

GRID APPROACH (3) 

 Remove the irrelevant cells from further consideration 

 When finish examining the current layer, proceed to the next 
lower level  

 Repeat this process until the bottom layer is reached 

 Advantages: 

 Query-independent, easy to parallelize, incremental update 

 O(K), where K is the number of grid cells at the lowest level  

 Disadvantages: 

 All the cluster boundaries are either horizontal or vertical, and no 
diagonal boundary is detected 



WAVECLUSTER (1998) 

 Sheikholeslami, Chatterjee, and Zhang (VLDB’98)  

 A multi-resolution clustering approach which applies 

wavelet transform to the feature space 

  A wavelet transform is a signal processing technique that 

decomposes a signal into different frequency sub-band. 

 Both grid-based and density-based 

 Input parameters:  

 # of grid cells for each dimension 

 the wavelet, and the # of applications of wavelet transform. 



WAVECLUSTER (1998) 

 How to apply wavelet transform to find clusters 

  Summaries the data by imposing a multidimensional grid 

structure onto data space 

 These multidimensional spatial data objects are represented 

in a n-dimensional feature space 

 Apply wavelet transform on feature space to find the dense 

regions in the feature space 

 Apply wavelet transform multiple times which result in clusters 

at different scales from fine to coarse 



WHAT IS WAVELET (2)? 



QUANTIZATION 



TRANSFORMATION 



WAVECLUSTER (1998) 

 Why is wavelet transformation useful for clustering 

 Unsupervised clustering 

    It uses hat-shape filters to emphasize region where points 
cluster, but simultaneously to suppress weaker information in 
their boundary   

 Effective removal of outliers 

 Multi-resolution 

 Cost efficiency 

 Major features: 

 Complexity O(N) 

 Detect arbitrary shaped clusters at different scales 

 Not sensitive to noise, not sensitive to input order 

 Only applicable to low dimensional data 



CLIQUE (CLUSTERING IN QUEST)  

 Agrawal, Gehrke, Gunopulos, Raghavan (SIGMOD’98).  

 Automatically identifying subspaces of a high dimensional 
data space that allow better clustering than original space  

 CLIQUE can be considered as both density-based and grid-
based 

 It partitions each dimension into the same number of equal length 
interval 

 It partitions an m-dimensional data space into non-overlapping 
rectangular units 

 A unit is dense if the fraction of total data points contained in the 
unit exceeds the input model parameter 

 A cluster is a maximal set of connected dense units within a 
subspace 



CLIQUE: THE MAJOR STEPS 

 Partition the data space and find the number of points that 
lie inside each cell of the partition. 

 Identify the subspaces that contain clusters using the 
Apriori principle 

 Identify clusters: 

 Determine dense units in all subspaces of interests 

 Determine connected dense units in all subspaces of interests. 

 Generate minimal description for the clusters 

 Determine maximal regions that cover a cluster of connected 
dense units for each cluster 

 Determination of minimal cover for each cluster 
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STRENGTH AND WEAKNESS OF CLIQUE 

 Strength  

 It automatically finds subspaces of the highest dimensionality 

such that high density clusters exist in those subspaces 

 It is insensitive to the order of records in input and does not 

presume some canonical data distribution 

 It scales linearly with the size of input and has good scalability 

as the number of dimensions in the data increases 

 Weakness 

 The accuracy of the clustering result may be degraded at the 

expense of simplicity of the method 
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MODEL-BASED CLUSTERING METHODS 

 Attempt to optimize the fit between the data and some 

mathematical model 

 Statistical and AI approach 

 Conceptual clustering 

 A form of clustering in machine learning 

 Produces a classification scheme for a set of unlabeled objects 

 Finds characteristic description for each concept (class) 

 COBWEB (Fisher’87)  

 A popular a simple method of incremental conceptual learning 

 Creates a hierarchical clustering in the form of a classification tree 

 Each node refers to a concept and contains a probabilistic 

description of that concept 



COBWEB CLUSTERING METHOD 

A classification tree 



MORE ON STATISTICAL-BASED CLUSTERING 

 Limitations of COBWEB 
 The assumption  that the attributes are independent of each 

other is often too strong because correlation may exist 

 Not suitable for clustering large database data – skewed tree 
and expensive probability distributions 

 CLASSIT 
 an extension of COBWEB for incremental clustering of 

continuous data 

 suffers similar problems as COBWEB  

 AutoClass (Cheeseman and Stutz, 1996) 
 Uses Bayesian statistical analysis to estimate the number of 

clusters 

 Popular in industry 



OTHER MODEL-BASED CLUSTERING 

METHODS 

 Neural network approaches 

 Represent each cluster as an exemplar, acting as a 

“prototype” of the cluster 

 New objects are distributed to the cluster whose exemplar is 

the most similar according to some dostance measure 

 Competitive learning 

 Involves a hierarchical architecture of several units (neurons) 

 Neurons compete in  a “winner-takes-all” fashion for the 

object currently being presented 



MODEL-BASED CLUSTERING METHODS 



SELF-ORGANIZING FEATURE MAPS (SOMS) 

 Clustering is also performed by having several units 
competing for the current object 

 The unit whose weight vector is closest to the current 
object wins 

 The winner and its neighbors learn by having their 
weights adjusted 

 SOMs are believed to resemble processing that can 
occur in the brain 

 Useful for visualizing high-dimensional data in 2- or 3-D 
space 
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WHAT IS OUTLIER DISCOVERY? 

 What are outliers? 

 The set of objects are considerably dissimilar from the 
remainder of the data 

 Example:  Sports: Michael Jordon, Wayne Gretzky, ... 

 Problem 

 Find top n outlier points  

 Applications: 

 Credit card fraud detection 

 Telecom fraud detection 

 Customer segmentation 

 Medical analysis 



OUTLIER DISCOVERY: 

STATISTICAL APPROACHES 

 Assume a model underlying distribution that generates 

data set (e.g. normal distribution)  

 Use discordancy tests depending on  

 data distribution 

 distribution parameter (e.g., mean, variance) 

 number of expected outliers 

 Drawbacks 

 most tests are for single attribute 

 In many cases, data distribution may not be known 



OUTLIER DISCOVERY: DISTANCE-BASED 

APPROACH 

 Introduced to counter the main limitations imposed by 

statistical methods 

 We need multi-dimensional analysis without knowing data 

distribution. 

 Distance-based outlier: A DB(p, D)-outlier is an object O 

in a dataset T such that at least a fraction p of the objects 

in T lies at a distance greater than D from O 

 Algorithms for mining distance-based outliers   

 Index-based algorithm 

 Nested-loop algorithm  

 Cell-based algorithm 



OUTLIER DISCOVERY: DEVIATION-BASED 

APPROACH 

 Identifies outliers by examining the main characteristics 
of objects in a group 

 Objects that “deviate” from this description are 
considered outliers 

 sequential exception technique  

 simulates the way in which humans can distinguish unusual 
objects from among a series of supposedly like objects 

 OLAP data cube technique 

 uses data cubes to identify regions of anomalies in large 
multidimensional data 
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PROBLEMS AND CHALLENGES 

 Considerable progress has been made in scalable 

clustering methods 

 Partitioning: k-means, k-medoids, CLARANS 

 Hierarchical: BIRCH, CURE 

 Density-based: DBSCAN, CLIQUE, OPTICS 

 Grid-based: STING, WaveCluster 

 Model-based: Autoclass, Denclue, Cobweb 

 Current clustering techniques do not address all the 

requirements adequately 

 Constraint-based clustering analysis: Constraints exist in 

data space (bridges and highways) or in user queries 



CONSTRAINT-BASED CLUSTERING ANALYSIS 

Clustering analysis: less parameters but more user-desired 

constraints, e.g., an ATM allocation problem 



SUMMARY 

 Cluster analysis groups objects based on their similarity  
and has wide applications 

 Measure of similarity can be computed for various types of 
data 

 Clustering algorithms can be categorized into partitioning 
methods, hierarchical methods, density-based methods, 
grid-based methods, and model-based methods 

 Outlier detection and analysis are very useful for fraud 
detection, etc. and can be performed by statistical, 
distance-based or deviation-based approaches 

 There are still lots of research issues on cluster analysis, 
such as constraint-based clustering 
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