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 What is a data warehouse?  

 A multi-dimensional data model 

 Data warehouse architecture 

 Data warehouse implementation 



What is Data Warehouse?What is Data Warehouse?  

 Defined in many different ways, but not rigorously. 

◦ A decision support database that is maintained 
separately from the organization’s operational 
database 

◦ Support information processing by providing a solid 
platform of consolidated, historical data for analysis. 

 “A data warehouse is a subject-oriented, integrated, 
time-variant, and nonvolatile collection of data in support 
of management’s decision-making process.”—W. H. 
Inmon 

 Data warehousing: 

◦ The process of constructing and using data 
warehouses 



DataData  WarehouseWarehouse——SubjectSubject--OrientedOriented  

 Organized around major subjects, such as customer, 

product, sales. 

 Focusing on the modeling and analysis of data for 

decision makers, not on daily operations or 

transaction processing. 

 Provide a simple and concise view around particular 

subject issues by excluding data that are not useful in 

the decision support process. 



Data WarehouseData Warehouse——IntegratedIntegrated  

 Constructed by integrating multiple, heterogeneous 
data sources 

◦ relational databases, flat files, on-line transaction 
records 

 Data cleaning and data integration techniques are 
applied. 

◦ Ensure consistency in naming conventions, 
encoding structures, attribute measures, etc. 
among different data sources 
 E.g., Hotel price: currency, tax, breakfast covered, etc. 

◦ When data is moved to the warehouse, it is 
converted.   



Data WarehouseData Warehouse——Time Time 

VariantVariant  

 The time horizon for the data warehouse is 

significantly longer than that of operational systems. 

◦ Operational database: current value data. 

◦ Data warehouse data: provide information from a 

historical perspective (e.g., past 5-10 years) 

 Every key structure in the data warehouse 

◦ Contains an element of time, explicitly or implicitly 

◦ But the key of operational data may or may not 

contain “time element”. 

 



Data WarehouseData Warehouse——NonNon--

VolatileVolatile  

 A physically separate store of data transformed 

from the operational environment. 

 Operational update of data does not occur in the 

data warehouse environment. 

◦ Does not require transaction processing, 

recovery, and concurrency control mechanisms 

◦ Requires only two operations in data accessing:  

 initial loading of data and access of data. 



Data Warehouse vs. Heterogeneous DBMSData Warehouse vs. Heterogeneous DBMS  

 Traditional heterogeneous DB integration:  

◦ Query driven approach 

 When a query is posed to a client site, a meta-dictionary is 

used to translate the query into queries appropriate for 

individual heterogeneous sites involved, and the results 

are integrated into a global answer set 

 Complex information filtering, compete for resources 

 Data warehouse: update-driven, high performance 

◦ Information from heterogeneous sources is integrated in 

advance and stored in warehouses for direct query and 

analysis 



Data Warehouse vs. Operational DBMSData Warehouse vs. Operational DBMS  

 OLTP (on-line transaction processing) 

◦ Major task of traditional relational DBMS 

◦ Day-to-day operations: purchasing, inventory, banking, 

manufacturing, payroll, registration, accounting, etc. 

 OLAP (on-line analytical processing) 

◦ Major task of data warehouse system 

◦ Data analysis and decision making 

 Distinct features (OLTP vs. OLAP): 

◦ User and system orientation: customer vs. market 

◦ Data contents: current, detailed vs. historical, consolidated 

◦ Database design: ER + application vs. star + subject 

◦ View: current, local vs. evolutionary, integrated 

◦ Access patterns: update vs. read-only but complex 

queries 



OLTP vs. OLAPOLTP vs. OLAP  

 OLTP OLAP 

users clerk, IT professional knowledge worker 

function day to day operations decision support 

DB design application-oriented subject-oriented 

data current, up-to-date 

detailed, flat relational 

isolated 

historical,  

summarized, multidimensional 

integrated, consolidated 

usage repetitive ad-hoc 

access read/write 

index/hash on prim. key 

lots of scans 

unit of work short, simple transaction complex query 

# records accessed tens millions 

#users thousands hundreds 

DB size 100MB-GB 100GB-TB 

metric transaction throughput query throughput, response 
 

 



Why Separate Data Warehouse?Why Separate Data Warehouse?  

 High performance for both systems 

◦ DBMS— tuned for OLTP: access methods, indexing, 
concurrency control, recovery 

◦ Warehouse—tuned for OLAP: complex OLAP 
queries, multidimensional view, consolidation. 

 Different functions and different data: 

◦ missing data: Decision support requires historical 
data which operational DBs do not typically maintain 

◦ data consolidation:  DS requires consolidation 
(aggregation, summarization) of data from 
heterogeneous sources 

◦ data quality: different sources typically use 
inconsistent data representations, codes and formats 
which have to be reconciled 



Data Warehousing and OLAP Data Warehousing and OLAP 

Technology for Data MiningTechnology for Data Mining  

 What is a data warehouse?  

 A multi-dimensional data model 

 Data warehouse architecture 

 Data warehouse implementation 



From Tables and Spreadsheets to From Tables and Spreadsheets to 

Data CubesData Cubes  

 A data warehouse is based on a multidimensional data model 

which views data in the form of a data cube 

 A data cube, such as sales, allows data to be modeled and viewed 

in multiple dimensions 

◦ Dimension tables, such as item (item_name, brand, type), or 

time(day, week, month, quarter, year)  

◦ Fact table contains measures (such as dollars_sold) and keys to 

each of the related dimension tables 

 In data warehousing literature, an n-D base cube is called a base 

cuboid. The top most 0-D cuboid, which holds the highest-level of 

summarization, is called the apex cuboid.  The lattice of cuboids 

forms a data cube. 



Cube: A Lattice of CuboidsCube: A Lattice of Cuboids  
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Conceptual Modeling of Data Conceptual Modeling of Data 

WarehousesWarehouses  

 Modeling data warehouses: dimensions & measures 

◦ Star schema: A fact table in the middle connected to a 

set of dimension tables  

◦ Snowflake schema:  A refinement of star schema where 

some dimensional hierarchy is normalized into a set of 

smaller dimension tables, forming a shape similar to 

snowflake 

◦ Fact constellations:  Multiple fact tables share 

dimension tables, viewed as a collection of stars, 

therefore called galaxy schema or fact constellation  



Example of Star SchemaExample of Star Schema  
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Example of Snowflake SchemaExample of Snowflake Schema  
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Example of Fact ConstellationExample of Fact Constellation  
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A Data Mining Query Language, A Data Mining Query Language, 

DMQL: Language PrimitivesDMQL: Language Primitives  

 Cube Definition (Fact Table) 

define cube <cube_name> [<dimension_list>]:         

<measure_list> 

 Dimension Definition ( Dimension Table ) 

define dimension <dimension_name> as 

(<attribute_or_subdimension_list>) 

 Special Case (Shared Dimension Tables) 

◦ First time as “cube definition” 

◦ define dimension <dimension_name> as 

<dimension_name_first_time> in cube 

<cube_name_first_time> 

 



Defining a Star Schema in Defining a Star Schema in 

DMQLDMQL  

define cube sales_star [time, item, branch, location]: 

dollars_sold = sum(sales_in_dollars), avg_sales = 

avg(sales_in_dollars), units_sold = count(*) 

define dimension time as (time_key, day, day_of_week, 

month, quarter, year) 

define dimension item as (item_key, item_name, brand, 

type, supplier_type) 

define dimension branch as (branch_key, 

branch_name, branch_type) 

define dimension location as (location_key, street, city, 

province_or_state, country) 



Defining a Snowflake Schema in Defining a Snowflake Schema in 

DMQLDMQL  

define cube sales_snowflake [time, item, branch, 

location]: 

dollars_sold = sum(sales_in_dollars), avg_sales = 

avg(sales_in_dollars), units_sold = count(*) 

define dimension time as (time_key, day, 

day_of_week, month, quarter, year) 

define dimension item as (item_key, item_name, 

brand, type, supplier(supplier_key, supplier_type)) 

define dimension branch as (branch_key, 

branch_name, branch_type) 

define dimension location as (location_key, street, 

city(city_key, province_or_state, country)) 



Defining a Fact Constellation in DMQLDefining a Fact Constellation in DMQL  

define cube sales [time, item, branch, location]: 

dollars_sold = sum(sales_in_dollars), avg_sales = avg(sales_in_dollars), 
units_sold = count(*) 

define dimension time as (time_key, day, day_of_week, month, quarter, year) 

define dimension item as (item_key, item_name, brand, type, supplier_type) 

define dimension branch as (branch_key, branch_name, branch_type) 

define dimension location as (location_key, street, city, province_or_state, 
country) 

define cube shipping [time, item, shipper, from_location, to_location]: 

dollar_cost = sum(cost_in_dollars), unit_shipped = count(*) 

define dimension time as time in cube sales 

define dimension item as item in cube sales 

define dimension shipper as (shipper_key, shipper_name, location as location 
in cube sales, shipper_type) 

define dimension from_location as location in cube sales 

define dimension to_location as location in cube sales 



Measures: Three CategoriesMeasures: Three Categories  

 distributive: if the result derived by applying the 

function to n aggregate values is the same as that 

derived by applying the function on all the data 

without partitioning. 

 E.g., count(), sum(), min(), max(). 

 algebraic: if it can be computed by an algebraic 

function with M arguments (where M is a bounded 

integer), each of which is obtained by applying a 

distributive aggregate function. 

 E.g.,  avg(), min_N(), standard_deviation(). 

 holistic: if there is no constant bound on the storage 

size needed to describe a subaggregate.   

 E.g., median(), mode(), rank(). 



A Concept Hierarchy: Dimension (location)A Concept Hierarchy: Dimension (location)  
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Multidimensional DataMultidimensional Data  

 Sales volume as a function of product, 

month, and region 
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A Sample Data CubeA Sample Data Cube  
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Cuboids Corresponding to the CubeCuboids Corresponding to the Cube  
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Typical OLAP OperationsTypical OLAP Operations  

 Roll up (drill-up): summarize data 

◦ by climbing up hierarchy or by dimension reduction 

 Drill down (roll down): reverse of roll-up 

◦ from higher level summary to lower level summary or detailed 

data, or introducing new dimensions 

 Slice and dice:  

◦ project and select  

 Pivot (rotate):  

◦ reorient the cube, visualization, 3D to series of 2D planes. 

 Other operations 

◦ drill across: involving (across) more than one fact table 

◦ drill through: through the bottom level of the cube to its back-end 

relational tables (using SQL) 



Data Warehousing and OLAP Data Warehousing and OLAP 

Technology for Data MiningTechnology for Data Mining  

 What is a data warehouse?  

 A multi-dimensional data model 

 Data warehouse architecture 

 Data warehouse implementation 



MultiMulti--Tiered ArchitectureTiered Architecture 

Data 
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Three Data Warehouse ModelsThree Data Warehouse Models  

 Enterprise warehouse 

◦ collects all of the information about subjects 

spanning the entire organization 

 Data Mart 

◦ a subset of corporate-wide data that is of value to a 

specific groups of users.  Its scope is confined to 

specific, selected groups, such as marketing data 

mart 
 Independent vs. dependent (directly from warehouse) data 

mart 

 Virtual warehouse 

◦ A set of views over operational databases 

◦ Only some of the possible summary views may be 

materialized 



Data Warehouse Development: A Data Warehouse Development: A 

Recommended ApproachRecommended Approach  

Define a high-level corporate data model 
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