

Slides for Chapter 5:

Remote invocation

Figure 5.1

Middleware layers

Applications

Middleware
layers Underlying interprocess communication primitives:

Sockets, message passing, multicast support, overlay networks

UDP and TCP

Remote invocation, indirect communication
This chapter

(and Chapter 6)

Figure 5.2

Request-reply communication

Request

Server Client

doOperation

(wait)

(continuation)

Reply

message

getRequest

execute

method

message

select object

sendReply

Figure 5.3

Operations of the request-reply protocol

public byte[] doOperation (RemoteRef s, int operationId, byte[] arguments)

 sends a request message to the remote server and returns the reply.

 The arguments specify the remote server, the operation to be invoked and the

 arguments of that operation.

public byte[] getRequest ();

 acquires a client request via the server port.

public void sendReply (byte[] reply, InetAddress clientHost, int clientPort);

 sends the reply message reply to the client at its Internet address and port.

Figure 5.4

Request-reply message structure

messageType

requestId

remoteReference

operationId

arguments

int (0=Request, 1= Reply)

int

RemoteRef

int or Operation

array of bytes

Figure 5.5

RPC exchange protocols

R Request

R R Reply

R R A Acknowledge reply

Request

Request Reply

Client Server Client

Name Messages sent by

Figure 5.6

HTTP request message

GET //www.dcs.qmw.ac.uk/index.html HTTP/ 1.1

URL or pathname method HTTP version headers message body

Figure 5.7

HTTP Reply message

HTTP/1.1 200 OK resource data

HTTP version status code reason headers message body

Figure 5.8

CORBA IDL example

// In file Person.idl

struct Person {

 string name;

 string place;

 long year;

} ;

interface PersonList {

 readonly attribute string listname;

 void addPerson(in Person p) ;

 void getPerson(in string name, out Person p);

 long number();

};

Figure 5.9

Call semantics

Fault tolerance measures Call
semantics

Retransmit request
message

Duplicate
filtering

Re-execute procedure
or retransmit reply

No

Yes

Yes

Not applicable

No

Yes

Not applicable

Re-execute procedure

Retransmit reply At-most-once

At-least-once

Maybe

Figure 5.10

Role of client and server stub procedures in RPC

client

Request

Reply

Communication Communication

 module module dispatcher

service

client stub

server stub
procedure procedure

client process server process

procedure program

Figure 5.11

Files interface in Sun XDR

const MAX = 1000;

typedef int FileIdentifier;

typedef int FilePointer;

typedef int Length;

struct Data {

 int length;

 char buffer[MAX];

};

struct writeargs {

 FileIdentifier f;

 FilePointer position;

 Data data;

};

struct readargs {

 FileIdentifier f;

 FilePointer position;

 Length length;

};

program FILEREADWRITE {

 version VERSION {

 void WRITE(writeargs)=1; 1

 Data READ(readargs)=2; 2

 }=2;

} = 9999;

Figure 5.12

Remote and local method invocations

invocation invocation

remote

invocation
remote

local

local

local

invocation

invocation

A
B

C

D

E

F

Figure 5.13

A remote object and its remote interface

interface

remote

m1

m2

m3

m4
m5
m6

Data

implementation

remote object

{ of methods

Figure 5.14

Instantiation of remote objects

Figure 5.15

The role of proxy and skeleton in remote method invocation

Figure 5.16

Java Remote interfaces Shape and ShapeList

import java.rmi.*;

import java.util.Vector;

public interface Shape extends Remote {

 int getVersion() throws RemoteException;

 GraphicalObject getAllState() throws RemoteException; 1

}

public interface ShapeList extends Remote {

 Shape newShape(GraphicalObject g) throws RemoteException; 2

 Vector allShapes() throws RemoteException;

 int getVersion() throws RemoteException;

}

Figure 5.17

The Naming class of Java RMIregistry

void rebind (String name, Remote obj)

 This method is used by a server to register the identifier of a remote object by

 name, as shown in Figure 15.18, line 3.

void bind (String name, Remote obj)

 This method can alternatively be used by a server to register a remote object by

 name, but if the name is already bound to a remote object reference an

 exception is thrown.

void unbind (String name, Remote obj)

 This method removes a binding.

Remote lookup(String name)

 This method is used by clients to look up a remote object by name, as shown in

 Figure 5.20 line 1. A remote object reference is returned.

String [] list()

This method returns an array of Strings containing the names bound in the registry.

Figure 5.18

Java class ShapeListServer with main method

import java.rmi.*;

public class ShapeListServer{

 public static void main(String args[]){

 System.setSecurityManager(new RMISecurityManager());

 try{

 ShapeList aShapeList = new ShapeListServant(); 1

 Naming.rebind("Shape List", aShapeList); 2

 System.out.println("ShapeList server ready");

 }catch(Exception e) {

 System.out.println("ShapeList server main " + e.getMessage());}

 }

}

Figure 5.19

Java class ShapeListServant implements interface ShapeList

import java.rmi.*;

import java.rmi.server.UnicastRemoteObject;

import java.util.Vector;

public class ShapeListServant extends UnicastRemoteObject implements ShapeList {

 private Vector theList; // contains the list of Shapes

 private int version;

 public ShapeListServant()throws RemoteException{...}

 public Shape newShape(GraphicalObject g) throws RemoteException { 1

 version++;

 Shape s = new ShapeServant(g, version); 2

 theList.addElement(s);

 return s;

 }

 public Vector allShapes()throws RemoteException{...}

 public int getVersion() throws RemoteException { ... }

}

Figure 5.20

Java client of ShapeList

import java.rmi.*;

import java.rmi.server.*;

import java.util.Vector;

public class ShapeListClient{

 public static void main(String args[]){

 System.setSecurityManager(new RMISecurityManager());

 ShapeList aShapeList = null;

 try{

 aShapeList = (ShapeList) Naming.lookup("//bruno.ShapeList") ; 1

 Vector sList = aShapeList.allShapes(); 2

 } catch(RemoteException e) {System.out.println(e.getMessage());

 }catch(Exception e) {System.out.println("Client: " + e.getMessage());}

 }

}

Figure 5.21

Classes supporting Java RMI

RemoteServer

UnicastRemoteObject

<servant class>

Activatable

RemoteObject

