Data Wharehousing, OLAP and Data Mining

UNIT-5

- **#**Part 1: Data Warehouses
- ₩Part 2: OLAP
- ₩Part 3: Data Mining
- **#**Part 4: Query Processing and Optimization

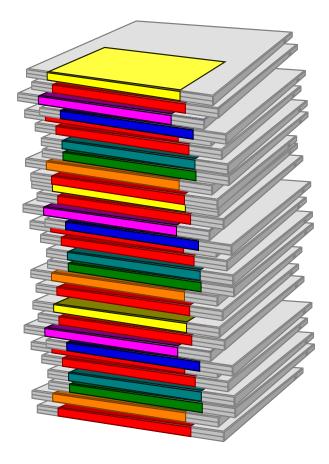
Part 1: Data Warehouses

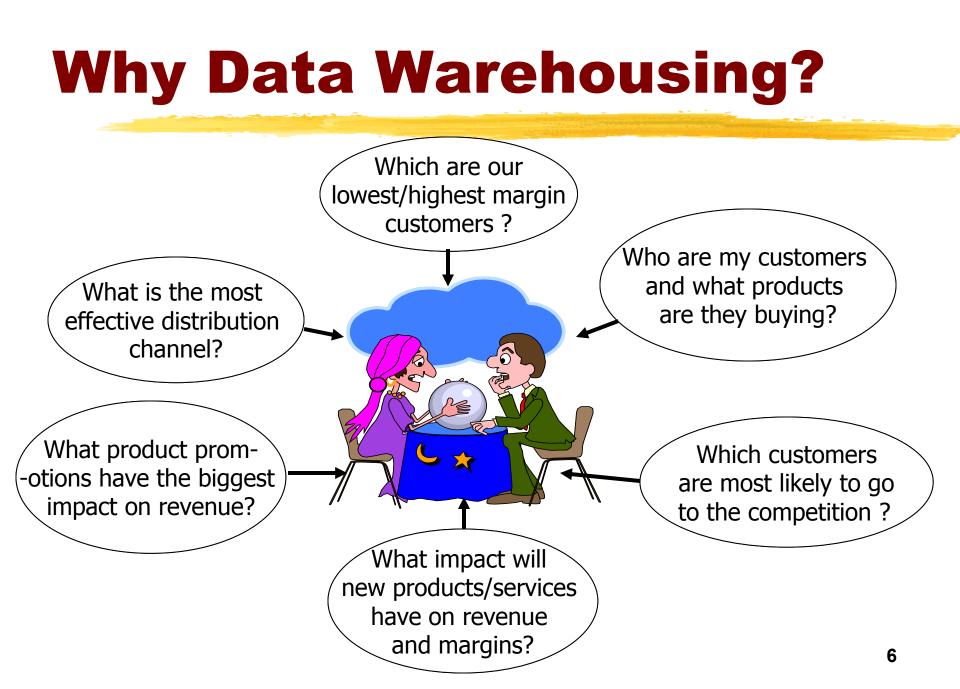
Data, Data everywhere yet ...

I can't find the data I need
data is scattered over the network
many versions, subtle differences
I can't get the data I need
need an expert to get the data

I can't understand the data I found

△ available data poorly documented


H I can't use the data I found
 I found
 I found
 I found
 I found


 \square results are unexpected

△ data needs to be transformed from one form to other

What is a Data Warehouse?

A single, complete and consistent store of data obtained from a variety of different sources made available to end users in a what they can understand and use in a business context.

Decision Support

*Used to manage and control business
*Data is historical or point-in-time
*Optimized for inquiry rather than update
*Use of the system is loosely defined and can be ad-hoc

Here with the series and end-users to understand the business and make judgements

Evolution of Decision Support

∺60's: Batch reports

And to find and analyze information

☑ inflexible and expensive, reprogram every request

₭ 70's: Terminal based DSS and EIS

80's: Desktop data access and analysis tools
△query tools, spreadsheets, GUIs

easy to use, but access only operational db

#90's: Data warehousing with integrated OLAP engines and tools

What are the users saying...

Hota should be integrated across the enterprise Summary data had a real value to the organization \mathbf{H} Historical data held the key to understanding data over time ₩What-if capabilities are required

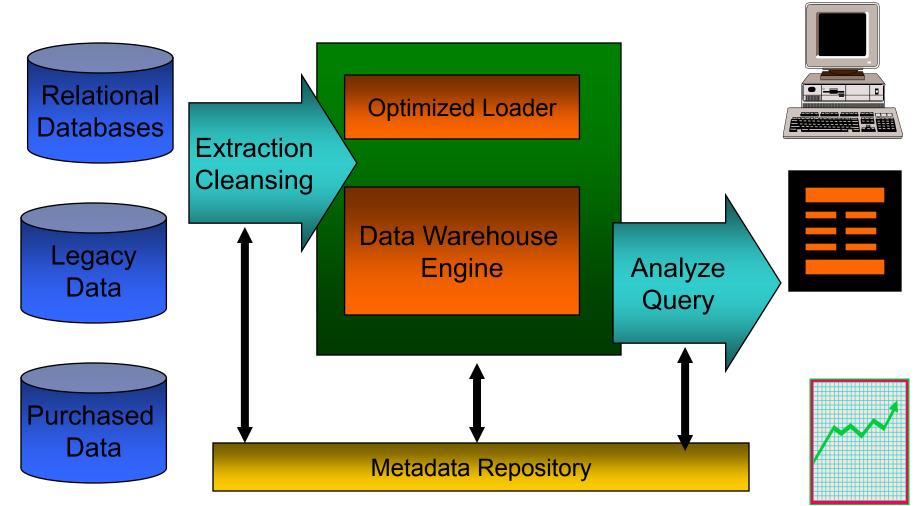
Data Warehousing --It is a process

* Technique for assembling and managing data from various sources for the purpose of answering business questions. Thus making decisions that were not previous possible

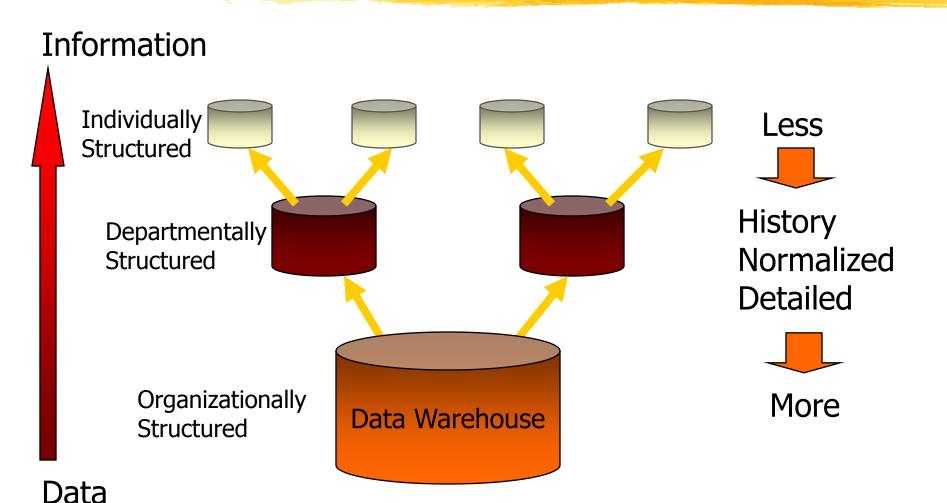
A decision support database maintained separately from the organization's operational database

Traditional RDBMS used for OLTP

How Database Systems have been used traditionally for OLTP Clerical data processing tasks \square detailed, up to date data △structured repetitive tasks read/update a few records △ isolation, recovery and integrity are critical **Will call these operational systems**


OLTP vs Data Warehouse

<mark>₩</mark> OLTP


- Application Oriented
 Used to run business
- ○Clerical User
- Detailed data
- Current up to date
- ☐Isolated Data
- Repetitive access by small transactions
- Read/Update access

- ₭ Warehouse (DSS)
 - Subject Oriented
 - └──Used to analyze business
 - Manager/Analyst
 - Summarized and refined
 - Snapshot data Snapshot data
 - ☐Integrated Data
 - Ad-hoc access using large queries
 - Mostly read access (batch update)

Data Warehouse Architecture

From the Data Warehouse to Data Marts

Users have different views of Data

OLAP

Organizationally

structured

Tourists: Browse information harvested by farmers

Farmers: Harvest information from known access paths

Explorers: Seek out the unknown and previously unsuspected rewards hiding in the detailed data

Wal*Mart Case Study

Founded by Sam Walton One the largest Super Market Chains in the US

%Wal*Mart: 2000+ Retail Stores %SAM's Clubs 100+Wholesalers Stores

☑This case study is from Felipe Carino's (NCR Teradata) presentation made at Stanford Database Seminar

Old Retail Paradigm

<mark>∺</mark>Wal*Mart

- ☐Inventory Management
- Merchandise Accounts Payable
- Purchasing
- Supplier Promotions: National, Region, Store Level

#Suppliers

- △Accept Orders
- △Promote Products
- Provide special Incentives
- Monitor and Track The Incentives
- Bill and Collect Receivables
- Estimate Retailer Demands

New (Just-In-Time) Retail Paradigm

No more deals

Shelf-Pass Through (POS Application)

🗠 One Unit Price

Suppliers paid once a week on ACTUAL items sold

○ Wal*Mart Manager

⊠Daily Inventory Restock

⊠Suppliers (sometimes SameDay) ship to Wal*Mart

₭ Warehouse-Pass Through

Stock some Large Items

⊠Delivery may come from supplier

○ Distribution Center

Supplier's merchandise unloaded directly onto Wal*Mart Trucks

Information as a Strategic Weapon

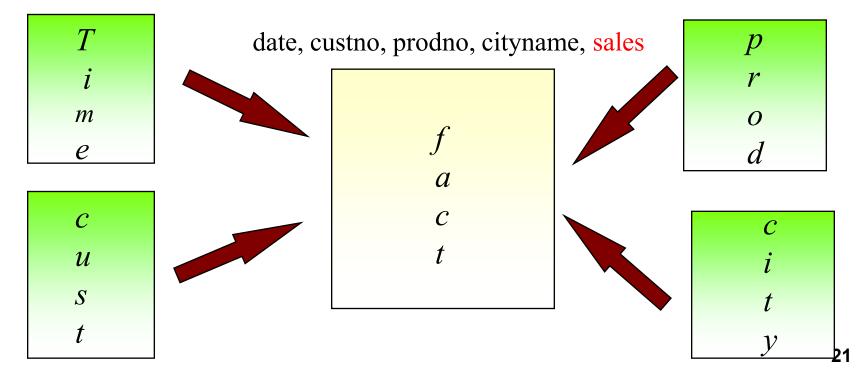
#Daily Summary of all Sales Information

- Regional Analysis of all Stores in a logical area
- Specific Product Sales
- Specific Supplies Sales
- ∺Trend Analysis, etc.

Wal*Mart uses information when negotiating
with

─Suppliers

Advertisers etc.


Schema Design

#Database organization Must look like business Must be recognizable by business user Approachable by business user Must be <u>simple</u> **#**Schema Types △Star Schema Fact Constellation Schema Snowflake schema

Star Schema

A single fact table and for each dimension one dimension table

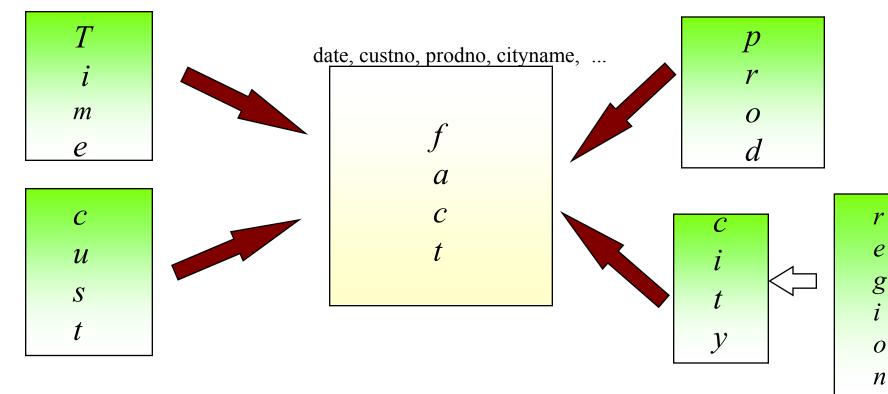
Boes not capture hierarchies directly

Dimension Tables

%Dimension tables

- Define business in terms already familiar to users
- ○Wide rows with lots of descriptive text
- Small tables (about a million rows)
- □ Joined to fact table by a foreign key
- A heavily indexed
- - ⊠time periods, geographic region (markets, cities), products, customers, salesperson, etc.

Fact Table


₭Central table

- △narrow rows, a few columns at most
- △large number of rows (millions to a billion)
- △Access via dimensions

Snowflake schema

Represent dimensional hierarchy directly by normalizing tables.

#Easy to maintain and saves storage

Fact Constellation

#Fact Constellation

Multiple fact tables that share many dimension tables

Booking and Checkout may share many dimension tables in the hotel industry

Hotels
Booking
Checkout
Room Type
Customer

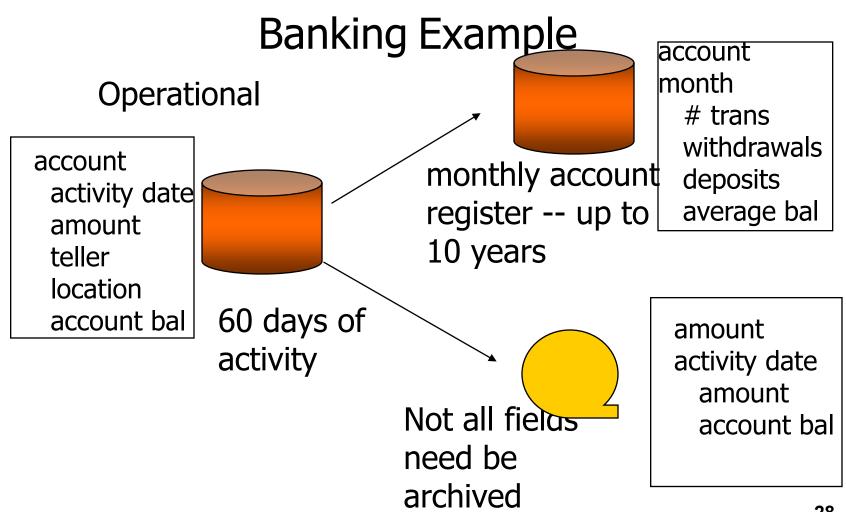
Data Granularity in Warehouse

#Summarized data stored

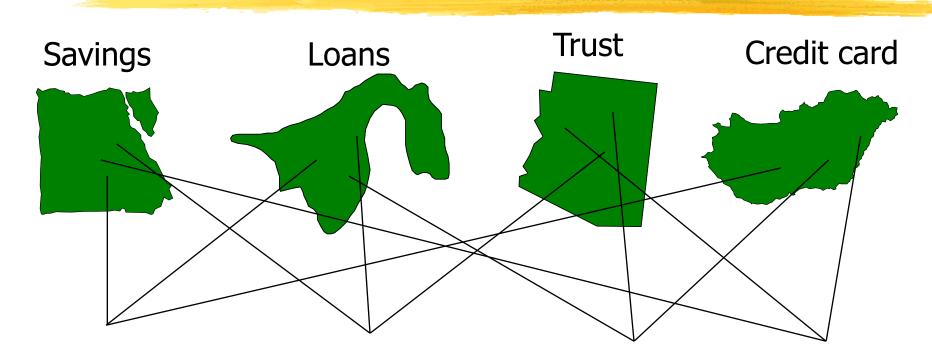
- reduce storage costs
- ☐reduce cpu usage
- ➢increases performance since smaller number of records to be processed
- design around traditional high level reporting needs
- Itradeoff with volume of data to be stored and detailed usage of data

Granularity in Warehouse

Solution is to have dual level of granularity


Store summary data on disks

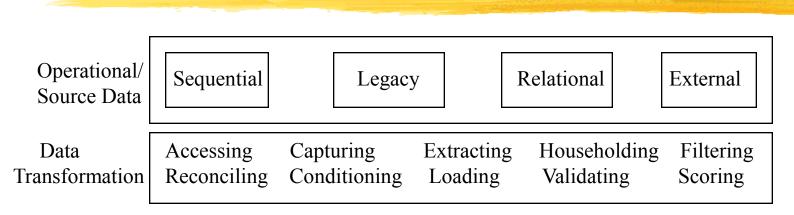
≥95% of DSS processing done against this data


Store detail on tapes

 \boxtimes 5% of DSS processing against this data

Levels of Granularity

Data Integration Across Sources



Same data different name

Different data Same name Data found here nowhere else

Different keys same data

Data Transformation

- Bata transformation is the foundation for achieving single version of the truth Major concern for IT
- Data warehouse can fail if appropriate data transformation strategy is not developed

Data Integrity Problems

***** Same person, different spellings

△ Agarwal, Agrawal, Aggarwal etc...

Hultiple ways to denote company name

Persistent Systems, PSPL, Persistent Pvt. LTD.

₭ Use of different names

⊡mumbai, bombay

- Bifferent account numbers generated by different applications for the same customer
- ₭ Required fields left blank
- Invalid product codes collected at point of sale

Manual entry leads to mistakes

Data Transformation Terms

%Extracting
%Conditioning
%Scrubbing
%Merging
%Householding

%Enrichment
%Scoring
%Loading
%Validating
%Delta Updating

Data Transformation Terms

Householding

- ☐Identifying all members of a household (living at the same address)
- Ensures only one mail is sent to a household
- △Can result in substantial savings: 1 million catalogues at \$50 each costs \$50 million . A 2% savings would save \$1 million

% Propagate updates on source data to the warehouse

#Issues:

When to refresh

Anow to refresh -- incremental refresh techniques

When to Refresh?

#periodically (e.g., every night, every
week) or after significant events

#on every update: not warranted unless
warehouse data require current data (up
to the minute stock quotes)

% refresh policy set by administrator based on user needs and traffic

%possibly different policies for different
sources

Refresh techniques

#Incremental techniques

Adetect changes on base tables: replication servers (e.g., Sybase, Oracle, IBM Data Propagator)

≤snapshots (Oracle)

☑ transaction shipping (Sybase)

Compute changes to derived and summary tables

maintain transactional correctness for incremental load

How To Detect Changes

Create a snapshot log table to record ids of updated rows of source data and timestamp

Defining after row triggers to update snapshot log when source table changes

○ Using regular transaction log to detect changes to source data

Querying Data Warehouses

SQL Extensions Multidimensional modeling of data ○ OLAP ○ More on OLAP later ...

SQL Extensions

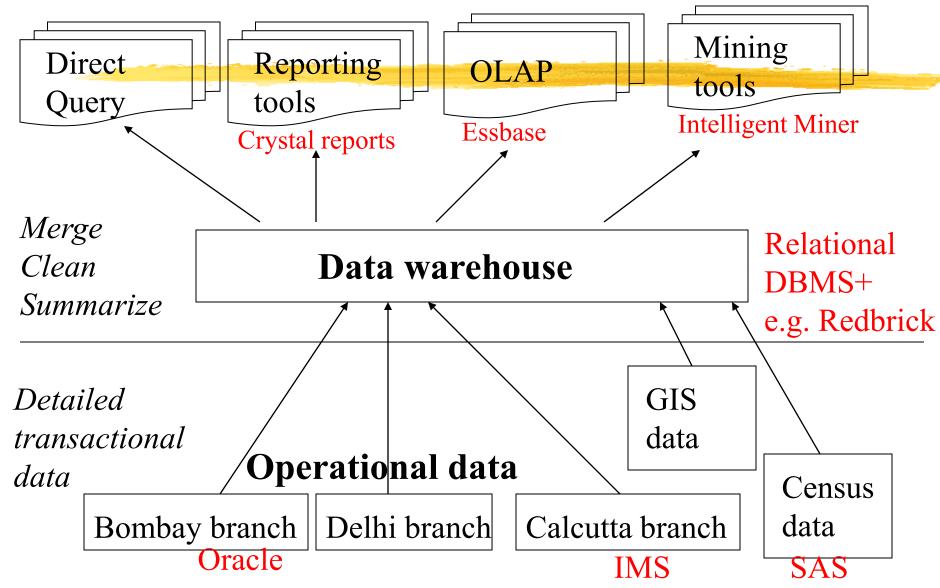
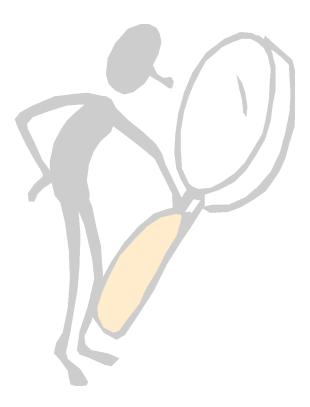

#Extended family of aggregate functions \bigtriangleup percentile (top 30% of customers) Object Relational Systems allow addition of new aggregate functions **Reporting** features

Image: A state of the state

Reporting Tools

#Andyne Computing -- GQL **#**Brio -- BrioQuery **H**Business Objects -- Business Objects **#**Cognos -- Impromptu **#**Information Builders Inc. -- Focus for Windows Cracle -- Discoverer2000 #Platinum Technology -- SQL*Assist, ProReports PowerSoft -- InfoMaker SAS Institute -- SAS/Assist Software AG -- Esperant Sterling Software -- VISION:Data


Decision support tools

Deploying Data Warehouses

What business information keeps you in business today? What business information can put you out of business tomorrow?

What business information should be a mouse click away?
What business conditions are the driving the need for business information?

Cultural Considerations

Not just a technology project

New way of using information to support daily activities and decision making

Care must be taken to prepare organization for change

Hust have organizational backing and support

User Training

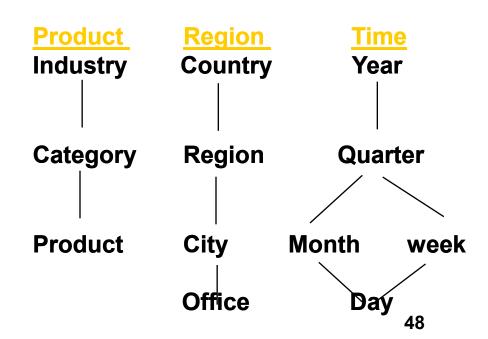
 Users must have a higher level of IT proficiency than for operational systems
 Training to help users analyze data in the warehouse effectively

Warehouse Products

- % Computer Associates -- CA-Ingres
- Hewlett-Packard -- Allbase/SQL
- % Informix -- Informix, Informix XPS
- ₭ Microsoft -- SQL Server
- [₭]Oracle Oracle
- **Red Brick -- Red Brick Warehouse**
- **∺**SAS Institute -- SAS
- Software AG -- ADABAS
- ₿ Sybase -- SQL Server, IQ, MPP

Part 2: OLAP

Nature of OLAP Analysis


- #Aggregation -- (total sales, percent-tototal)
- Comparison -- Budget vs. Expenses
- ∺Ranking -- Top 10, quartile analysis
- ∺Access to detailed and aggregate data
- **Complex criteria specification**
- % Visualization
- **%**Need interactive response to aggregate queries

Multi-dimensional Data

Measure - sales (actual, plan, variance)

Dimensions: Product, Region, Time Hierarchical summarization paths

Conceptual Model for OLAP

Heta Dimensions

Other attributes of data, define the space

△e.g., store, product, date-of-sale

hierarchies on dimensions

⊠e.g. branch -> city -> state

Kollup: summarize data

e.g., given sales data, summarize sales for last year by product category and region

e.g., given summarized sales as above, find breakup of sales by city within each region, or within the Andhra region

More Cube Operations

#Slice and dice: select and project

e.g.: Sales of soft-drinks in Andhra over the last quarter

∺Pivot: change the view of data

	Q1	Q2	Total	
L	22	33	55	
S	15	44	59	
Total	37	77	114	

	L	S	Total
Red	14	07	21
Blue	41	52	93
Total	55	59	114

More OLAP Operations

Hypothesis driven search: E.g. factors affecting defaulters

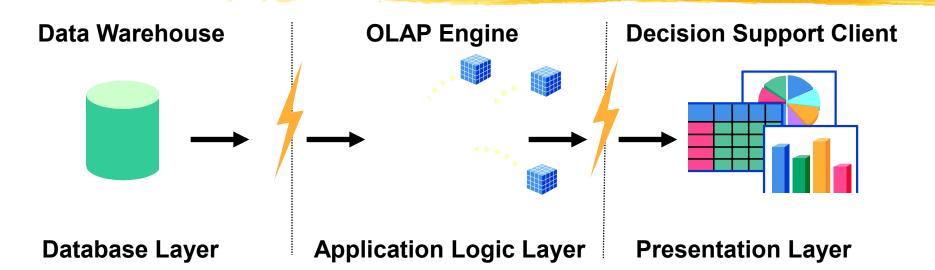
view defaulting rate on age aggregated over other dimensions

☐ for particular age segment detail along profession

Reverse interactive response to aggregate queries

MOLAP vs ROLAP

#MOLAP: Multidimensional array OLAP #ROLAP: Relational OLAP


Type	Size	Colour	Amount
Shirt	S	Blue	10
Shirt	L	Blue	25
Shirt	ALL	Blue	35
Shirt	S	Red	3
Shirt	L	Red	7
Shirt	ALL	Red	10
Shirt	ALL	ALL	45
ALL	ALL	ALL	1290

SQL Extensions

₭Cube operator

- Group by on all subsets of a set of attributes
 (month,city)
- redundant scan and sorting of data can be avoided
- ₭Various other non-standard SQL extensions by vendors

OLAP: 3 Tier DSS

Store atomic data in industry standard Data Warehouse.

Generate SQL execution plans in the OLAP engine to obtain OLAP functionality. Obtain multidimensional reports from the DSS Client.

Strengths of OLAP

- It is a powerful visualization tool
- % It is good for analyzing time
 series
- Here is the second seco
- Hany vendors offer OLAP tools

Brief History

- Express and System W DSS
- Online Analytical Processing coined by EF Codd in 1994 - white paper by Arbor Software
- Generally synonymous with earlier terms such as Decisions Support, Business Intelligence, Executive Information System
- HOLAP: Multidimensional OLAP (Hyperion (Arbor Essbase), Oracle Express)
- ROLAP: Relational OLAP (Informix MetaCube, Microstrategy DSS Agent)

OLAP and Executive Information Systems

- Here Computing --Pablo
- **#** Arbor Software -- Essbase
- ₭ Cognos -- PowerPlay
- Comshare -- Commander OLAP
- ₭ Holistic Systems -- Holos
- Information Advantage --AXSYS, WebOLAP
- Informix -- Metacube
- Hicrostrategies --DSS/Agent

- ₭ Oracle -- Express
- Pilot -- LightShip
- Hanning Sciences --Gentium
- Platinum Technology --ProdeaBeacon, Forest & Trees
- ₭ SAS Institute -- SAS/EIS, OLAP++
- **#** Speedware -- Media

Microsoft OLAP strategy

- Plato: OLAP server: powerful, integrating various operational sources
- ∺OLE-DB for OLAP: emerging industry standard based on MDX --> extension of SQL for OLAP
- Pivot-table services: integrate with Office 2000
 - Every desktop will have OLAP capability.
- **#**Client side caching and calculations
- Partitioned and virtual cube
- Hybrid relational and multidimensional storage

Part 3: Data Mining

Why Data Mining

Credit ratings/targeted marketing:

Given a database of 100,000 names, which persons are the least likely to default on their credit cards?

Identify likely responders to sales promotions

Fraud detection

○ Which types of transactions are likely to be fraudulent, given the demographics and transactional history of a particular customer?

K Customer relationship management:

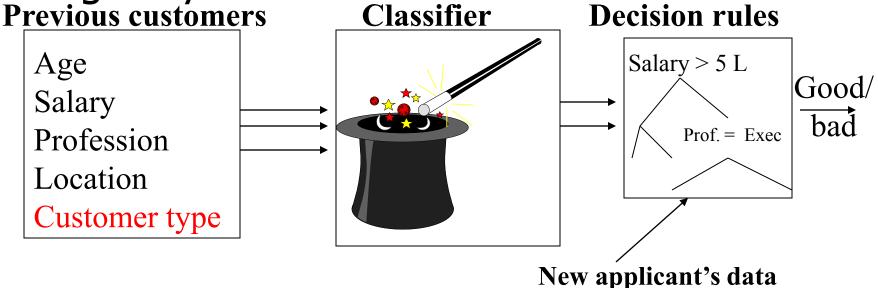
Which of my customers are likely to be the most loyal, and which are most likely to leave for a competitor? :

Data Mining helps extract such information

Data mining

Process of semi-automatically analyzing large databases to find interesting and useful patterns

- ∺Overlaps with machine learning, statistics, artificial intelligence and databases but
 - more scalable in number of features and instances
 - more automated to handle heterogeneous data

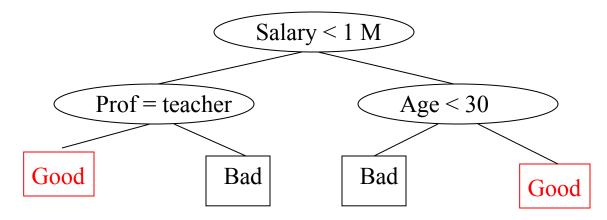

Some basic operations

#Predictive:

- Regression
- Classification
- % Descriptive:
 - Clustering / similarity matching
 - △Association rules and variants
 - Deviation detection

Classification

∺Given old data about customers and payments, predict new applicant's loan eligibility.



Classification methods

- Goal: Predict class Ci = f(x1, x2, ... Xn)
- **Regression:** (linear or any other polynomial) $\bigtriangleup a^*x1 + b^*x2 + c = Ci.$
- Nearest neighour
- Decision tree classifier: divide decision space into piecewise constant regions.
 Probabilistic/generative models
- Key Neural networks: partition by non-linear boundaries

Decision trees

Tree where internal nodes are simple decision rules on one or more attributes and leaf nodes are predicted class labels.

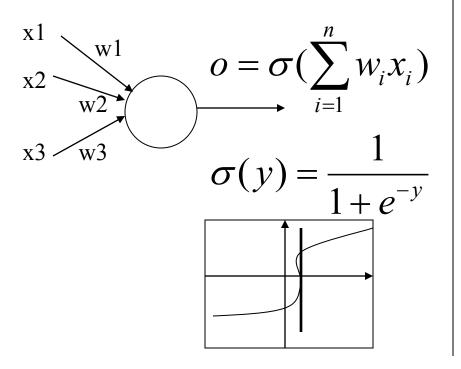
Pros and Cons of decision trees

• Pros

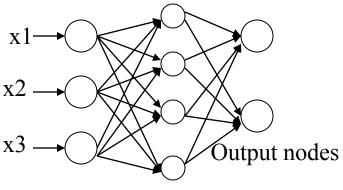
- + Reasonable training time
- + Fast application
- + Easy to interpret
- + Easy to implement
- + Can handle large number of features

• Cons

Cannot handle complicated
relationship between features
simple decision boundaries
problems with lots of missing


data

More information: http://www.stat.wisc.edu/~limt/treeprogs.html


Neural network

Set of nodes connected by directed weighted edges

Basic NN unit

A more typical NN

Hidden nodes

Pros and Cons of Neural Network

• Pros

+ Can learn more complicated class boundaries

- + Fast application
- + Can handle large number of features

- Cons
 - Slow training time
 - Hard to interpret
 - Hard to implement:

trial and error for choosing number of nodes

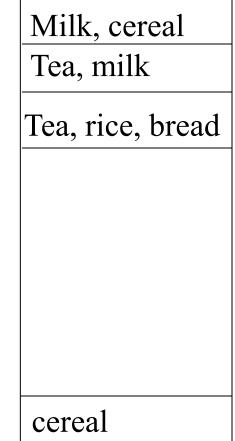
Conclusion: Use neural nets only if decision trees/NN fail.

Bayesian learning

#Assume a probability model on generation of data. predicted class : $c = \max p(c_i | d) = \max \frac{p(d | c_j)p(c_j)}{\max \text{ Most likely}}$ #Apply bayes theorem to find most likely class as:

$$c = \max_{c_j} \frac{p(c_j)}{p(d)} \prod_{i=1}^{n} p(a_i | c_j)$$

Kaïve bayes: Assume attributes conditionally independent given class value


Clustering

Hunsupervised learning when old data with class labels not available e.g. when introducing a new product.

- \Re Group/cluster existing customers based on time series of payment history such that similar customers in same cluster.
- **Key requirement:** Need a good measure of similarity between instances.
- **H** Identify micro-markets and develop policies for each 71

Association rules

 \Re Given set T of groups of items \Re Example: set of item sets purchased **#**Goal: find all rules on itemsets of the form a-->b such that \bigtriangleup support of a and b > user threshold s ☐ conditional probability (confidence) of b given a > user threshold c \Re Purchase of product A --> service B

High confidence may not imply high correlation

∺Use correlations. Find expected support and large departures from that interesting..

See statistical literature on contingency tables.

Still too many rules, need to prune...

Prevalent *≠* **Interesting**

- % Analysts already
 know about prevalent
 rules
- ₭ Interesting rules are those that *deviate* from prior expectation
- ∺ Mining's payoff is in finding *surprising* phenomena

What makes a rule surprising?

Does not match prior expectation

Correlation between milk and cereal remains roughly constant over time \Re Cannot be trivially derived from simpler rules △ Milk 10%, cereal 10% \bigtriangleup Milk and cereal 10% ... surprising \square Eggs 10% \triangle Milk, cereal and eggs 0.1% ... surprising! \triangle Expected 1%

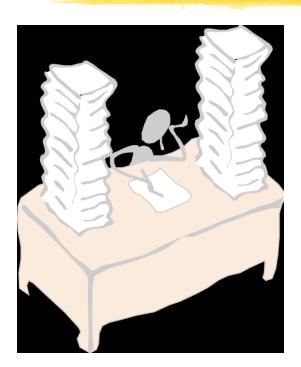
Application Areas

Industry

Finance Insurance Telecommunication Transport Consumer goods Data Service providers Utilities

Application

Credit Card Analysis Claims, Fraud Analysis Call record analysis Logistics management promotion analysis Value added data Power usage analysis


Data Mining in Use

- Hereich Schwarzung und Schwarzung
- A Supermarket becomes an information broker
- Basketball teams use it to track game strategy
- Cross Selling
- % Target Marketing
- **Holding on to Good Customers**
- Heeding out Bad Customers

*Data is being produced
*Data is being warehoused
*The computing power is available
*The computing power is affordable
*The competitive pressures are strong
*Commercial products are available

Data Mining works with Warehouse Data

Hota Warehousing provides the Enterprise with a memory

Contemposities and the Research Contemposities and the Researc

Mining market

∺Around 20 to 30 mining tool vendors

% Major players:

☐Clementine,

☐IBM's Intelligent Miner,

└─SGI's MineSet,

SAS's Enterprise Miner.

#All pretty much the same set of tools

Hany embedded products: fraud detection, electronic commerce applications

OLAP Mining integration

#OLAP (On Line Analytical Processing)

- Fast interactive exploration of multidim. aggregates.
- Heavy reliance on manual operations for analysis:

△Tedious and error-prone on large multidimensional data

Herein States and S

State of art in mining OLAP integration

Cognos Constant C

% Clustering [Pilot software]

segment customers to define hierarchy on that dimension

Time series analysis: [Seagate's Holos]

Query for various shapes along time: eg. spikes, outliers etc

#Multi-level Associations [Han et al.]

☐ find association between members of dimensions

Vertical integration: Mining on the web

 \Re Web log analysis for site design: \square what are popular pages, \bigtriangleup what links are hard to find. Electronic stores sales enhancements: \bigtriangleup recommendations, advertisement: **Collaborative filtering:** Net perception, Wisewire Inventory control: what was a shopper looking for and could not find...