
Slides for Chapter 10:

Peer-to-Peer Systems

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.1: Distinctions between IP and overlay routing for peer-to-

peer applications

IP Application-level routing overlay

Scale IPv4 is limited to 232 addressable nodes. The

IPv6 nam e space is much more generous

(2128), but addresses in both versions are

hierarchically structured and much of the space

is pre-allocated according to adm inistrative

requirements.

Peer-to-peer sy stems can address more objects.

The GUID name space is very large and flat

(>2128), allowing it to be much more fully

occupied.

Load balanc ing Loads on routers are determined by network

topology and associated traffic patterns.

Object locations can be random ized and hence

traffic patterns are divorced from the network

topology .

Network dynamics

(addition/deletion of

objects/nodes)

IP routing tables are updated asynchronously on

a best-efforts basis with tim e constants on the

order of 1 hour.

Routing tables can be updated synchronously or

asy nchronously with fractions of a second

delay s.

Fault tolerance Redundancy is designed into the IP network by

its managers, ensuring tolerance of a single

router or network connectivity failure. n-fold

replication is costly .

Routes and object references can be replicated

n-fold, ensuring tolerance of n failures of nodes

or connections.

Target identification Each IP address m aps to exactly one target

node.

Messages can be routed to the nearest replica of

a target object.

Security and anonymity Addressing is only secure when all nodes are

trusted. Anony mity for the owners of addresses

is not achievable.

Security can be achieved even in environments

with limited trust. A limited degree of

anony mity can be provided.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.2: Napster: peer-to-peer file sharing with a centralized,

replicated index

Napster server

Index1. File location

2. List of peers

request

of f ering the f ile

peers

3. File request

4. File deliv ered
5. Index update

Napster server

Index

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.3: Distribution of information in a routing overlay

Object:

Node:

D

CÕs routing knowledge

DÕs routing knowledgeAÕs routing knowledge

BÕs routing knowledge

C

A

B

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.4: Basic programming interface for a distributed hash table

(DHT) as implemented by the PAST API over Pastry

put(GUID, data)

The data is stored in replicas at all nodes responsible for the object

identified by GUID.

remove(GUID)

Deletes all references to GUID and the associated data.

value = get(GUID)

The data associated with GUID is retrieved from one of the nodes

responsible it.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.5: Basic programming interface for distributed object location

and routing (DOLR) as implemented by Tapestry

publish(GUID)

GUID can be computed from the object (or some part of it, e.g. its

name). This function makes the node performing a publish

operation the host for the object corresponding to GUID.

unpublish(GUID)

Makes the object corresponding to GUID inaccessible.

sendToObj(msg, GUID, [n])

Following the object-oriented paradigm, an invocation message is

sent to an object in order to access it. This might be a request to

open a TCP connection for data transfer or to return a message

containing all or part of the object’s state. The final optional

parameter [n], if present, requests the delivery of the same

message to n replicas of the object.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.6: Circular routing alone is correct but inefficient
Based on Rowstron and Druschel [2001]

The dots depict live nodes. The

space is considered as circular:

node 0 is adjacent to node (2128-1).

The diagram illustrates the routing

of a message from node 65A1FC to

D46A1C using leaf set information

alone, assuming leaf sets of size 8

(l = 4). This is a degenerate type of

routing that would scale very poorly;

it is not used in practice.

0 FFFFF....F (2128-1)

65A1FC

D13DA3

D471F1

D467C4

D46A1C

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.7: First four rows of a Pastry routing table

The routing table is located at a node whose GUID begins 65A1. Digits are in hexadecimal. The n’s represent [GUID, IP address] pairs specifying the next

hop to be taken by messages addressed to GUIDs that match each given prefix. Grey- shaded entries indicate that the prefix matches the current GUID up to

the given value of p: the next row down or the leaf set should be examined to find a route. Although there are a maximum of 128 rows in the table, only

log16 N rows will be populated on average in a network with N active nodes.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.8: Pastry routing example Based on Rowstron and Druschel [2001]

0 FFFFF....F (2128-1)

65A1FC

D13DA3

D4213F

D462BA

D471F1

D467C4

D46A1C

Routing a message from node 65A1FC to D46A1C.

With the aid of a well-populated routing table the

message can be delivered in ~ log 16(N) hops.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.9: Pastry’s routing algorithm

To handle a message M addressed to a node D (where R[p,i] is the element at column i,

row p of the routing table):

1. If (L-l < D < Ll) { // the destination is within the leaf set or is the current node.

2. Forward M to the element Li of the leaf set with GUID closest to D or the current

node A.

3. } else { // use the routing table to despatch M to a node with a closer GUID

4. find p, the length of the longest common prefix of D and A. and i, the (p+1)th

hexadecimal digit of D .

5. If (R[p,i] ° null) forward M to R[p,i] // route M to a node with a longer common

prefix.

6. else { // there is no entry in the routing table

7. Forward M to any node in L or R with a common prefix of length i, but a

GUID that is numerically closer.

}

}

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.10: Tapestry routing From [Zhao et al. 2004]

4228

4377

437A

4361

43FE

4664

4B4F

E791

4A6D

AA9357EC

4378
PhilÕs
Books

4378
PhilÕs
Books

(Root f or 4378)

publish path

Tapestry routings
f or 4377

Location mapping
f or 4378

Routes actually
taken by send(4378)

Replicas of the file PhilÕs Books (G=4378) are hosted at nodes 4228 and AA93. Node 4377 is the root node

for object 4378. The Tapestry routings shown are some of the entries in routing tables. The publish paths show

routes followed by the publish messages laying down cached location mappings for object 4378. The location

mappings are subsequently used to route messages sent to 4378.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.11: Structured versus unstructured peer-to-peer systems

13
Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.12: Key elements in the Gnutella protocol

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.13: Storage organization of OceanStore objects

d1 d2 d3 d5 d4

root block

version i indirection blocks

d2

version i+1

d1 d3

certificate
VGUID of current

version

VGUID of

version i

AGUID

VGUID of version i-1

data blocks

B
G

U
ID

 (
c
o

p
y
 o

n
 w

ri
te

)

Version i+1 has been updated in blocks d1,

d2 and d3. The certif icate and the root

blocks include some metadata not shown.

All unlabelled arrows are BGUIDs.

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.14: Types of identifier used in OceanStore

Name Meaning Description

BGUID block GUID Secure hash of a data block

VGUID version GUID BGUID of the root block of a version

AGUID active GUID Uniquely identifies all the versions of an object

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.15: Performance evaluation of the Pond prototype emulating

NFS

LAN WAN Predominant
operations in

benchmark Phase Linux NFS Pond Linux NFS Pond

1 0.0 1.9 0.9 2.8 Read and write

2 0.3 11.0 9.4 16.8 Read and write

3 1.1 1.8 8.3 1.8 Read

4 0.5 1.5 6.9 1.5 Read

5 2.6 21.0 21.5 32.0 Read and write

Total 4.5 37.2 47.0 54.9

Instructor’s Guide for Coulouris, Dollimore, Kindberg and Blair, Distributed Systems: Concepts and Design Edn. 5

© Pearson Education 2012

Figure 10.16: Ivy system architecture

DHash serv er

Modif led
NFS Client

module

Iv y serv er DHash serv er

Application

Kernel

Iv y node

DHash serv er

DHash serv er

DHash serv er

Application

