

Slides for Chapter 2:

 Architectural Models

2

Figure 2.1

Generations of distributed systems

3

Figure 2.2

Communicating entities and communication paradigms

Figure 2.3

Clients invoke individual servers

Server

Client

Client

invocation

result

Server
invocation

result

Process:
Key:

Computer:

Figure 2.4a

Peer-to-peer architecture

Figure 2.4b

A service provided by multiple servers

Server

Server

Server

Service

Client

Client

Figure 2.5

Web proxy server

Client

Proxy

Web

server

Web

server

server
Client

Figure 2.6

Web applets

a) client request results in the downloading of applet code

Web

server

Client
Web

serverApplet

Applet code

Client

b) client interacts with the applet

Figure 2.7

Software and hardware service layers in distributed systems

Applications, services

Computer and network hardware

Platform

Operating system

Middleware

10

Figure 2.8

Two-tier and three-tier architectures

11 Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 2.9

AJAX example: soccer score updates

new Ajax.Request('scores.php?

 game=Arsenal:Liverpool’,

 {onSuccess: updateScore});

function updateScore(request) {

.....

(request contains the state of the Ajax request

including the returned result.

The result is parsed to obtain some text giving the

score, which is used to update the relevant portion

of the current page.)

.....

} 11

Figure 2.10

Thin clients and compute servers

Thin
Client

Application
Process

Network computer or PC
Compute server

network

13

Figure 2.11

The web service architectural pattern

14

Figure 2.12

Categories of middleware

I

Figure 2.13

Real-time ordering of events

send

receive

send

receive

m1 m2

2

1

3

4
X

Y

Z

Physical

time

A

m3

receive receive

send

receive receive receive

t1 t2 t3

receive

receive

m2

m1

Figure 2.14

Processes and channels

process p process q

Communication channel

send

Outgoing message buffer Incoming message buffer

receivem

Figure 2.15

Omission and arbitrary failures

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may
detect this state.

Crash Process Process halts and remains halted. Other processes may
not be able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never
arrives at the other end’s incoming message buffer.

Send-omission Process A process completes a send, but the message is not put
in its outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message
buffer, but that process does not receive it.

Arbitrary
(Byzantine)

Process or
channel

Process/channel exhibits arbitrary behaviour: it may
send/transmit arbitrary messages at arbitrary times,
commit omissions; a process may stop or take an
incorrect step.

Figure 2.11

Timing failures

Class of Failure Affects Description

Clock Process Process’s local clock exceeds the bounds on its
rate of drift from real time.

Performance Process Process exceeds the bounds on the interval
between two steps.

Performance Channel A message’s transmission takes longer than the
stated bound.

Figure 2.17

Objects and principals

Network

invocation

result

Client
Server

Principal (user) Principal (server)

ObjectAccess rights

Figure 2.18

The enemy

Communication channel

Copy of m

Process p Process q m

The enemy
m’

Figure 2.19

Secure channels

Principal A

Secure channel Process p Process q

Principal B

