## Introduction to MATLAB

## MATLAB

- MATLAB is a program for doing numerical computation. It was originally designed for solving linear algebra type problems using matrices.
- It's name is derived from MATrix LABoratory.
- MATLAB has since been expanded and now has built-in functions for solving problems requiring data analysis, signal processing, optimization, and several other types of scientific computations. It also contains functions for 2-D and 3-D graphics and animation.


## MATLAB

- The MATLAB environment is command oriented somewhat like UNIX. A prompt appears on the screen and a MATLAB statement can be entered. When the $<$ ENTER $>$ key is pressed, the statement is executed, and another prompt appears.
- If a statement is terminated with a semicolon (;), no results will be displayed. Otherwise results will appear before the next prompt.
- The following slide is the text from a MATLAB screen.


## MATLAB

To get started, type one of these commands: helpwin, helpdesk, or demo
» $\mathrm{a}=5$;
» $b=a / 2$
$\mathrm{b}=$
2.5000

## MATLAB Variable Names

- Variable names ARE case sensitive
- Variable names can contain up to 63 characters (as of MATLAB 6.5 and newer)
- Variable names must start with a letter followed by letters, digits, and underscores.


## MATLAB Special Variables

ans
pi
eps
inf
NaN
i and j
realmin
realmax

Default variable name for results
Value of $\pi$
Smallest incremental number
Infinity
Not a number e.g. $0 / 0$
$\mathrm{i}=\mathrm{j}=$ square root of -1
The smallest usable positive real number
The largest usable positive real number

## MATLAB Math \& Assignment Operators

| Power | $\wedge$ | or | .$^{\wedge}$ | $\mathrm{a}^{\wedge} \mathrm{b}$ | or | $\mathrm{a} \cdot{ }^{\wedge} \mathrm{b}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Multiplication | $\star$ | or | .$^{\star}$ | $\mathrm{a}^{\star} \mathrm{b}$ | or | $\mathrm{a} \cdot{ }^{\star} \mathrm{b}$ |
| Division | $/$ | or | .$/$ | $\mathrm{a} / \mathrm{b}$ | or | $\mathrm{a} \cdot / \mathrm{b}$ |
| $\quad$ or | $\backslash$ | or | .$\backslash$ | $\mathrm{b} \backslash \mathrm{a}$ | or | $\mathrm{b} \cdot \backslash \mathrm{a}$ |
| NOTE: | $56 / 8$ | $=8 \backslash 56$ |  |  |  |  |
| (unary) + (unary) |  |  | $\mathrm{a}+\mathrm{b}$ |  |  |  |
| Addition | + |  | $\mathrm{a}-\mathrm{b}$ |  |  |  |
| Subtraction | - |  | $\mathrm{a}=\mathrm{b}$ | (assign b to a$)$ |  |  |

## Other MATLAB symbols

>> prompt
continue statement on next lineseparate statements and data\% start comment which ends at end of line;
(1) suppress output(2) used as a row separator in a matrixspecify range

## MATLAB Matrices

- MATLAB treats all variables as matrices. For our purposes a matrix can be thought of as an array, in fact, that is how it is stored.
- Vectors are special forms of matrices and contain only one row OR one column.
- Scalars are matrices with only one row AND one column


## MATLAB Matrices

- A matrix with only one row AND one column is a scalar. A scalar can be created in MATLAB as follows:
» a_value=23
a_value $=$

23

## MATLAB Matrices

- A matrix with only one row is called a row vector. A row vector can be created in MATLAB as follows (note the commas):
» rowvec $=[12,14,63]$
rowvec =
$12 \quad 14 \quad 63$


## MATLAB Matrices

- A matrix with only one column is called a column vector. A column vector can be created in MATLAB as follows (note the semicolons):
» colvec $=[13 ; 45 ;-2]$
colvec $=$

13
45
-2

## MATLAB Matrices

- A matrix can be created in MATLAB as follows (note the commas AND semicolons):
» matrix $=[1,2,3 ; 4,5,6 ; 7,8,9]$
matrix $=$

| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 | 9 |

## Extracting a Sub-Matrix

- A portion of a matrix can be extracted and stored in a smaller matrix by specifying the names of both matrices and the rows and columns to extract. The syntax is:

$$
\text { sub_matrix }=\text { matrix }(\mathrm{r} 1: \mathrm{r} 2, \mathrm{c} 1: \mathrm{c} 2) ;
$$

where r 1 and r 2 specify the beginning and ending rows and c 1 and c 2 specify the beginning and ending columns to be extracted to make the new matrix.

## MATLAB Matrices

- A column vector can be extracted from a matrix. As an example we create a matrix below:
» matrix $=[1,2,3 ; 4,5,6 ; 7,8,9]$
matrix $=$
123
$4 \quad 5 \quad 6$
$7 \quad 8 \quad 9$
- Here we extract column 2 of the matrix and make a column vector:
» col_two=matrix $(:, 2)$
col_two $=$

2
5

## MATLAB Matrices

- A row vector can be extracted from a matrix. As an example we create a matrix below:
» matrix $=[1,2,3 ; 4,5,6 ; 7,8,9]$
matrix $=$

123
$4 \quad 5 \quad 6$
$7 \quad 8 \quad 9$

- Here we extract row 2 of the matrix and make a row vector. Note that the $2: 2$ specifies the second row and the $1: 3$ specifies which columns of the row.
» rowvec=matrix(2:2,1:3)
rowvec $=$
$4 \quad 5 \quad 6$


## Reading Data from files

- MATLAB supports reading an entire file and creating a matrix of the data with one statement.
>> load mydata.dat;
\% loads file into matrix.
\% The matrix may be a scalar, a vector, or a
\% matrix with multiple rows and columns. The
\% matrix will be named mydata.
>> size (mydata)
>> length (myvector)
\% size will return the number
\% of rows and number of
$\%$ columns in the matrix
\% length will return the total
\% no. of elements in myvector


## Plotting with MATLAB

- MATLAB will plot one vector vs. another. The first one will be treated as the abscissa (or x ) vector and the second as the ordinate (or y) vector. The vectors have to be the same length.
- MATLAB will also plot a vector vs. its own index. The index will be treated as the abscissa vector. Given a vector "time" and a vector "dist" we could say:
>> plot (time, dist)
>> plot (dist)
\% plotting versus time
\% plotting versus index


## Plotting with MATLAB

■ There are commands in MATLAB to "annotate" a plot to put on axis labels, titles, and legends. For example:
$\gg \%$ To put a label on the axes we would use:
>> xlabel ('X-axis label')
>> ylabel ('Y-axis label')
$\gg \%$ To put a title on the plot, we would use:
>> title ('Title of my plot')

## Plotting with MATLAB

- Vectors may be extracted from matrices. Normally, we wish to plot one column vs. another. If we have a matrix "mydata" with two columns, we can obtain the columns as a vectors with the assignments as follows:
>> first_vector = mydata ( $:, 1$ );
$\gg$ second_vector = mydata ( $:, 2$ );
$\gg \%$ and we can plot the data
>> plot ( first_vector , second_vector )
\% First column
\% Second one


## Some Useful MATLAB commands

■ who
■ whos

- help

■ lookfor

- what
- clear Clear all variables from work space
- clear x y
- clc

List known variables
List known variables plus their size
$\gg$ help sqrt Help on using sqrt
>> lookfor sqrt Search for
keyword sqrt in m-files
>> what a: List MATLAB files in a:

Clear variables $x$ and $y$ from work space
Clear the command window

## Some Useful MATLAB commands

- what
- dir

■ 1s

- type test
- delete test
- cd a:
- chdir a:
- pwd
- which test

List all m-files in current directory
List all files in current directory
Same as dir
Display test.m in command window

## Delete test.m

Change directory to a:
Same as cd
Show current directory
Display directory path to 'closest' test.m

## A Useless, But Interesting, MATLAB command

■ why In case you ever needed a reason

## MATLAB Relational Operators

- MATLAB supports six relational operators.

Less Than
Less Than or Equal
Greater Than
Greater Than or Equal
Equal To
Not Equal To

$$
\begin{aligned}
& <= \\
& > \\
& >= \\
& == \\
& \sim=
\end{aligned}
$$

## MATLAB Logical Operators

- MATLAB supports three logical operators.

| not | $\sim$ | \% highest precedence |
| :--- | :---: | :--- |
| and | $\&$ | \% equal precedence with or |
| or | । | \% equal precedence with and |

## MATLAB Logical Functions

■ MATLAB also supports some logical functions.
xor (exclusive or) Ex: xor (a, b)
Where $a$ and $b$ are logical expressions. The xor operator evaluates to true if and only if one expression is true and the other is false. True is returned as 1 , false as 0 .
any (x)
all (x)
isnan (x)
isinf (x)
finite (x)
returns 1 if any element of $x$ is nonzero
returns 1 if all elements of $x$ are nonzero
returns 1 at each NaN in x
returns 1 at each infinity in $x$
returns 1 at each finite value in $x$

## Matlab Selection Structures

- An if - elseif - else structure in MATLAB.

Note that elseif is one word.
if expression $1 \quad \%$ is true
\% execute these commands
elseif expression $2 \%$ is true
\% execute these commands
else
\% the default
\% execute these commands
end

## MATLAB Repetition Structures

- A for loop in MATLAB
for $\mathrm{x}=$ array
for ind =1:100
b(ind) $=\sin ($ ind $/ 10)$
end
Alternative:
$\mathrm{x}=0.1: 0.1: 10 ; \mathrm{b}=\sin (\mathrm{x}) ;$ - Most of the loops can be avoided!!!
- A while loop in MATLAB while expression while $\mathbf{x}<=\mathbf{1 0}$
\% execute these commands
end


## Scalar - Matrix Addition

» $\mathrm{a}=3$;
» $b=[1,2,3 ; 4,5,6]$
$\mathrm{b}=$
123
$4 \quad 5 \quad 6$
» $\mathrm{c}=\mathrm{b}+\mathrm{a} \quad$ \% Add a to each element of b
$\mathrm{c}=$
$4 \quad 5 \quad 6$
$7 \quad 8 \quad 9$

## Scalar - Matrix Subtraction

$$
\begin{aligned}
& » \mathrm{a}=3 ; \\
& » \mathrm{~b}=[1,2,3 ; 4,5,6] \\
& \mathrm{b}= \\
& \begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array} \\
& » \mathrm{c}=\mathrm{b}-\mathrm{a} \% \text { Subtract a from each element of } \mathrm{b} \\
& \mathrm{c}= \\
& \begin{array}{rrr}
-2 & -1 & 0 \\
1 & 2 & 3
\end{array}
\end{aligned}
$$

## Scalar - Matrix Multiplication

» $a=3$;
» $\mathrm{b}=[1,2,3 ; 4,5,6]$
$\mathrm{b}=$
123
$4 \quad 5 \quad 6$
» $\mathrm{c}=\mathrm{a} * \mathrm{~b} \%$ Multiply each element of b by a
$\mathrm{c}=$
$3 \quad 6 \quad 9$
$12 \quad 15 \quad 18$

## Scalar - Matrix Division

» $a=3$;
» $b=[1,2,3 ; 4,5,6]$
$\mathrm{b}=$
123
$4 \quad 5 \quad 6$
$» \mathrm{c}=\mathrm{b} / \mathrm{a} \quad \%$ Divide each element of b by a
$\mathrm{c}=$
$0.3333 \quad 0.6667 \quad 1.0000$
$1.33331 .6667 \quad 2.0000$

