Slides for Chapter 4.
Interprocess Communication

Figure 4.1
Middleware layers

This
chapter

Applications, services

Remote invocation, indirect communication

UDP and TCP

Middleware
layers

Figure 4.2
Sockets and ports

d port
o C{ D/ any port 29reed RQ Q
E%

p\ socket
e
message
client Q\
D,

/(l server
—

Internet address = 138.37.94.248 Internet address = 138.37.88.249

other ports

Figure 4.3
UDP client sends a message to the server and gets a reply

import java.net. ;
import java.io. *;
public class UDPClient{
public static void main(String args[]){
// args give message contents and server hostname
DatagramSocket aSocket = null;
try {
aSocket = new DatagramSocket();
byte [] m = args[0].getBytes();
InetAddress aHost = InetAddress.getByName(args[1]),;
int serverPort = 6789;
DatagramPacket request = new DatagramPacket(m, m.length(), aHost, serverPort);
aSocket.send(request);
byte[] buffer = new byte[1000];
DatagramPacket reply = new DatagramPacket(buffer, buffer.length),
aSocket.receive(reply),
System.out.printin("Reply: " + new String(reply.getData())),
Jcatch (SocketException e){System.out.printin("Socket: " + e.getMessage()),
Jcatch (IOException e){System.out.printin("lO: " + e.getMessage()),}
Minally {if(aSocket = null) aSocket.close(),}

} Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5
© Pearson Education 2012

Figure 4.4
UDP server repeatedly receives a request and sends it back to the client

import java.net. *;
import java.io. *;
public class UDPServer{
public static void main(String args[]){
DatagramSocket aSocket = null;
tryf
aSocket = new DatagramSocket(6789);
byte[] buffer = new byte[1000];
while(true){
DatagramPacket request = new DatagramPacket(buffer, buffer.length),
aSocket.receive(request);
DatagramPacket reply = new DatagramPacket(request.getData(),
request.getLength(), request.getAddress(), request.getPort());
aSocket.send(reply);
/
Jcatch (SocketException e){System.out.printin("Socket: " + e.getMessage());
Jcatch (IOException e) {System.out.printin("lO: " + e.getMessage()),}
HMinally {if(aSocket != null) aSocket.close();}

Figure 4.5
TCP client makes connection to server, sends request and receives reply

import java.net.*;
import java.io.*;
public class TCPClient {
public static void main (String args[]) {
// arguments supply message and hostname of destination
Socket s = null;
try{
int serverPort = 7896;
s = new Socket(args[1], serverPort);
DatalnputStream in = new DatalnputStream(s.getInputStream());

DataOutputStream out =
new DataQutputStream(s.getOutputStream());
out.writeUTF (args[0]); // UTF is a string encoding see Sn 4.3

String data = in.readUTF(),
System.out.printin("Received: "+ data) ;
Jeatch (UnknownHostException e){
System.out.printin("Sock:"+e.getMessage());
Jcatch (EOFException e){System.out.printin("EOF:"+e.getMessage()),
Jcatch (IOException e){System.out.println("[0:"+e.getMessage()),}
HMinally {if(s!=null) try {s.close(), }catch (IOException e){System.out.printin("close:"+e.getMessage()),}}

/

Figure 4.6
TCP server makes a connection for each client and then echoes the client’s request

import java.net. *;
import java.io. *;
public class TCPServer {
public static void main (String args[]) {
try{
int serverPort = 7896,
ServerSocket listenSocket = new ServerSocket(serverPort);
while(true) {
Socket clientSocket = listenSocket.accept(),
Connection ¢ = new Connection(clientSocket);
/
} catch(IOException e) {System.out.printin("Listen :"+e.getMessage());}
/
/

// this figure continues on the next slide

Figure 4.6 continued

class Connection extends Thread {

DatalnputStream in;

DataOQutputStream out,

Socket clientSocket,

public Connection (Socket aClientSocket) {

try {

clientSocket = aClientSocket;
in = new DatalnputStream(clientSocket.getInputStream());
out =new DataQutputStream(clientSocket.getOutputStream());

this.start();
} catch(IOException e) {System.out.printin("Connection:"+e.getMessage()),}
/
public void run(){
try { // an echo server
String data = in.readUTF(),;
out.writeUTF (data),

} catch(EOFEXxception e) {System.out.printin("EOF:"+e.getMessage()),
} catch(IOException e) {System.out.printin("1O:"+e.getMessage()),}
} finally{ try {clientSocket.close(); }catch (IOException e){/*close failed™/}}

/

Figure 4.7
CORBA CDR for constructed types

Type Representation

sequence length (unsigned long) followed by elements in order

string length (unsigned long) followed by characters in order (can also
can have wide characters)

array array elements in order (no length specified because it 1s fixed)

struct in the order of declaration of the components

enumerated unsigned long (the values are specified by the order declared)

union type tag followed by the selected member

Figure 4.8

CORBA CDR message

index in notes
sequence of bytes %= 4 bytes —® onrepresentation
0-3 5 length of string
47 "Smit" ‘Smith’
811 ‘"
12-15 6 length of string
16-19 "Lond” ‘London’

| 20-23 "on_ "
24-27 1984 unsigned long

The flattened form represents a Person struct with value: {{Smith’, ‘London’, 1984}

Figure 4.9
Indication of Java serialized form

Serialized values Explanation
Person 8-byte version number | hO class name, version number
3 int year java.l.ang.StringI java.lang.String| number, type and name of
name: place: instance variables
1984 5 Smith 6 London hl values of instance variables

The true serialized form contains additional type markers; hO0 and h1 are handles

Figure 4.10 XML definition of the Person structure

<person id="123456789">
<name>Smith</name>
<place>London</place>
<year>1984</year>
</-- a comment -->
</person >

Figure 4.11 lllustration of the use of a namespace in the Person structure

<person pers:1d="123456789" xmlns:pers = "http://www.cdk5.net/person">

<pers:name> Smith </pers:name>
<pers:place> London </pers:place >
<pers:year> 1984 </pers:year>

</person>

http://www.cdk5.net/person

Figure 4.12 An XML schema for the Person structure

<xsd:schema xmlins:xsd = URL of XML schema definitions >
<xsd:element name= "person" type ="personType" />
<xsd:complexType name="personType">
<xsd:sequence>
<xsd:element name = "name" type="xs:string

—n

<xsd:element name = "place" type="xs:string
<xsd:element name = "year" type="xs:positiv
</xsd:sequence>
<xsd:attribute name= "id" type = "xs:positivelnteger
</xsd:complexType>

</xsd:schema>

Figure 4.13

Representation of a remote object reference

32 bits

32 bits

32 bits

32 bits

Internet address

port number

time

object number

interface of
remote object

Figure 4.14
Multicast peer joins a group and sends and receives datagrams

import java.net.*;
import java.io.*;
public class MulticastPeer{
public static void main(String args[]){
// args give message contents & destination multicast group (e.g. "228.5.6.7")
MulticastSocket s =null;
try {
InetAddress group = InetAddress.getByName(args[1]),
s = new MulticastSocket(6789);
s.joinGroup(group);
byte [| m = args[0].getBytes(),
DatagramPacket messageQOut =
new DatagramPacket(m, m.length, group, 6789),;
s.send(messageQOut);

// this figure continued on the next slide

Figure 4.14
continued

// get messages from others in group
byte[] buffer = new byte[1000],
for(int i=0; i< 3, i++) {
DatagramPacket messageln =
new DatagramPacket(buffer, buffer.length),
s.receive(messageln),
System.out.printin("Received:" + new String(messageln.getData())),
/
s.leaveGroup(group),
Jfcatch (SocketException e){System.out.printin("Socket: " + e.getMessage());
Jfcatch (IOException e){System.out.printin("1O: " + e.getMessage());}

HMinally {if(s = null) s.close(),}

Figure 4.15
Types of overlay

Motivation Type

Tailored for Distributed hash tables

application needs

Peer-to-peer file
sharing

Content distribution
networks

table continues on the next slide

Description

One of the most prominent classes of overlay
network, offering a service that manages a
mapping from keys to values across a potentially
large number of nodes in a completely
decentralized manner (similar to a standard hash
table but in a networked environment).

Overlay structures that focus on constructing
tailored addressing and routing mechanisms to
support the cooperative discovery and use (for
example, download) of files.

Overlays that subsume a range of replication,
caching and placement strategies to provide
improved performance in terms of content
delivery to web users; used for web acceleration
and to offer the required real-time performance
for video streaming [www.kontiki.com].

18

Figure 4.15 (continued)
Types of overlay

Tailored for Wireless ad hoc
network style networks

Disruption-tolerant
networks

Offering additional Multicast
features

Resilience

Security

Network overlays that provide customized
routing protocols for wireless ad hoc networks,
including proactive schemes that effectively
construct a routing topology on top of the
underlying nodes and reactive schemes that
establish routes on demand typically supported
by flooding.

Overlays designed to operate in hostile
environments that suffer significant node or link
failure and potentially high delays.

One of the earliest uses of overlay networks in
the Internet, providing access to multicast serv-
ices where multicast routers are not available;
builds on the work by Van Jacobsen, Deering
and Casner with their implementation of the

MBone (or Multicast Backbone) [mbone].

Overlay networks that seek an order of
magnitude improvement in robustness and
availability of Internet paths
[nms.csail.mit.edu].

Overlay networks that offer enhanced security
over the underling IP network, including virtual
private networks, for example, as discussed in
Section 3.4.8.

19

Figure 4.16
Skype overlay architecture

Skype

N 1
RS

SN Super node
2 Ordinary host

20

Figure 4.17
An overview of point-to-point communication in MPI

Process p Process ¢

receive

Message _ ? _

@

MPI library buffer

21

Figure 4.18

Selected send operations in MPI

Send operations

Generic

Synchronous

Buffered

Ready

Blocking

MPI Send: the sender blocks until
it is safe to return — that is, until the
message is in transit or delivered
and the sender’s application buffer
can therefore be reused.

MPI Ssend.: the sender and receiver
synchronize and the call only
returns when the message has been
delivered at the receiving end.

MPI Bsend: the sender explicitly
allocates an MPI buffer library
(using a separate

MPI Buffer_attach call) and the
call returns when the data is

successfully copied into this buffer.

MPI_Rsend: the call returns when
the sender’s application buffer can
be reused (as with MPI_Send), but
the programmer is also indicating to
the library that the receiver is ready
to receive the message, resulting in
potential optimization of the
underlying implementation.

Non-blocking

MPI Isend: the call returns
immediately and the programmer is
given a communication request
handle, which can then be used to
check the progress of the call via
MPI_Wait or MPI_Test.

MPI Issend: as with MPI Isend,
but with MPI Wait and MPI Test
indicating whether the message has
been delivered at the receive end.

MPI Ibsend: as with MPI Isend
but with MPI Wait and MPI Test
indicating whether the message has
been copied into the sender’s MPI
buffer and hence is in transit.

MPI Irsend: the effect is as with
MPI Isend, but as with
MPI_Rsend, the programmer is
indicating to the underlying
implementation that the receiver is
guaranteed to be ready to receive
(resulting in the same
optimizations),

22

