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Figure 2.1 

Generations of distributed systems 
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Figure 2.2  

Communicating entities and communication paradigms 



Figure 2.3 

Clients invoke individual servers 
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Figure 2.4a 

Peer-to-peer architecture 



Figure 2.4b 

A service provided by multiple servers 
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Figure 2.5 

Web proxy server 
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Figure 2.6 

Web applets 

a) client request results in the downloading of applet code 
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Figure 2.7 

Software and hardware service layers in distributed systems 
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Figure 2.8  

Two-tier and three-tier architectures 
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Figure 2.9 

AJAX example: soccer score updates 

new Ajax.Request('scores.php? 

                   game=Arsenal:Liverpool’,  

                  {onSuccess: updateScore}); 

function updateScore(request) {  

..... 

( request contains the state of the Ajax request 

including the returned result. 

The result is parsed to obtain some text giving the 

score, which is used to update the relevant portion 

of the current page.) 

.....  

} 11 
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Thin clients and compute servers 
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Figure 2.11  

The web service architectural pattern 
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Figure 2.12  

Categories of middleware 
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Figure 2.13 

Real-time ordering of events 
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Figure 2.14 

Processes and channels 
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Figure 2.15 

Omission and arbitrary failures 

Class of failure Affects Description 

Fail-stop Process Process halts and remains halted. Other processes may 
detect this state. 

Crash Process Process halts and remains halted. Other processes may 
not be able to detect this state. 

Omission Channel A message inserted in an outgoing message buffer never 
arrives at the other end’s incoming message buffer. 

Send-omission Process A process completes a  send,  but the message is not put 
in its outgoing message buffer. 

Receive-omission Process A message is put in a process’s incoming message 
buffer, but that process does not receive it. 

Arbitrary 
(Byzantine) 

Process or 
channel 

Process/channel exhibits arbitrary behaviour: it may 
send/transmit arbitrary messages at arbitrary times, 
commit omissions; a process may stop or take an 
incorrect step. 



Figure 2.11 

Timing failures 

Class of Failure Affects Description 

Clock Process Process’s local clock exceeds the bounds on its 
rate of drift from real time. 

Performance Process Process exceeds the bounds on the interval 
between two steps. 

Performance Channel A message’s transmission takes longer than the 
stated bound. 
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Objects and principals 
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The enemy 
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Figure 2.19 

Secure channels 
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