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Request-reply communication 
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Figure 5.3 

Operations of the request-reply protocol 

public byte[] doOperation (RemoteRef s, int operationId, byte[] arguments) 

     sends a request message to the remote server and returns the reply.  

     The arguments specify the remote server, the operation to be invoked and the 

           arguments of that operation. 

public byte[] getRequest (); 

    acquires a client request via the server port. 

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);  

    sends the reply message reply to the client at its Internet address and port. 
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Request-reply message structure 
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Figure 5.5 

RPC exchange protocols 
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Figure 5.6 

HTTP request message 

GET //www.dcs.qmw.ac.uk/index.html HTTP/ 1.1 
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HTTP Reply message 

HTTP/1.1  200 OK  resource data 

HTTP version status code reason headers message body 



Figure 5.8 

CORBA IDL example 

// In file Person.idl 

struct Person { 

 string name;  

 string place; 

 long year; 

} ; 

interface PersonList { 

 readonly attribute string listname; 

 void addPerson(in Person p) ; 

 void getPerson(in string name, out Person p); 

 long number(); 

}; 
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Call semantics 
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Figure 5.10  

Role of client and server stub procedures in RPC 
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Figure 5.11 

Files interface in Sun XDR 

const MAX = 1000; 

typedef int FileIdentifier; 

typedef int FilePointer; 

typedef int Length; 

struct Data { 

 int length; 

 char buffer[MAX]; 

}; 

struct writeargs { 

 FileIdentifier f; 

 FilePointer position; 

 Data data; 

}; 

struct readargs { 

 FileIdentifier f; 

 FilePointer position; 

 Length length; 

}; 

 
program FILEREADWRITE { 

   version VERSION { 

 void WRITE(writeargs)=1; 1 

 Data READ(readargs)=2; 2 

   }=2; 

} = 9999; 
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Remote and local method invocations 
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Figure 5.13 

A remote object and its remote interface 
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Figure 5.14 

Instantiation of remote objects  



Figure 5.15 

The role of proxy and skeleton in remote method invocation 



Figure 5.16 

Java Remote interfaces Shape and ShapeList 

import java.rmi.*; 

import java.util.Vector; 

public interface Shape extends Remote { 

 int getVersion() throws RemoteException; 

 GraphicalObject  getAllState() throws RemoteException; 1 

} 

public interface ShapeList extends Remote { 

 Shape newShape(GraphicalObject g) throws RemoteException; 2 

 Vector allShapes() throws RemoteException; 

 int getVersion() throws RemoteException; 

} 



Figure 5.17 

The Naming class of Java RMIregistry 

void rebind (String name, Remote obj)  

     This method is used by a server to register the identifier of a remote object by  

       name, as shown in  Figure 15.18, line 3.  

void bind (String name, Remote obj)  

    This method can alternatively be used by a server to register a remote object by 

     name, but if the name is already bound to a remote object reference an  

       exception is thrown. 

void unbind (String name, Remote obj)  

    This method removes a binding. 

Remote lookup(String name)  

    This method is used by clients to look up a remote object by name, as shown in 

       Figure 5.20 line 1. A remote object reference is returned. 

String [] list()  

This method returns an array of Strings containing the names bound in the registry. 



Figure 5.18 

Java class ShapeListServer with main method 

import java.rmi.*; 

public class ShapeListServer{ 

 public static void main(String args[]){ 

  System.setSecurityManager(new RMISecurityManager()); 

   try{ 

   ShapeList aShapeList = new ShapeListServant();   1 

               Naming.rebind("Shape List", aShapeList );   2 

   System.out.println("ShapeList server ready"); 

          }catch(Exception e) { 

   System.out.println("ShapeList server main " + e.getMessage());} 

 } 

} 



Figure 5.19 

Java class ShapeListServant implements interface ShapeList 

import java.rmi.*; 

import java.rmi.server.UnicastRemoteObject; 

import java.util.Vector; 

public class ShapeListServant extends UnicastRemoteObject implements ShapeList { 

  private Vector theList;   // contains the list of Shapes   

     private int version; 

 public ShapeListServant()throws RemoteException{...} 

 public Shape newShape(GraphicalObject g) throws RemoteException { 1 

  version++; 

         Shape s = new ShapeServant( g, version);    2 

          theList.addElement(s);                 

          return s; 

 } 

 public  Vector allShapes()throws RemoteException{...} 

  public int getVersion() throws RemoteException { ... } 

} 



Figure 5.20 

Java client of ShapeList 

import java.rmi.*; 

import java.rmi.server.*; 

import java.util.Vector; 

public class ShapeListClient{ 

    public static void main(String args[]){ 

 System.setSecurityManager(new RMISecurityManager()); 

 ShapeList aShapeList = null; 

 try{ 

  aShapeList  = (ShapeList) Naming.lookup("//bruno.ShapeList") ; 1 

  Vector sList = aShapeList.allShapes();    2 

 } catch(RemoteException e) {System.out.println(e.getMessage()); 

 }catch(Exception e) {System.out.println("Client: " + e.getMessage());} 

    } 

} 
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Classes supporting Java RMI 
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